IRJET

"Design of Experiments and Optimization of Grouted Connections of wind Turbine Monopile of with shear key and without shear key Foundations in Offshore applications"

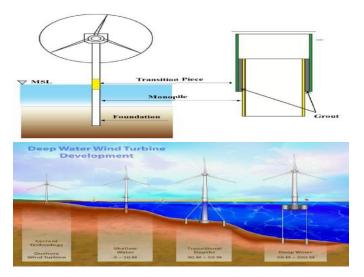
Srikanth M.V¹, Mohammed Imran², Dr. Mohamed Haneef³

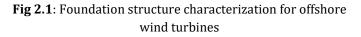
¹M.Tech Student, ² Assistant Professor, ³Professor & Principal Department of Mechanical Engineering , Ghousia College of Engineering Ramanagaram, Karnataka, India

_____***_____

Abstract— The Journal concerns the persevering change of offshore wind vitality era has achieved more profitable of the Foundation methodologies for offshore wind turbines at water profundities up to 30 meters, known as monopile and trial systems remembering the ultimate objective to speak to the Vertical heap of 3528000N.

Quality improvement of grouted associations in wind turbine steel monopile installation for offshore application is done by utilizing ANSYS and investigating static parameter. The results of the program are checked by the relating constrained part examination (FEA) with sensible comprehension with thought of standard parameters. Likewise mode examination conveyed to establish dynamic conduct of the monopile structure. The broke down outcomes demonstrates preferable for shear key monopile over without shear key monopile.


Keywords—Steel & Grout; Strength Evolution; Stresses; Compressive Strength ; Design of Experiments; optimization; Foundations in offshore;


1. INTRODUCTION OD WIND TURBINE

The Generation of energy through wind turbines has ended up being of wonderful impetus for huge scale future hypotheses for imperativeness ventures far and wide. A predictable sweep for more conspicuous wind potential pushed the inland business into toward the ocean plans with higher wind conditions. The goal for the best wind conditions is the search for more remote toward the ocean areas and, consequently, the most hoisted sea profundities. Presenting wind turbines at such profundities incorporates high stakes and high costs both fiscally and really. Regardless, a couple of main structures have been proposed for different profundities of the sea and ground conditions for toward the ocean wind turbines. Among the various astounding recommendations for water profundities up to 30 m, a specific foundation sort has exhibited its sufficiency considering helper ease, era and foundation costs.

2. FOUNDATIONS OF OFFSHORE WIND TURBINES

One of the standard issues experienced in association with the foundation of offshore wind turbines is the linkage of the structure to the ground, and particularly the way the stacks associated with the structure are safely traded to the including ground. Likewise, both offshore wind turbines and their foundation structures ought to be more tried and true than seaside in view of higher upkeep and repair costs on those goals.

2.1 Steel Monopile Foundations

Monopile foundations have been used for the foundation towards the ocean oil and gas organizes for a significant long time. In this particular circumstance, they are known as sleeve affiliations. A partner sleeve is constituted by a concentric sleeve mounted on a pile which is pushed into the seabed with the sleeve of greater width masterminded around the more diminutive separation crosswise over annular hair that is encircled there between. The affiliation is finally settled by filling these with a remarkably made

annular divider which is put away in the great bond. This advancement has been traded to toward the ocean wind turbines using improved overhauled complete properties.. The monopile continues down into the offshore. The structure is made of a tube formed steel tube.

The pile penetration significance is adaptable to suit the genuine environmental and seabed conditions. A limiting condition of this kind of reinforce structure is the general preoccupation (parallel improvement along the monopile) and vibration, and are subjected to broad cyclic, sidelong loads and curving minutes (as a result of the current and wave loads) despite center point loads (e.g. vertical burdens in light of the move piece). Monopiles are starting at now the most normally used foundation in the toward the ocean bend publicize as a result of their straightforwardness of foundation in shallow to medium water profundities.

1.1 Grouted Connections on Monopile Foundation Structure

Monopile foundations have been used for the installation of the offshore oil and gas arrange for a significant long time. In this particular circumstance, they are known as sleeve affiliations. A partner sleeve is constituted by a concentric sleeve mounted on a stack which is pushed into the seabed with the sleeve of greater width masterminded around the smaller separation crosswise over annular hair that is surrounded there between. The affiliation is finally settled by filling these with an extraordinarily made annular divider which is put away in the brilliant concrete. This development has been traded to toward the ocean wind turbines using improved overhauled complete properties.

