
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2971

Handwritten Digit Recognition Using Convolutional Neural Networks

T SIVA AJAY1

School of Computer Science and Engineering

VIT University
Vellore, TamilNadu,India

---***---
Abstract - Handwritten digit recognition is gaining a huge
demand in the branch of computer vision. We are going to
implement a better and accurate approach to perceive and
foresee manually written digits from 0 to 9. A class of
multilayer sustain forward system called Convolutional
network is taken into consideration. A Convolutional network
has a benefit over other Artificial Neural networks in
extracting and utilizing the features data, enhancing the
knowledge of 2D shapes with higher degree of accuracy and
unvarying to translation,scaling and other distortions. The
LeNet engineering was initially presented by LeCun et al in
their paper.The creators excecution of LeNet was primarily
focused on digit and character recognition.LeNet engineering
is clear and simple making it easy for implementation of
CNN’s. We are going to take the MNIST dataset for training
and recognition. The primary aim of this dataset is to classify
the handwritten digits 0-9 . We have a total of 70,000 images
for training and testing. Each digit is represented as a 28 by 28
grey scale pixel intensities for better results. The digits are
passed into input layers of LeNet and then into the hidden
layers which contain two sets of convolutional,activation and
pooling layers. Then finally it is mapped onto the fully
connected layer and given a softmax classifier to classify the
digits.We are going to implement this network using keras
deep learning inbuilt python library.

KeyWords:ConvolutionalNeuralNetworks (CNN’s),LeNet,
Artificial Neural networks

1.INTRODUCTION

In our half of the globe of our mind otherwise called V1
,contains millions of neutrons with billions of connections
between them. The thought is to take digits into
consideration and build up a framework which can gain from
these. At the end the neural system utilizes the cases to
naturally construct rules for perceiving handwritten digits.
There are two types of neurons accessible in our brain are
perceptron, sigmoid neuron. To calculate the yield we will
present weights computing the significance of the separate
contributions to the yield. The neuron’s give an output of 0
or 1 if the weighted sum is below or above some threshold
value. Various decision making models are formed by
different weights and threshold values. In the network the
first layer of perceptron’s that makes very simple decisions
,by multiplying the weights with the inputs. In this way a
perceptron in the second layer can make even more complex

decision than a perceptron in the first layer. The layers away
from the first layer make progressively more complex
decisions compared to the first layer. For learning purpose
we should continuously change the weights so that the
network finds out the aggregate and compares it with a
threshold value of bias. If a small change in the weights
modifies the output in the direction we want to proceed then
we can use small weights or we can take large weights for
training ,this method is like hit and trial which we use in
solving higher degree polynomials. The architecture of
neural networks is divided into three categories,the input
layer neurons, the output layer neurons , the layers in
between input and output layer called as hidden layers.
Sometimes the networks have multiple layers they are
coined as Multilayer perceptrons or MLP’s. The input layer of
our network consists of input neurons encoding the values
taken from input pixels of our handwritten digit.Our training
data which is fetched from MNIST data set consists of many
28 by 28 pixel images and so input layer contains 784 input
neurons. The second layer of our network will be the hidden
layer and it takes the aggregated output of first layer and
applies activation function to detect the pattern of input
images. We will experiment with different values for the
number of neurons in the hidden layer. Next coming to
output layer of our network contains 10 neurons, each
neuron if fired gives any output between 0 to 9 ,so this is the
basic working of neural networks for an image. Similar to
those of artificial neural networks but with a small
modification comes Deep learning networks also termed as
Convolutional networks with a higher degree of accuracy for
classification. In Deep networks features are extracted not
from the entire domain of input but several features are
extracted from parts of the domain. Our deep networks use
LeNet architecture which enables the networks fast to train
and obtaining better results of classification. Keras is a high-
level deep networks library written in python and capable of
running by using backend as either Tensor Flow or Theano.
It was developed for focusing mainly on deriving fast
training. Supports both convolutional and recurrent
networks and combination of both also. The main principle
of this library is modularity , which is understood as a
sequence of fully configurable modules that can be combined
together with little constraints on them. In particular neural
layers, cost functions, optimizers, activation functions are all
modules that you can combine to form a new network. The
main aim of keras is modularity ,a way of architecting the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2972

layers. Hence we use keras deep learning library for
implementing our architecture.

