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Abstract-In the real life video sequences super resolutions 
become a complication because of the complex nature of the 
motion fields. So to improve the efficiency of the video 
sequences we proposed a method i.e. blind super resolution. 
In this method the overall point spread function of the 
imaging system, motion fields, and noise statistics are 
unknown. The first step is to estimate the blur is non-
uniform interpolation SR method and then a multi-scale 
process was performed on the estimated sequence. First the 
estimation will starts on few emphasized edges and after 
performing some steps gradually the iterations increased on 
more edges. For the faster convergence we are performing 
the estimation in the filter domain in the place of pixel 
domain. To conserve the edges and fine details we are using 
a high resolution frames by using a cost function that has 
the fidelity and regularization terms of type Huber–Markov 
random field. We performed masking operation to suppress 
the artifacts which occurred due to inaccurate motions. By 
using this operation the fidelity term is adaptively weighted 
at each iteration. In the proposed method we got good 
results for real-life videos containing detailed structures, 
complex motions, fast-moving objects, deformable regions, 
or severe brightness changes. We can see the results in both 
subjective and objective evaluations.  
 
Keywords: Video super resolution, blur deconvolution, 
blind estimation, Huber Markov random field (HMRF). 
 

1. INTRODUCTION: 
Multi-frame super resolution, namely estimating the 
higher frames from a low-res sequence, is one of the 
fundamental problems in computer vision and has been 
extensively studied for decades. The problem becomes 
particularly interesting as high-definition devices such as 
high definition television HDTV (1920 × 1080) dominate 
the market. The resolution of various display has increased 
dramatically recently, including the New iPad (2048 × 
1536), 2012 Macbook Pro (2880 × 1800), and ultra high 
definition television UHDTV (3840 × 2048 or 4K, 7680 × 
4320 or 8k). As a result, there is a great need for 
converting low resolution, low-quality videos into high-

resolution, noise free videos that can be pleasantly viewed 
on these high resolution devices. 
 
Although a lot of progress has been made in the past 30 
years, super resolving real-world video sequences still 
remains an open problem. Most of the previous work 
assumes that the underlying motion has a simple 
parametric form, and/or that the blur kernel and noise 
levels are known. But in reality, the motion of objects and 
cameras can be arbitrary, the video may be contaminated 
with noise of unknown level, and motion blur and point 
spread functions can lead to an unknown blur kernel.  
Therefore, a practical super resolution system should 
simultaneously estimate optical flow [3], noise level [7] 
and blur kernel [4] in addition to reconstructing the higher 
image. As each of these problems has been well studied in 
computer vision, it is natural to combine all these 
components in a single framework without making 
simplified assumptions. 
 
 In this paper, we propose a Bayesian framework for 
adaptive video super resolution that incorporates high-
resolution image reconstruction, optical flow, noise level 
and blur kernel estimation. Using sparsity prior for the 
high-res image, flow fields and blur kernel, we show that 
super resolution computation is reduced to each 
component problem when other factors are known, and 
the MAP inference iterates between optical flow, noise 
estimation, blur estimation and image reconstruction. As 
shown in Figure 1 and later examples, our system 
produces promising results on challenging real-world 
sequences despite various noise levels and blur kernels, 
accurately reconstructing both major structures and fine 
texture details. In-depth experiments demonstrate that 
our system outperforms the state-of-the-art super 
resolution systems [1], [8], [9] on challenging real-world 
sequences.  

2. LITERATURE SURVEY 
 

In this section we discuss a major class of super-resolution 
methods which utilize a frequency domain formulation of 
the super-resolution problem. The techniques discussed 
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utilize the shifting property of the Fourier transform to 
model global translational scene motion, and take 
advantage of the sampling theory to enable effect 
restoration made possible by the availability of multiple 
observation images. It is interesting to note that the 
methods we discuss here include the earliest investigation 
of the super-resolution problem, and although there are 
significant disadvantages in the frequency domain 
formulation, work has continued in this area until 
relatively recently when spatial domain techniques, with 
their increased flexibility, have become more prominent. 
This does not however mean to say that frequency domain 
techniques be ignored. Indeed, under the assumption of 
global translational motion, frequency domain methods 
are computationally highly attractive. We begin our review 
of frequency domain methods with the seminal work of 
Tsai and Huang [4]. 
 
