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Abstract - Handwritten digit recognition is gaining a huge 
demand in the branch of computer vision. We are going to 
implement a better and accurate approach to perceive and 
foresee manually written digits from 0 to 9. A class of 
multilayer sustain forward system called Convolutional 
network is taken into consideration. A Convolutional network 
has a benefit over other Artificial Neural networks in 
extracting and utilizing the features data, enhancing the 
knowledge of 2D shapes with higher degree of accuracy and 
unvarying to translation,scaling and other distortions. The 
LeNet engineering was initially presented by LeCun et al in 
their paper.The creators excecution of LeNet was primarily 
focused on digit and character recognition.LeNet engineering 
is clear and simple making it easy for implementation of 
CNN’s. We are going to take the MNIST dataset for training 
and recognition. The primary aim of this dataset is to classify 
the handwritten digits 0-9 . We have a total of 70,000 images 
for training and testing. Each digit is represented as a 28 by 28 
grey scale pixel intensities for better results. The digits are 
passed into input layers of LeNet and then into the hidden 
layers which contain two sets of convolutional,activation and 
pooling layers. Then finally it is mapped onto the fully 
connected layer and given a softmax classifier to classify the 
digits.We are going to implement this network using keras 
deep learning inbuilt python library. 
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1.INTRODUCTION 
 
In our half of the globe of our mind otherwise called V1 
,contains millions of neutrons with billions of connections 
between them. The thought is to take digits into 
consideration and build up a framework which can gain from 
these. At the end the neural system utilizes the cases to 
naturally construct rules for perceiving handwritten digits. 
There are two types of neurons accessible in our brain are 
perceptron, sigmoid neuron. To calculate the yield we will 
present weights computing the significance of the separate 
contributions to the yield. The neuron’s give an output of 0 
or 1 if the weighted sum is below or above some threshold 
value. Various decision making models are formed by 
different weights and threshold values. In the network the 
first layer of perceptron’s that makes very simple decisions 
,by multiplying the weights with the inputs. In this way a 
perceptron in the second layer can make even more complex 

decision than a perceptron in the first layer. The layers away 
from the first layer make progressively more complex 
decisions compared to the first layer. For learning purpose 
we should continuously change the weights so that the 
network finds out the aggregate and compares it with a 
threshold value of bias. If a small change in the weights 
modifies the output in the direction we want to proceed then 
we can use small weights or we can take large weights for 
training ,this method is like hit and trial which we use in 
solving higher degree polynomials. The architecture of 
neural networks is divided into three categories,the input 
layer neurons, the output layer neurons , the layers in 
between input and output layer called as hidden layers. 
Sometimes the networks have multiple layers they are 
coined as Multilayer perceptrons or MLP’s. The input layer of 
our network consists of input neurons encoding the values 
taken from input pixels of our handwritten digit.Our training 
data which is fetched from MNIST data set consists of many 
28 by 28 pixel images and so input layer contains 784 input 
neurons. The second layer of our network will be the hidden 
layer and it takes the aggregated output of first layer and 
applies activation function to detect the pattern of input 
images. We will experiment with different values for the 
number of neurons in the hidden layer. Next coming to 
output layer of our network contains 10 neurons, each 
neuron if fired gives any output between 0 to 9 ,so this is the 
basic working of neural networks for an image. Similar to 
those of artificial neural networks but with a small 
modification comes Deep learning networks also termed as 
Convolutional networks with a higher degree of accuracy for 
classification. In Deep networks features are extracted not 
from the entire domain of input but several features are 
extracted from parts of the domain. Our deep networks use 
LeNet architecture which enables the networks fast to train 
and obtaining better results of classification. Keras is a high-
level deep networks library written in python and capable of 
running by using backend as either Tensor Flow or Theano. 
It was developed for focusing mainly on deriving fast 
training. Supports both convolutional and recurrent 
networks and combination of both also. The main principle 
of this library is modularity , which is understood as a 
sequence of fully configurable modules that can be combined 
together with little constraints on them. In particular neural 
layers, cost functions, optimizers, activation functions are all 
modules that you can combine to form a new network. The 
main aim of keras is modularity ,a way of architecting the 
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layers. Hence  we use keras deep learning library for 
implementing our architecture. 

 
2. LITERATURE REVIEW 
 
 2.1 Fully Connected Multi-Layer Nueral Network: 
 
A Multi-Layer Neural Network with one or more number of 
hidden units is capable of classifying the digits in MNIST data 
set with a less than 2 % error rate on test set.This network 
extracts features based on the entire spatial domain of 
images hence the number of parameters required  is very 
high. The problem with these networks is they tend to be 
over parameterized, in order of 100,000’s which is unwanted 
when working with complex classification problems with 
complex data sets. 
 