2. LITERATURE REVIEW

 2.1 Fully Connected Multi-Layer Nueral Network:

A Multi-Layer Neural Network with one or more number of
hidden units is capable of classifying the digits in MNIST data
set with a less than 2 % error rate on test set.This network
extracts features based on the entire spatial domain of
images hence the number of parameters required is very
high. The problem with these networks is they tend to be
over parameterized, in order of 100,000’s which is unwanted
when working with complex classification problems with
complex data sets.

2.2 K-nearest neighbour classifier:

A KNN classifier with a distance measure like Euclidean
distance between the data sets input images is also capable
of classification of digits but at higher error rate than a fully
connected ML neural network. The key features of this
classifier is that it requires no training time and no input
from the programmer in terms of knowledge for designing
the system. The big over head of this classifier is memory
requirement and the classification or recognition time. We
take into consideration that this nearest-neighbor system
works on raw pixels instead of feature vectors.

3. RESEARCH FRAMEWORK

The ability of Convolutional networks which are trained with
gradient descent to learn tougher,multi dimensional,non
convex mappings from large datasets. In the traditional
model of digit recognition , a hand desgined feature extractor
gathers important features from the input and eliminates
other distortions. A trainable classifier then classifies the
features into classes. In this type fully connected layers can be
used as the classifiers. There are also problems in this type of
implementation firstly, images are large, often with hundred
pixels and by contrast in the next layer would contain several
weights. Such a large number of weights are often good for
improving the training accuracy but the memory requirement
is very huge. But the main problem lies in unstructured nets
for image recognition is that they have no built in invariance
with respect to translations and disturbances of inputs.
Before being sent into a neural net , the images must be
normalized and centralized in the input field. But in our case
there is no pre-processing step which can normalize the
inputs. This will cause the variation in the position of
different features in input image.In principle a fully
connected network of sufficient size can learn to predict
outputs that are variant with respect to such variations.

3.1 Convolutional Networks

Convolutional neural networks use three basic factors to

implement classification and recognition problem. In the local
receptive fields which are the fully connected layers ,the
input were taken as vertical column of pixel intensities. In a
convolutional net, we will take it as a 28 by 28 square matrix
of neurons , which corresponds to the input image. Here we
won’t connect every input pixel in first layer to every other
neuron in the hidden layer , instead we make connections in
small and localized regions of input image. Let’s say for
example a 5 by 5 region , corresponds to 25 input pixels. So
for a neuron we might have connections like.

Fig 1. Connections between input layer and hidden
layer

The region in the input image is called the local receptive field
of hidden layer neurons. Each connection learns a weight.

In the next step of Shared weights and biases the main
objective that it has a bias and weights connected to its local
receptive field. A note worthy point is that we are going to
use the same weights and bias for each of 24 by 24 hidden
neurons.To make it in simple terms is that all the neurons in
the first hidden layer detect exactly the same feature but at
different places of the input image as the local receptive field
moves through the input . To make it sensible , suppose the
weights and bias are in such a way that hidden layer can
predict a vertical edge in a particular local receptive field, this
prediction can be useful at other parts of image. To put in
practical terms convolutional neural networks are well
habituated to invariance of images. In our implementation we
are going to use MNIST datasets has less invariance
compared to other images. So sometimes we call this
mapping from input layer to hidden layer as the feature map.
We define weights as shared weights and bias for knowing
the feature as the shared bias , both often termed as kernel or
filter.

Fig 2. Showing different feature maps from input layer

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2973

In the above figure showing 3 feature mappings defined by a
5 by 5 shared weights and single bias per feature map. Now
our network has the ability to detect 3 different kinds of
features ,with each feature can be predicted in every part of
image.

 The next processing step used is termed as Pooling layers
which are also a part of hidden layer and present after the
Convolutional layer and gives more finer details of the feature
mapped . Pooling layers simplifies the information from the
output of convolutional layer and makes a very thin and
condensed feature map which has ability to predict more
thinner and finer details for feature extraction. These features
can be again predicted at every place of image. To explain in
practical terms each unit of pooling layer may predict a 2 by 2
neurons from the convolutional layer. The procedure used for
pooling is coined as Max-pooling. We can combine these
layers together using models of keras library ,but it has a
additional of a layer of 10 classes of neurons representing the
10 possible values for MNIST digits.