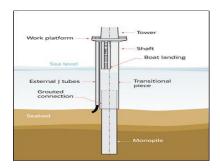
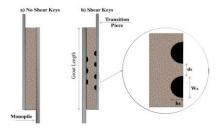



Fig 2.2 Steel monopile foundation

Fig 2.3 Steel–Grout Monopile of with shear key and without shear key.

2. MATERIALS USED

The decision of material assumes an essential part in the outline of monopile quality advancement of grouted association in offshore applications. What's more, subsequently high review steel is utilized as a part of move piece and heap also, and grout is incorporates solid materials (Portland concrete + dry sand + dry stone + water) in the proportion of 1:2:3:0.5.

The properties of materials of high grade steel and grout as shown in following table 3.1

Property	Grout	High Grade Steel
Compression strength(Mpa)	41	250
Tension Strength (Mpa)	5	250
Modulus of elasticity(Gpa)	30	200
Density(Kg/m ³)	2300	7850
Poisson's ratio	0.18	0.33

Table-3.1 Properties of Materials used

3. METHODOLOGY

In view of the Literature Survey, perceive the issue in Foundation of steel and cement monopile quality development of grouted association in offshore applications. The exploration approach is detailed in three specific routes, for example, outline and investigation, and plan enhancement and DOE (plan of analyses).

		A	В
1			Enabled
2	🖃 🥖 Design of E	Experiments	
3	🖃 Input Parame	ters	
4	🖃 🚾 steel s	structure (A1)	
5	Cp (P1 - outerthickness	
6	(p	P2 - innerthickness	
7	Cp III	P3 - concretethickness	
8	(p	P4 - axis2innerdistance	
9	(p	P5 - loweraxis2innerdistance	
10	Cp.	P6 - outerlength	
11	Cp C	P7 - innerlength	
12	Cp	P8 - concretelength	
13	(þ	P9 - Remote Force Magnitude	
14	Output Paran	neters	
15	🖃 🚾 steel s	structure (A1)	
16	Pr	P10 - Equivalent Stress Maximum	
17	Fq	P11 - Maximum Principal Stress Maximum	
18	P	P12 - Shear Stress Maximum	
19	6q	P13 - Directional Deformation inner Maximum	
20	Fq	P14 - Directional Deformation concrete Maximum	
21	Fq	P15 - Directional Deformation outer Maximum	
22	Pa	P16 - Shear Stress outer Maximum	
23	Fq	P17 - Shear Stress concrete Maximum	
24	₽₹	P18 - Shear Stress inner Maximum	
25	Charts		

3. RESULTS AND DISCUSSIONS

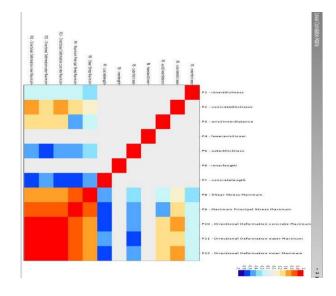
I. BOUNDARY CONDITIONS



Fig.5.1. Boundary conditions with load 3528000N applied on the Grout (a) Without Shear keys (b) With shear key.

With a specific end goal to get web association structure, it is important to decide the conduct of the whole structure in light of the expense. Reset monopole establishment structure is furnished with its own particular weight on the vertical load on the quality of the move piece; see Figure 2-1, 350tons financially free of the heaviness of the wind generator (3528000N) working at the highest point of the association.

II. DESIGN OF EXPERIMENTS (DOE)

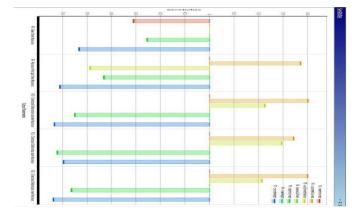

DOE (Design of Experiments) is a sensible way to deal with lead a succession of tests with a given game plan of parameters, each with a range that restrains the amount of runs anticipated that would fathom the effect of the parameters.

Outline of examinations is the foundation that everything inside Design Xplorer depends on. This strategy is about is to choose what number of and for what input regards the examination may be run. There are diverse methodologies for this yet a comparative goal for all is to get as awesome response surface as possible with as few data blends as would be judicious. So generally this movement portrays is the thing that number of examination that will be run. Each mix that ANSYS discloses for is alluding to as a Design Points.