In this paper [3], the author describes Printing from an 
NTSC source and conversion of NTSC source material to 
high-definition television (HDTV) format are some of the 
recent applications that motivate super resolution (SR) 
image and video reconstruction from lower resolution 
(LR) and possibly blurred sources. Existing methods for SR 
image reconstruction are limited by the assumptions that 
the input LR images are sampled progressively, and that 
the aperture time of the camera is zero, thus ignoring the 
motion blur occurring during the aperture time. Because of 
the observed adverse effects of these assumptions for 
many common video sources, this paper proposes i) a 
complete model of video acquisition with an arbitrary 
input sampling lattice and a nonzero aperture time, and ii) 
an algorithm based on this model using the theory of 
projections onto convex sets to reconstruct SR still images 
or video from an LR time sequence of images. 
Kim et al [45] in their paper, propose a recursive algorithm 
for restoration of super resolution images from noisy and 
blurred observations. They use the aliasing relationship 
between the under sampled frames and the reference 
image, to develop a weighted recursive least-squares 
theory based algorithm in the wave number domain. This 
algorithm is efficient because interpolation and noise 
removal are performed recursively and in addition, it is 
highly suitable for implementation through the massively 
parallel computational architectures currently available. 
Accurate knowledge of the relative scene locations sensed 
by each pixel in the observed images is necessary for super 
resolution. This information is available in image regions 
where local deformation can be described by some 
parametric function. Such functions can describe, for 
example, perspective transformation. Authors assumed 
that local motion can be described by translations and 

rotations only, but the approach is applicable also for other 
image motion models. 
 
3. PROPOSED METHOD 
 

A. Observation Model 
 

 
 

Fig 1: Estimation of fk  frame from LR video 
sequences 

 
As shown in Fig. 1, a sliding window (temporal) of length 
M + N + 1 (with M frames backward and N frames 
forward) is overlaid around each LR frame gk of size 
  

 
   

 
  ,  and all LR frames inside the window are 

combined through the SR process to generate the HR 

reference frame fk of size   
 
   

 
  . Here, Nx and Ny are 

frame dimensions in two spatial directions and C is the 
number of color channels. The linear forward imaging 
model that illustrates the process of generating a LR frame 
gi inside the window from the HR frame fk is given by: 
 

  (       )  [    (  (     ))   (   )]   

      (       )          
                   ( ) 

 
where P is the total number of frames, (x↓, y↓) and (x, y) 
indicate the pixel coordinates in LR and HR image planes 
respectively, L is the down sampling factor or SR up scaling 

ratio (so that   
 

    
 
      

 
    

 
, and   is the two-

dimensional convolution operator. According to this 
model, the HR frame fk is warped with the warping 
function mk,i , blurred by the overall system PSF h, down 
sampled by factor L, and finally corrupted by the additive 
noise nk,i . It is more convenient to express this linear 
process in the vector-matrix notion: 

gi = DHMk,ifk + ni----------------(2) 
 

 
 
 

 
 
 
Fig 2. Central motion (blue) versus sequential motion 

(red). 
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In (2) fk is the kth HR frame in lexicographical notation 

indicating a vector of size   
 
  

 
   , matrices Mk,i and H 

are the motion (warping) and convolution operators of 

size   
 
  

 
    

 
  

 
 , , D is the down sampling matrix of 

size   
 
  

 
    

 
  

 
 , and gi and ni are vectors of the ith 

LR frame and noise respectively, both of size   
 
  

 
   . 

The matrix Mk,i registers (or motion compensates) the 
reference frame fk to match the frame fi . As a result, Mkk is 
an identity (unit) matrix since no motion compensation is 
required between a HR frame and its coincident LR frame. 
For a blur deconvolution (BD) problem (i.e. L = 1), D is the 
identity matrix and so the input and output videos are of 
the same size. Hence BD can be considered as a special 
case of SR. The objective in SR and BD is to estimate the HR 
frames fk and the blur H given the LR frames gi while the 
motion Mk,i and the noise ni are unknown as well. 
 

B. Color Space 
 
The human visual system (HVS) is less sensitive to 
chrominance (color) than to luminance (light intensity). In 
the RGB (red, green, blue) color space, the three color 
components have equal importance and so all are usually 
stored or processed at the same resolution. But a more 
efficient way to take the HVS perception into account is by 
separating the luminance from the color information and 
representing luma with higher resolution than chroma. 
 