Fig 3. Network showing 28 by 28 input neurons , followed
by convolutional layer and then pooling layer which is then

connected to output layer.

In the above figure the network takes 28 by 28 square matrix
of neurons which are used to encode the pixel
intensities.Then it is followed by a convolutional layer of 5 by
5 local receptive field and containing 3 feature maps. The
result is passed is passed onto pooling layers , which takes 2
by 2 regions as kernals. The output layer is a fully connected
layer , in this layer every neuron from the pooled layer
connected to every one of 10 neurons in output layer.

3.2 LeNet Architecture of CNN’S

In our implementation of Convolutional networks we will be
using Lenet engineering which is primarily based on local
receptive fields and kernels and sub-sampling or pooling to
make sure that the invariance of several distortions possible.
A typical convolutional neural network for classifying and
recognizing digits as shown in figure 4 . The input layer gets
the input images from MNIST dataset which can be
downloaded by libraries available. They are normalized and
centralized . With local receptive fields neurons can learn
different vision features such as end-points,oriented
edges,curves .These features are further extracted with more
accurate by subsequent layers.Units in a feature map are all

derived to perform same operation on different places of
image. A complete convolutional network comprises of
several feature mappings with different weights and biases
so that multiple features can be extracted at once and can be
applied on every part of image. A practical example is the
first layer of our LeNet architecture which is shown in figure
4. Units which are present in the first hidden layer of LeNet
are arranged in 6 feature mappings in our network. Each
unit takes a 5 by 5 local receptive filed or kernel from input
layer. Hence each neuron in hidden layer has 25 different
trainable variable equations which when applying learning
algorithm can be learned and these variables can be
optimized using cost function and activation function. It
additionally has a trainable variant bias which is unique for
every feature learned. The receptive fields which are
contiguous in manner are formed by corresponding
contiguous units in the input layer. The other feature maps
in the layer learn different weights and biases and can be
useful for prediction of other features. In our LeNet
architecture of CNN’s at each input layer locates six different
types of features are being derived by six units at same
location in feature maps. A step by step implementation of
feature map would scan the given input image with a single
unit that has a local receptive field and stores the data of unit
at corresponding locations in feature maps. This operation is
identical to a convolution , followed by an additional bias and
activation function so the name convolutional neural
network.The kernel which we use in the network is set of
weights used by units in feature mapping in mathematical
approach to convolution . An astonishing property is that the
amount by which the input image is shifted , the same
amount is shifted towards the output of feature map. This
property ensures that our network is invariant to shifts and
disturbances of the input.

Once the feature is extracted , its exact position in image is
not required , only the approximate location relative to other
extracted features is important. For example in our analysis
we came to know that the input image contains the endpoint
of a horizontal line segment in upper left area , and the
endpoint of a vertical line segment is located in the lower
portion of image we can predict that image is a 7. But these
precise positions of each of their features are required
because the positions are likely to vary for different
instances of the input digit. The only way to deal with this
problem is by reducing the spatial resolution of feature map.
This is implemented with sub sampling layers which
performs a local averaging and a sub-sampling and therefore
reducing the resolution of feature map. The second hidden
layer of LeNet architecture is a sub-sampling layer . This
layer compromises of distinct six feature maps one from
every feature map in the previous layer. The receptive field
for each unit compromises of 2 by 2 kernel in previous layer
feature map. Each unit performs a typical operation like
convolution which is averaging of its four inputs and
multiplied by trainable weight’s matrix ,adds a trainable bias
and passes through the activation function like sigmoid

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2974

function , in our implementation we will be using ReLu
activation function which is used in rectifiers. By practical
approach a sub-sampling layer feature map has half number
of rows and coloums as the feature maps in our
convolutional layers had. The trainable coefficient and bias
have control over the effect of activation function. If the
coefficient is small , the unit operates in a quasi-linear mode
and sub sampling layer merely blurs the image. Successive
layers of convolution and sampling if performed on the
imaged results in a bi-pyramid at each layer. A higher degree
of invariance can be obtained with this successive reduction
of spatial resolution of feature maps and also enables us to
predict and detect more finer details and increase in the
representation of data more richer. It makes easy for the
network to identify features at very fast rate which makes
CNN’s more preffered to be used.