Table 5.2 ANSYS Outline of Schematic of Design of Experiments (DOE)

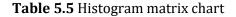
	A	8	c	0	E	F	G	н	1	3	ĸ	L.
1	Name	P7 - outer_thickness	P8 - grout_thickness	pg - inner_thickness	P 10 - radus_imer	P11- istance_groub	P13 - grout_length	P14 - Istance_grout2	P18 - istancebw_keys	P15 - Maxim Principal Stress Maxim (MPa)	P16 - Max Shear Stress Max (MPa)	P17 - Total Defor Maximum (mm)
2	Output Parameter N											
3	P 15 - Maximum Principal Stress Maximum Minimum Design Point	55	90	51.937	945.87	107.93	430.33	102.34	102.33	10.218	12.124	0.14805
4	P 16 - Maximum Shear Stress Maximum Minimum Design Point	55	97.861	\$3.252	928.16	100.49	427.59	88.306	107.93	10.451	7.6197	0.14177
5	P17 - Total Deformation Maximum Minimum Design Point	55	90	55	1081.4	90.659	424.72	107.03	93.719	11.102	9.9596	0.1431
6	Output Parameter M	laximums		<i></i>	100	10.			· · · · · ·	-	_	1.0
7	P15 - Maximum Principal Stress Maximum Maximum Design Point	45	110	48.644	906.42	107.93	384.55	103.48	88.597	22.882	17.042	0.21963
8	P 16 - Maximum Shear Stress Maximum Maximum Design Point	45	90.639	45	900.88	88.306	353.22	88.306	88.306	16.302	20.65	0.20798
9	P17 - Total Deformation Maximum Maximum Design Point	45	104.21	45	900	101.4	353.22	95.644	94.887	21.414	18.911	0.23199

Table 5.3 Correlation Matrix Chart



i. SENSITIVITIES CHART

The sensitivities graph demonstrates worldwide sensitivities of the yield parameters concerning the information parameters. Positive affectability happens while expanding the info, builds the yield. Negative affectability happens while expanding the info diminishes the yield.


Table 5.4 Sensitivities chart

ii. HISTOGRAM MATRIX

Displacement displays if a key moves to the chose yield parameter. We can set the arrangement kind of house or Linear square. R2 limit (%), shrouded property makes it conceivable to channel the information parameters, the information parameters, together with the assurance coefficient, are lower than a specific edge.

	A	В	с	D	Ε	F	G	н	1	J	ĸ	L
1	Name	P7 - outer_thickness	P8 - grout_thickness	P9 - Imer_thickness	P 10 - radus_inner	P11 - istance_grout	P13 - grout_length	P14 - histance_grout	P 18 - Istancebw_keys	P15 - Maxim Principal Stress Maxim (MPa)	P16 - Max Shear Stress Max (MPa)	P17 - Total Defor Maximum (mm)
2	D Output Parameter N	annums										
3	P 15 - Maximum Principal Stress Maximum Minimum Design Point	55	90	51.937	945.87	107.93	430.33	102.34	102.33	10.218	12,124	0.14805
4	P 16 - Maximum Shear Stress Maximum Minimum Design Point	55	97.861	\$3.252	928.16	100.49	427.59	88.306	107.93	10.451	7.6197	0.14177
5	P 17 - Total Deformation Maximum Minimum Design Point	55	90	55	1081.4	90.659	424.72	107.03	93.719	11.102	9.9596	0.1431
6	Output Parameter M	laximums		A.	140	dan da	1					
7	P15 - Maximum Principal Stress Maximum Maximum Design Point	45	110	48.644	906.42	107.93	384.55	103.48	88.597	22.882	17.042	0.21963
8	P 16 - Maximum Shear Stress Maximum Maximum Design Point	45	90.639	45	900.88	88.306	353.22	88.306	88.306	16.302	20.65	0.20798
9	P17 - Total Deformation Maximum Maximum Design Point	45	104.21	45	900	101.4	353.22	95.644	94.887	21.414	18.911	0.23199

iii. PARAMETRIC CORRELATION

Using the parametric correlation we filtered the seven input parameters to five by excluding unimportant input parameters from the DOE sampling in order to reduce unnecessary sampling points.