A popular way to achieve this separation is to use the 
YCbCr color space where Y is the luma component 
(computed as a weighted average of R, G, and B) and Cb 
and Cr are the blue-difference and red-difference chroma 
components. The YUV video format is commonly used by 
video processing algorithms to describe video sequences 
encoded using YCbCr. 
 
In our implementation, video sequences can be processed 
in either RGB or YUV formats. In the former case, SR is 
used to increase the resolution of all R, G, and B channels. 
However in the latter one, only the Y channel is processed 
by SR for faster computation while the Cb and Cr channels 
are simply up scaled to the resolution of the super-
resolved Y channel using a single-frame up sampling 
method such as bilinear or bi cubic interpolation. The 
obtained results related to these two cases are comparable 
using a subjective quality assessment. 
 

C. Motion Estimation 
 
Accurate motion estimation (registration) with sub pixel 
precision is crucial for video SR to achieve a good 
performance. Two different approaches can be considered 

for registration in video SR: central and sequential (Fig. 2). 
In the former, motion is directly computed between each 
reference frame and all LR frames inside its sliding 
window (Fig. 1). By contrast, in the latter, each frame is 
registered against its previous frame; then to use with SR, 
sequential motion fields must be converted to central 
fields for registration as follows: if Si = [ Sxi, Syi ] is the 
sequential motion field for the ith frame (w.r.t. the (i −1)th 
frame), then Mk,i = [ Mxk,i , Myk,i ] , the central motion field 
for the ith frame when the central frame is the kth frame is 
obtained as: 
 

        ∑                   

 

     

        
       

      ∑                

 

     

            ( ) 
Where I is the identity matrix. 

 
With the sequential approach in SR, each frame needs to 
be registered only against the previous frame, whereas 
with the central approach each frame is registered against 
all neighboring frames within its reconstruction window. 
Therefore, the computational complexity and the storage 
size of the motion fields in the central approach is higher 
than that of using the sequential approach. 
 

D. B LUR ESTIMATION 
 
In a multi-channel BD problem, the blurs could be 

estimated accurately along with the HR images [27]. 
However in a blind SR problem with a possibly different 
blur for each frame, some ambiguity in the blur estimation 
is inevitable due to the downsampling operation [19]. By 
contrast, in a blind SR problem in which all blurs are 
supposed to be identical or have gradual changes over 
time, such an ambiguity can be avoided the assumption of 
identical (or gradually changing) blurs makes it possible to 
separate the registration and upsampling procedures from 
the deblurring process which significantly decreases the 
blur estimation complexity. 

   
NUI method to reconstruct the upsampled frame 

is explained. This upsampled yet-blurry frame is used to 
estimate the PSF(s) and the deblurred frames through an 
iterative alternative minimization (AM) process. The blur 
and frame estimation procedures are discussed in Sections 
III-B and III-C, respectively. The estimated frames are used 
only for the deblurring process and so omitted thereafter. 
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Finally, the overall AM optimization process is described in 
Section III-D. 
 
E. Frame up sampling: 

 
In [2] we discuss the situations in which the 

warping and blurring operations in (2) are commutable. 
Although for videos with arbitrary local motions this 
commutability does not hold exactly for all pixels, however 
we assume here that this is approximately satisfied. The 
ultimate appropriateness of the approximation is validated 
by the eventual performance of the algorithm that is 
derived based on this model. With this assumption, (2) can 
be rewritten as: 

 
                          ( ) 

 
Where   =     is the upsampled but still blurry frame. 
Equation (4) suggests that we can first construct the 
upsampled frames zk using an appropriate fusion method 
and then apply a deblurring method to    to estimate 
  and h. 
 
If noise characteristics are also the same for all frames, an 
appropriate way to estimate    is using the NUI method 
[3]–[5]. In NUI, the pixels of all LR frames are projected on 
to the HR image grid according to their motion fields, and 
then the intensities of the true locations on the grid are 
computed via interpolation [2].  
 