Since all weights are learned using learning algorithm , in
our case we will be using back propogation , convolutional
networks can be viewed as self extractor of its features. The
weight sharing method has reduced memory to store and
time to compute these weights.

Fig 4. Architecture of LeNet Convolutional networks.

 4. Methodology

We can implement Convolutional neural networks in
PYTHON/MATLAB. In our implementation we will be using
python because we have our keras deep learning library
built in python . So by using keras models we can implement
our network and create a driver program to call the network
to take inputs from the data set. The driver program also has
learning algorithm , training and testing datasets. MNIST
datasets are the best and well known , and easily understood
dataset in the computer vision branch and machine learning
to use it as first dataset which we can use in our journey of
deep learning. After implementing we can find that our
network can classify the digits upto >98% accuracy with less
training time. This implementation can be done in both CPU
or GPU enabled system , but CPU takes more training time
than GPU. We will be using 66% of data for training our
network and rest of theb data to test our network. Each digit
is taken as 28 by 28 greyscale image which are available
from MNIST dataset and can be directly downloaded. These
greyscale pixel intensities fall in the range of 0 to 255 . All
digits are presented on black background colour with a light
foreground colour being white, the digit itself and includes
various shades of grey. The code is is organized this way, we
will define a package name pyimagesearch and within that

module we will create a cnn sub-module which will help us
to store the Convolutional neural networks implementation.
Then going into our cnn module or folder you should have
your networks submodule , this is where the network
implementations must be stored. So now create a python file
inside that folder which implements our network and define
a class inside our file which is our code implementing the
LeNet architecture using Python + keras. Now we need a
driver program to instantiate the LeNet architecture, train
the model, load the datasets, and give the accuracy rate of
our network and test the results. Finally the output folder we
will store out LeNet model after it has been trained , so that
it is not required to train the network after sub-sequent calls
to classify digits.

4.1 Libraries required to install

Here we define our list of libraries we need to install for

keras library to work for our networks. The most important
library is the NUMPY is a library that provides support for
large, multi-dimensional arrays where we can store our input
pixel matrix of size 28 by 28 , using numpy we can express
images as multi-dimensional arrays of pixel intensity values.
We can also rely on the NumPy’s built-in highly advanced
mathematical functions and we can apply logistic regression
on the image. The next library which is to be installed is the
Python SCIPY library. It adds futher help for scientific and
technical computing of our functions. The important
subpackage of SciPy is the package that has a huge amount of
distance funtions which are implemented using trees.
Normally after extracting features the image is represented
as a list of numbers , in order to compare these two images
we need distance computation methods , such as Euclidean
distance.. Next up is PILLOW library useful for manipulations
on image such as resizing, rotation. Then we come to OPENCV
library and the main goal of this library is real-time image
processing. Next we can install SCIKIT-LEARN library which
is by the way not a image vision library but a machine
learning library.This library helps us with advanced
computer vision whether it may be in clustering,
quantization, classification models. The library next to be
installed is h5py to store large numerical datasets, it also
provides support for NumPy arrays it has efficient and long
term storage of NumPy arrays.

4.2 Implementation of our LeNet architecture

After installing these libraries in python we can use our keras
deep learning library to implement our network and create
python files for network creation and instantiation. In our
implementation we have trained the network in such a way
that it learns many filters of size 5 by 5 and then pass it
through a ReLU activation function followed by 2 by 2 max
pooling in both dimensions. We then take the output of Max-
pooling layers to apply it to fully connected layers. Our fully
connected layers contain around 500 units which we will
pass through another ReLU activation that enables us to

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2975

combine them into classes , which are useful for identifying
our image , we have 10 classes one for each digit to classify.
Finally we apply a softmax classifier that will give us the list
of probabilities , one for each of the 10 classes created . The
class label with largest probability will be taken as the final
classification of our network. In our driver program datasets
can be downloaded from mldata submodule and load it to our
network , then train the network using Stocastic Gradient
Descent with learning rate and number of iteration. Now we
atre running keras on the top of TENSOR FLOW as backend to
train the network. In our implementation we have given 20
epochs for better accuracy