Table 5.6 Parametric Correlation

	A	В	С	D	E
1	 Filtering Method 				
2	Relevance Threshold	0.5			
3	Configuration	Filtering on Corre	ation Value and R2 Contribution, with a	maximum of 7 majo	r input parameters
4	Filtering Output Parameters	Deformation cor	s Maximum, P9 - Maximum Principal Stre acrete Maximum, P11 - Directional Deform mation inner Maximum		
5	 Major Input Parameters 				
6	Input Parameter		Best Relationship With Filtering Ou	tput Parameter	/
7		Relevance	Output Parameter	R2 Contribution	Correlation Value
8	P5 - outerthickness	1	P11 - Directional Deformation outer Maximum	0.3559	-0.62371
9	P7 - concretelength	1	P8 - Shear Stress Maximum	0.31096	-0.5347
10	P3 - axis2innerdistance	0.84553	P9 - Maximum Principal Stress Maximum	0.21452	-0.48978
11	P1 - innerthickness	0.79373	P8 - Shear Stress Maximum	0.1555	-0.34933
12	P2 - concretethickness	0.75113	P10 - Directional Deformation concrete Maximum	0.15595	0.4427
13	 Minor Input Parameters 				
14	The second se		Best Relationship With Filtering Ou	tput Parameter	
15	Input Parameter	Relevance	Output Parameter	R2 Contribution	Correlation Value
16	P6 - innerlength	0.47004	P8 - Shear Stress Maximum	0.032294	0.13468
17	P4 - loweraxis2inner	0.37026	P8 - Shear Stress Maximum	0.015785	-0.037846

iv. DOE CHARTS

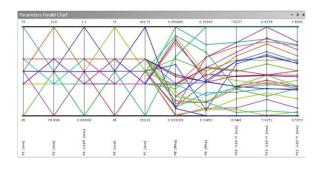
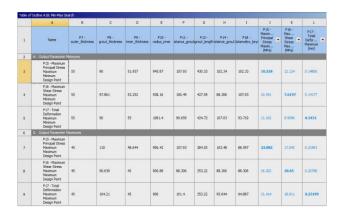



Table 5.7 Parameter Parallel Charts

	A	8	С	D	Ε	F	G	н	1	3	ĸ	. L.
1	Name	P7 - outer_thickness	P8 - grout_thickness	pg - inner_thickness	P10 - radus_imer	P11 - istance_grout	P13 - grout_lengt	P14 - histance_grou	P18 - Cistancebw_keys	P15 - Maxim Princpal Stress Maxim (MPa)	P16 - Max Shear Stress Max (MPa)	P17 - Total Defor Maximum (mm)
2	Output Parameter N	tranums										
3	P 15 - Maximum Principal Stress Maximum Minimum Design Point	55	90	51.937	945.87	107.93	430.33	502.34	102.33	10.218	12.124	0.14805
4	P 15 - Maximum Shear Stress Maximum Minimum Design Paint	55	97.861	\$3.252	928.16	100.49	427.59	83.306	107.93	10.451	7.6197	0.14177
5	P 17 - Total Deformation Maximum Minimum Design Point	55	90	55	1081.4	90.659	424.72	107.03	93.719	11.102	9.9596	0.1431
6	Output Parameter M	Sexemums				the second				-		1.4
7	P15 - Maximum Principal Stress Maximum Maximum Design Point	45	110	48.644	906.42	107.93	384.55	103.48	88.597	22.882	17.042	0.21963
8	P 16 - Maximum Shear Stress Maximum Maximum Design Point	45	90.639	45	900.88	88.306	353.22	88.306	88.306	15.302	20.65	0.20798
9	P17 - Total Deformation Maximum Maximum Design Point	45	104.21	45	900	101.4	353.22	95.644	94.887	21.414	18.911	0.23199

v. MIN-MAX SEARCH

Min-Max Search explores all the production of parameter space cell surface to harmonize the minimum and maximum values for each of the parameter output. When the cycle is allow to checked, min-max search is given each time the response surface is updated. Clear the checkbox to turn off Max Search. Perhaps we want to disable this feature in cases where the search can be very time consuming. Table 5.8 Max-Min Search

vi. DESIGN POINT VS PARAMETERS

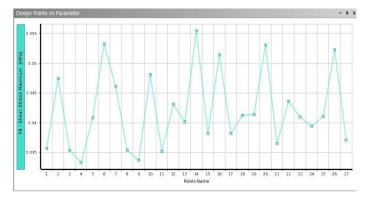


 Table 5.9 Design point v/s Parameters

III. DESIGN OPTIMIZATION

For all intents and purposes each part of the arrangement is enhanced: The estimations (i.e., thickness), the shape (for example, the filet radii), and the circumstance of the cost of arranging maintained the Eigen repeat material, et cetera. Frankly, ANSYS can each dissent that can be verbalized be subjected to the arrangement parameters streamlining. Consequent to handling the issue in ANSYS progression is performed and done the pile path look at in monopile.