E. FRAME DEBLURRING: 
 
After upsampling the frames, we use the following cost 
function, J, to estimate the HR frames fk having an estimate 
of the blur h (or H): 
 

 (  )  ‖ (      )‖    ∑‖ (    )‖ 
  ( )

 

   

 

 
where · 1 denotes the l1 norm (defined for a 

sample vector x with elements xi as x = i | xi| ), λn is the 
regularization coefficient, ρ(·) is the vector Huber function, 
ρ(·) 1 is called the Huber norm, and ∇ j (i = 1,. . ., 4) are the 
gradient operators in 0°, 45°, 90° and 135° spatial 
directions [2]. The first term in (5) is called the fidelity 
term which is the Hubernorm of error between the 
observed and simulated LR frames. While in most works 
the l2-norm is used for the fidelity term, we use the robust 
Huber norm to better suppress the outliers resulting from 
inaccurate registration. The next two terms in (5) are the 
regularization terms which apply spatiotemporal 

smoothness to the HR video frames while preserving the 
edges. 

 
Each element of the vector function ρ(·) is the 

Huber function defined as: 
 

 ( )  {
     | |   

  | |       | |   
      ( ) 

 
The Huber function ρ(x) is a convex function that 

has a quadratic form for values less than or equal to a 
threshold T and a linear growth for values greater than T. 
The Gibbs PDF of the Huber function is heavier in the tails 
than a Gaussian. Consequently, edges in the frames are less 
penalized with this prior than with a Gaussian (quadratic) 
prior. 

 
To minimize the cost function in (5), we use the 

conjugate gradient (CG) iterative method [30] because of 
its simplicity and efficiency. Compared to some other 
iterative methods such as Gauss-Seidel (GS) or SOR that 
need explicit derivation of matrix A when solving a linear 
equation Ax = b, CG can decompose the matrix A to 
concatenation of filtering and weighting operations. 
However, CG can only be used with linear equation sets, 
whereas the cost function in (5) is non quadratic and so its 
derivative is nonlinear. To overcome this limitation, we 
use lagged diffusivity fixed-point (FP) iterative method 
[31] to lag the diffusive term by one iteration [15]. Using 
this method for a sample vector x, at the nth iteration the 
non-quadratic Huber-norm ρ(xn)1 is replaced by the 
following quadratic form: 

 
‖ (  )‖  (  )   (  )  ‖  ‖  

         ( ) 
 
Where Vn is the following diagonal matrix: 
 

       ({
           

     ⁄         
)         (  

 
In (8) the dots above the division and comparison 

operators indicate element-wise operations. Applying the 
FP method to (5) and setting the derivative of the cost 
function with respect to fk to zero results in the following 
linear equation set: 

 

          ∑   
   

    

 

   

          ( ) 

Where 
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We discuss how to update the regularization parameter λn 
at each iteration in Section III-D. 
 
F. Blur estimation: 
Within an image or video frame, non-edge regions and 
weak structures are not appropriate for blur estimation. 
Hence, more accurate results would be obtained if the 
estimation is not performed in such regions. For this 
reason, in [11] and [33] the user should first manually 
select a region with rich edge structure, whereas in [2], 
[13], [14], and [34] the most salient edges are 
automatically chosen. Moreover, sharpening salient edges 
would also improve the accuracy of blur estimation. a 
lowpass Gaussian filtering is utilized before shock filtering. 
A similar concept for the blur estimation is exploited in 
[37] in which the image is first sharpened by redistributing 
the pixels along the edge profiles in such a way that ant 
aliased step edges are produced. Having the sharpened 
image and the blurry input image, the blur is then 
estimated using a maximum a posteriori (MAP) 
framework. 
 
In our work, we employ the edge-preserving smoothing 
method of [40] in which the number of surviving edges 
after smoothing is globally controlled by the regularization 
coefficient. This feature is helpful when one desires to limit 
the number of salient edges at each iteration. This 
smoothing method aims to keep an intended number of 
non-zero gradients through l0 gradient minimization using 
the following cost function: 
 

 (  
  )  ‖  

     
 ‖ 

    (‖   
 ‖  ‖   

 ‖
 
)    (  ) 

 
where fn k is the output of the edge-preserving 

smoothing algorithm and the l0 norm is defined as x 0 = # 
(i| xi = 0). Unlike shock filtering, this smoothing method 
does not need pre-filtering of noise. 
 
Though sufficient edge pixels are required for accurate 
blur estimation, it is shown in [14] that structures with 
scales smaller than the PSF support could harm blur 
estimation. Inspired by that work, we define Rkn in (12) to 
measure the usefulness of each pixel for blur estimation: 
 

  
  |    

  |    (  ) 
 

Where A and B are the convolution operators for 
the spatial filters a and b, respectively, as defined below:  

                        

        [
   
   
   

]    (  ) 
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In (13) and (14), a is the all-ones filter of size 11 × 11 and b 
is the sum-of-gradients filter. According to (12)-(14), to 
compute  

 , the sum of gradient components of   
 

 
  usually has a 

small value at the location of narrow edges and smooth 
regions.  
 