5. RESULTS AND DISCUSSION

Our network has been trained with and tested with 70,000
datasets and we obtained an accuracy of > 98% which is good
enough to test our classification implementation. We have
given a learning rate of 0.01 to our algorithm and obtained
good classification results , everytime after training we are
taking random inputs from our testing dataset and
calculating the efficiency each time it is excecuted. An
interesting property of these networks is that the training
error keeps decreasing over time but the test error goes
through a minimum and starts increasing after a certain
number of iterations , this is possibly because of the higher
learning rate and by decreasing it we can get our results , if
not reduced the learning rate the Stocastic gradient descent
may get stuck in local minimum and finds it difficult to
predict the optimized weights , which affects the prediction
and accuracy of our network. The figure 5 shows how they
change when the learning rate is high.

Fig 5. Showing how the test and train error changes and
predicting the best model to be used.

 In our discussion we can refer to other methods and their
accuracy although all methods did well with all the
classifiers, boosted LeNet 4 did best , achieving a score of
0.7% and rest of them acquired better accuracy than other
methods . So it us best to rely on LeNet architecture rather
than other methods for classification.

Fig 6. Showing the raw error rate of the classifiers on the
10,000 example test set.

 6. CONCLUSION

Performance of a network depends on many factors like low
memory requirements, low run time and better accuracy ,
although in this paper it is primarily focused on getting better
accuracy rate for classification . Before Artificial neurons had
better accuracy but now the branch of computer vision
mainly depends on deep learning features like convolutional
neural networks. Research is still going on in this field and
researches have developed many forms of LeNet architecture
like LeNet-1,LeNet-4, Boosted LeNet-4 and also combination
of many methods like LeNet-4 with KNN’s , but for a quite
long time our LeNet architecture was considered as state of
the art.Many other methods like Tangent Distance Classifier
were developed using LeNet architecture. The main aim of
this paper deals with one of the method in which it can be
implemented , there are several methods in which they can
be done and using different frameworks like matlab,octave.
The branch of computer vision in artificial intelligence
primary motive is to develop a network which is better to
every performance measure and provide results for all kinds
of datasets which can be trained and trained and recognized.

7. FUTURE WORK

Fixed size Convolutional Neural Networks has been applied
to many applications like handwritten digit recognition ,
machine printed character recognition and on-line
handwriting recognition, they can also be useful for signature
verification .The more the training examples the more is the
accuracy of the networks .Unsupersived machine learning
was made easier using Convolutional Neural networks , some
of the future works possible to implement by CNN’s are
compressing or obtaining same results from smaller
networks by optimization tricks , more invariant feature
learning such that the input images dosen’t gets distorted.
The major 3D vision networks is a scope for researches to
develop using LeNet architecture and more biologically
concordant methods , a hope for future is that Unsupervised
CNN’s .

8. REFERENCES

[1] Yann LeCun, Leon Bottou,Yoshua Bengio and Patrick
Haffner , paper on “Gradient Based Learning Applied

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 2976

to Document Recognition” , Proc of the IEEE ,
NOVEMBER 1998

[2] Y.LeCun,L.Jackel,L.bottom,A.brunot,C.Cortes,J.Denker

,H.Drucker,I.guyon,U.muller paper on “Comparision
of Learning Algorithms for handwritten digit
recognition”

[3] Y.LeCun,B.Baser,J.S.Denker,D.Henderson

,R.E.Howard,R.Hubbard,and L.D.Jackel , Handwritten
digit recognition with a back- propogation network
in D.Tourezky, Advances in Neural Information
Processing Systems 2, Morgan Kaufman(1990)

[4] Corima Cartes and Vladimir Vapnik The Soft Margin

Classifier , Machine Learning to appear(1995)

[5] Haider A.Alwzwazy, Hayder M. Albehadili, Younes
S.Alwan ,Naz E Islam paper on “Handwritten Digit
Recognition Using Convolutional Neural Networks”
Vol 4 ,Issue 2,February 2016

[6] Xuan Yang , Jing Pu paper on “Mdig:Multi-digit

Recognition using Convolutional Neural Network on
Mobile

[7] Saeed Al-Mansoori paper on “Intelligent Digit

Recognition using Artificial Neural Networks Vol 5,
Issue 5, (Part-3) May 2015 , pp 46-51