ANSYS program endorsed two streamlining behavior to oblige a broad assortment of change issues. The sub issue normally made zero-mastermind strategy that can be suitably associated with the particular issues. The essential explanation behind the affectability of the procedure relies on upon the framework, and it is more suitable for the issues that require high precision.

	А	В
1		Enabled
2	🗉 🥔 Parameters Correlation 🛛 🔞	
3	Input Parameters	
4	🗉 🧱 bonded connection (A1)	
5	P1 - innerthickness	
6	P2 - concretethickness	1
7	P3 - axis2innerdistance	1
8	P4 - loweraxis2inner	
9	P5 - outerthickness	V
10	lip P6 - innerlength	
11	β P7 - concretelength	1
12	Output Parameters	
13	🗉 🤓 bonded connection (A1)	
14	🍸 🔁 P8 - Shear Stress Maximum	
15	🍸 🕺 P9 - Maximum Principal Stress Maximum	
16	🍸 🛱 P10 - Directional Deformation concrete Maximum	
17	🍸 🛱 P11 - Directional Deformation outer Maximum	
18	Y 🕺 P12 - Directional Deformation inner Maximum	

Table 5.10 Outline of parametric correlation

The quantity of configuration focuses for parametric relationship is chosen in light of the quantity of parameters. The quantity of parameters in this venture is 12 (Including yield and info parameters) henceforth configuration focuses is 281 in light of factorial.

Number of Input Parameters	Factorial Number f	Number of Design Points		
1	0	5		
2	0	9		
3	0	15		
4	0	25		
5	1	27		
6	1	45		
7	1	79		
8	2	81		
9	2	147		
10	3	149		
11	4	151		
12	4	281		
13	5	283		
14	6	285		
15	7	287		
16	8	289		
17	9	291		
18	9	549		
19	10	551		
20	11	553		

Table 5.11 Design Points

i. GOODNESS OF FIT

	A	в	С	D
1	Name	P7 - Maximum Shear Stress Maximum	P8 - Maximum Principal Stress Maximum	P9 - Total Deformation Maximum
2	Goodness Of Fit			
3	Coefficient of Determination (Best Value = 1)	★★ 0.98596	0.99987	0.99995
4	Adjusted Coeff of Determination (Best Value = 1)	★★ 0.9787	A 0.99981	🔆 0.99991
5	Maximum Relative Residual (Best Value = 0%)	* 2.6633	0.17187	0.1301
6	Root Mean Square Error (Best Value = 0)	0.0018717	0.00012847	8.4412E-07
7	Relative Root Mean Square Error (Best Value = 0%)	★★ 1.1156	0.078401	0.041734
8	Relative Maximum Absolute Error (Best Value = 0%)	× 27.609	* 2.6724	★ 2.0293
9	Relative Average Absolute Error (Best Value = 0%)	- 9.5003	A 0.86659	.48424

International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395-0056Volume: 04 Issue: 07 | July -2017www.irjet.netp-ISSN: 2395-0072

i. CANDIDATE POINTS

IRIET

The Candidate Points comes to fruition, which are appeared in the Table and see; empower you to see different sorts of information about applicant focuses. It enables you to decide the number less than one parameters for which you have to demonstrate competitor data. In the Chart see, the legend's shading coding engages you to see and interpret the examples, hopeful focuses recognized by the upgrade, applicants installed physically, and possibility for which yield regards have been affirmed by an arrangement point invigorate. You can demonstrate the chart's properties to control the deceivability of each point, feasible cases, hopefuls you've inserted physically, and competitors with affirmed yield regards.