 

𝑓0
𝑘  𝑧𝑘  

Algorithm 1 Blur Estimation Procedure 

 

Require: 𝑔      𝑔𝑝 𝜆𝑚𝑖𝑛  Υ𝑚𝑖𝑛 and initials  𝑜 𝜆𝑜 𝛾𝑜 𝛽𝑜 𝑇 
𝑜 𝑇2

0 

Set n: =0 % Am loop iteration number 

S: = # of scales 

 Use luma or one color channel of 𝑔      𝑔𝑝1
 

for k: =1 to 𝑃  do   % Loop on 𝑷𝟏reference frames 
 if L>1 then   % For SR reconstruction 

    𝑧𝑘  𝑁𝑈𝐼(𝑔𝑘 𝑀    𝑔𝑘 𝑁) 
else     % For BD reconstruction 

      𝑧𝑘  𝑔𝑘 
end if 

%HR frame and blur estimation 

for s: =1 to S do % Multi-scale approach 

   Rescale 𝑧𝑘  𝑓𝑘
𝑛 𝑎𝑛𝑑  𝑛 

    % AM loop iteration 

    while “AM stopping criterion “is not satisfied do 

  n=n+1 

 % Updating procedure for f 

  compute 𝐕𝐧 and 𝐖𝑗
𝑛 using (10) 

  update 𝜆𝑛 

 while 𝐟𝑛 does not satisfy “CG stopping criterion” do 

    𝑓𝑘
𝑛 : = CG iteration for system in (9); starting at 

𝑓𝑘
𝑛   

 end while 

  Apply constraints on 𝑓𝑘
𝑛 

% Updating procedure for 𝒉𝒏 

  Update 𝛾𝑛  𝛽𝑛  𝑇 
𝑛 𝑎𝑛𝑑 𝑇2

𝑛 

Compute the smoothed frame 𝑓𝑘
𝑚 from (11) 

 Compute ∇𝑓𝑘
  𝑛 from (15) 

 Edge tapping of ∇𝑓𝑘
  𝑛 

 Compute  𝑘
𝑛(𝑥 𝑦) from (17) 

 Apply constraints on  𝑛 

  end while 

      end for 
      end for 

 

 is 
computed first, then at each pixel it is summed up with the 
values of all neighboring pixels, and finally its absolute 
value is obtained. 
 
For pixels on narrow structures, the sum of gradient 
values cancels out each other. Therefore,  
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Then   

  is refined by only retaining strong and non-spike 
edges: 
 

   
    {

   
     |   

  |    
       

    
 

            
     (  ) 

 
Where   

  and   
  are threshold parameters which 

decrease at each iteration.To avoid ringing artifact, we 
apply the MATLAB function edgetaper() to ∇  

 . Then we 
estimate each blur hk using the cost function J(h) below: 
 

 ( )  ∑‖       
   ‖ 

    ‖  ‖ 
     (  )

  

   

 

 
Where P1 ≤ M + N and    is the convolution 

matrix of fk. Since J(h) in (16) is quadratic, it can be easily 
minimized by pixel-wise division in the frequency domain 
[41] as: 
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̇
[| (  )  ̇  (  

   )̇ |
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   | (  )|
 ̇]})            (  ) 

 
Where ∇i(i = 1, 2) is ∇x or ∇y, F(·) and F−1(·) are 

FFT and inverse-FFT operations, and (·) is the complex 
conjugate operator. We then apply the following 
constraints to the estimated PSF: its negative values are set 
to zero, then the PSF is normalized to the range [0, 1], and 
centered in its support window. 
 
D. Overall Optimization for Blur Estimation: 

  
The overall optimization procedure for estimating 

the PSF is shown in Algorithm 1. The HR frames and the 
PSF are sequentially updated within the AM iterations. We 
use a multi-scale approach to avoid trapping in local 
minima. The regularization coefficients    in (9) and   in 
(17) decrease at each AM (alternating minimization) 
iteration up to some minimum values      and     , 
respectively (see [2] for a discussion). The variation of 
these coefficients is given by: 

 
      (          )   

     (          )    (  ) 
 
Where r is a scalar less than 1. Also the values of 

βn in (11) and Tn 1 and T2n in (15) fall at each AM 
iteration which increases the number of contributing 
pixels to blur estimation as the optimization proceeds. 