ndidate Points		
	Candidate Point 1	Candidate Point 2
P1 - outer_shell	55	★★ 52.7
P2 - concrete_thickness	XX 100	× 108.01
P3 - inner_shell	★★ 53.95	★ 52.26
P4 - cncrete_length	× 403.98	★ 408.01
P5 - outer_length	- 2014.2	- 2016.2
P6 - inner_length	996.23	- 997.87
P7 - Maximum Shear Stress Maximum (MPa)	0.14174	★★ 0.14491
P8 - Maximum Principal Stress Maximum (MPa)	★★ 0.13795	- 0.14852
P9 - Total Deformation Maximum (mm)	0.0018007	★★ 0.0018983

Fig 5.13 Candidate Points Chart

4. CONCLUSIONS

The accompanying conclusions were acquired from the analysis and optimization of Grouted associations:

• Static structural analysis is done for the Grouted associations of twist turbine to discover the Shear stresses and distortions. The greatest Shear push (0.14687Mpa) and twisting (0.0019702mm) is gotten under given load conditions (3528000N).

• Similarly, Static structural analysis is done for the Grouted associations with shear keys of twist turbine to discover the Shear stresses and misshapenness. The most extreme Shear stretch (0.16191Mpa) and disfigurement (0.0019674mm) is gotten under given load conditions (3528000N).

• Modal analysis is done for the grouted associations with find distinctive starting basic modes and relating characteristic twisting frequencies under free vibration conditions. The modal analysis is completed to locate the distinctive modal frequencies under vibrating conditions in light of which, it can be examine that whether the planned model is sheltered or not.

• Optimization is finished by shifting info parameters regarding yield parameters to acquire the upgraded comes about inside the imperatives. The streamlined aftereffect of static analysis is most extreme shear push is 0.14174Mpa and twisting is 0.0018007mm. The shear push is enhanced.

References

[1] Tziavos, Nikolaos; Hemida, Hassan; Metje, Nicole; Baniotopoulos, Charalampos., "Grouted connections on offshore wind turbines" University of Birmingham-April.19.2016

[2] Anders Moller., "Efficient Offshore Wind Turbine Foundations" - September 1, 2005

[3] J. van der Tempel , N.F.B. Diepeveen , D.J. Cerda Salzmann & W.E. de V ries., "Design of support structures for offshore wind turbines" Volume 44, Delft University of Technology-2010

[4] Vicente Negro, José-Santos Lopez Gutierrez, M. Dolores Esteban, Clara Matutano., "Uncertainties in the design of support structures and foundations for offshore wind turbines" Volume 63-March 2014

[5] Lars P. Nielsen., "Finite Element Analysis of Large Diameter Grouted

Connections" Volume 5-June.15.2007

[6] Kenneth Peire, Hendrik Nonneman And Eric Bosschem., "Gravity Base Foundations for the Thornton Bank Offshore Wind Farm"-June 2019

[7] Inge Lotsberg., "Structural mechanics for design of grouted connections in monopile wind turbine structures" Volume 32- July2013

[8] Peter Schaumann, Dipl.-Ing. Fabian Wilke., "Fatigue Of Grouted Joint Connections" Leibniz University of Hannover-December 2006

[9] Dan Kallehave, Byron W. Byrne, Christian LeBlanc Thilsted, Kristian Kousgaard Mikkelsen., "Optimization of monopiles for offshore wind turbines" University of Oxford-June 4 2017

[10] <u>Sanjeev Malhotra.</u>, "Design and Construction Considerations for Offshore Wind Turbine Foundations" Vol 5: Ocean Space Utilization-June.15. 2007

[11] Marcus Klose ,Torsten Faber ,Peter Schaumann and Stephan Lochte-Holtgreven., "Grouted Connections For

Offshore Wind Turbines" International Society of Offshore and Polar Engineers- July.6. 2011

[12] Mads Damgaard, Jacob K.F. Andersen., "Natural Frequency and Damping Estimation of an Offshore Wind Turbine Structure"- June.7.2012

[13] S.C. Jiang, Z. Wang and X.L. Zhao., "Structural Performance of Prestressed Grouted Pile-to-Sleeve Connections" Tongji University-2011

[14] Torsten Faber , Marcus Klose., "Experiences With Certification of Offshore Wind Farms"-May.28.2006

[15] Subhamoy Bhattacharya., "Challenges in Design of Foundations for Offshore Wind Turbines" University of Surrey-2014