 
IV. FINAL HR FRAME ESTIMATION  
 
After the PSF estimation is completed, the final HR 

frames are reconstructed through minimizing the 
following cost function: 

 

 (        )  ∑ ( ∑ ‖ (    (        
    ))‖

 

   

     

 

   

  ∑‖ (    )‖ 
  (  )

 

   

) 

 
Where Ok,i is a diagonal weighting matrix that 

assigns less weights to the outliers. Minimizing this cost 
function with respect to fk yields: 

 

Algorithm 2 Final Frame Estimation Procedure 
 
Require: 𝑔      𝑔𝑝  and 𝜆 

 
1:   Set n: = 0 % FP loop iteration number 

2:   for k: =1 to P do            % Loop on P reference 

frames 

3: Estimate sequential motion fields 𝑆     𝑆𝑝  

4:Compute central motion fields  𝑀     𝑀𝑝 using 

(??) 

5:Estimate the blur h using Algorithm 1 

7:% Estimate HR frames using FP loops 

8:while ‘’FP stopping criterion” is not satisfied do 

9:    n=n+1 

10:  Compute 𝐎𝑘𝑗
𝑛  using (22) 

11:  Compute 𝐕𝑛 and 𝐖𝑗
𝑛 using (21) 

12: While 𝑓𝑛 does not satisfy “”CG stopping 

criterion” do 

13:𝑓𝑘
𝑛 : = CG iteration for system in (20); starting at 

𝑓𝑘
𝑛   

14:             end while 

15  Apply constraints on 𝑓𝑘
𝑛 

17: end while 

18:   end while 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395-0056 

          Volume: 04 Issue: 07 | July -2017                     www.irjet.net                                                              p-ISSN: 2395-0072 

 

© 2017, IRJET       |       Impact Factor value: 5.181       |       ISO 9001:2008 Certified Journal       |   Page 1583 
 

( ∑     
          

         ∑   
     

 

   

   

     

)  
 

     
          

        (  ) 

 
where 

       ( (        
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and the m-th diagonal element of Onk,i is computed 
according to: 
 

    [ ]     {
‖  ( (        

      ))‖

   
}   (  ) 

 
Where in (22) Rm is a patch operator which extracts a 
patch of size q × q centered at the m-th pixel of fk,i . 
 The final frame estimation procedure is demonstrated in 
Algorithm 2. 
 
5. Experimental results 
 
In this section, the performance of our method is evaluated  
and compared with the state-of-the-art video SR methods 
3D-ISKR 4 [38] and Fast Upsampler[42] which are 
available for public evaluation, and also with the 
commercial software Video Enhancer[43]. Among these 
three, we only display the results from 3D-ISKR[38]. This 
non-blind SR method does not include a deblurring step, so 
we post process its outputs with the deblurring method of 
[39]. Different parameters for deblurring were tried out in 
each experiment to get the best possible outcomes from 
3D-ISKR. Furthermore, since 3D-ISKR implementation 
does not estimate pixels near frame boundaries, we 
remove the boundaries from the reconstructed frame 
before an objective evaluation. 
 

 
 

Fig 1: Proposed method video sequence 
 

 
 

Fig 2: degraded video sequence 
 

 
 

Fig 3: Motion estimation in video sequence 
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Fig 6: Comparison results 
 

Fig 4: inverse video sequence 
 

 
 

Fig 5: Bi cubic interpolation pervious method 
 

 
 

Fig 7: PSNR values for proposed and pervious method

CONCLUSION: 
 
In this paper by using the blind deconvolution technique 
the low resolution video is converted into a super 
resolution form. The main problem in the real-life video 
sequences is in the nature of motion the frame will become 
blur. By using the non-uniform interpolation (NUI) SR 
method the input frames are upsampled and the blur is 
estimated. In the estimation process an assumption is 
made as the blur is either identical or have a slow 
variations over time. After performing upsampling of 
frames the blur is determined for some enhanced edges. 
To obtain the final reconstructed frames the previous 
frames are removed and non-blind iterative SR process is 
performed on the estimated blur (s). To get the perfect 
resolution masking operation is performed during the 
each iteration of the final frame reconstruction. Proposed 

method is compared with the conventional methods to see 
the accuracy of the output performance.  
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