2.2 K-nearest neighbour classifier: 
 
A KNN classifier with a distance measure like Euclidean 
distance between the data sets input images is also capable 
of classification of digits but at higher error rate than a fully 
connected ML neural network. The key features of this 
classifier is that it requires no training time and no input 
from the programmer in terms of knowledge for designing 
the system. The big over head of this classifier is memory 
requirement and the classification or recognition time. We 
take into consideration that this nearest-neighbor system 
works on raw pixels instead of feature vectors. 
 
3. RESEARCH FRAMEWORK 
 
The ability of Convolutional networks which are trained with 
gradient descent to learn tougher,multi dimensional,non 
convex mappings from large datasets. In the traditional 
model of digit recognition , a hand desgined feature extractor 
gathers important features from the input and eliminates 
other distortions. A trainable classifier then classifies the 
features into classes. In this type fully connected layers can be 
used as the classifiers. There are also problems in this type of 
implementation firstly, images are large, often with hundred 
pixels and by contrast in the next layer would contain several 
weights. Such a large number of weights are often good for 
improving the training accuracy but the memory requirement 
is very huge. But the main problem lies in unstructured nets 
for image recognition is that they have no built in invariance 
with respect to translations and disturbances of inputs. 
Before being sent into a neural net , the images must be 
normalized and centralized in the input field. But in our case 
there is no pre-processing step which can normalize the 
inputs. This will cause the variation in the position of 
different features in input image.In principle a fully 
connected network of sufficient size can learn to predict 
outputs that are variant with respect to such variations.  
 

 

3.1 Convolutional Networks 
 
Convolutional neural networks use three basic factors to 

implement classification and recognition problem. In the local 
receptive fields which are the fully connected layers ,the 
input were taken as vertical column of pixel intensities. In a 
convolutional net, we will take it as a 28 by 28 square matrix 
of neurons , which corresponds to the input image. Here we 
won’t connect every input pixel in first layer to every other 
neuron in the hidden layer , instead we make connections in 
small and localized regions of input image. Let’s say for 
example a 5 by 5 region , corresponds to 25 input pixels. So 
for a neuron we might have connections like. 

 

 
 

Fig 1. Connections between input layer and hidden 
layer 

 
The region in the input image is called the local receptive field 
of hidden layer neurons. Each connection learns a weight. 
     
In the next step of Shared weights and biases the main 
objective that it has a bias and weights connected to its local 
receptive field. A note worthy point is that we are going to 
use the same weights and bias for each of 24 by 24 hidden 
neurons.To make it in simple terms is that all the neurons in 
the first hidden layer detect exactly the same feature but at 
different places of the input image as the local receptive field 
moves through the input . To make it sensible , suppose the 
weights and bias are in such a way that hidden layer can 
predict a vertical edge in a particular local receptive field, this 
prediction can be useful at other parts of image. To put in 
practical terms convolutional neural networks are well 
habituated to invariance of images. In our implementation we 
are going to use MNIST datasets has less invariance 
compared to other images. So sometimes we call this 
mapping from input layer to hidden layer as the feature map. 
We define weights as shared weights and bias for knowing 
the feature as the shared bias , both often termed as kernel or 
filter. 

 
 

Fig 2. Showing different feature maps from input layer 
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In the above figure showing 3 feature mappings defined by a 
5 by 5 shared weights and single bias per feature map. Now 
our network has the ability to detect 3 different kinds of 
features ,with each feature can be predicted in every part of 
image. 
     
  The next processing step used is termed as Pooling layers 
which are also a part of hidden layer and present after the 
Convolutional layer and gives more finer details of the feature 
mapped . Pooling layers simplifies the information from the 
output of convolutional layer and makes a very thin and 
condensed feature map which has ability to predict more 
thinner and finer details for feature extraction. These features 
can be again predicted at every place of image. To explain in 
practical terms each unit of pooling layer may predict a 2 by 2 
neurons from the convolutional layer. The procedure used for 
pooling is coined as Max-pooling. We can combine these 
layers together using models of keras library ,but it has a 
additional of a layer of 10 classes of neurons representing the 
10 possible values for MNIST digits. 
 

 
 

Fig 3. Network showing 28 by 28 input neurons , followed 
by convolutional layer and then pooling layer which is then 

connected to output layer. 
 
In the above figure the network takes 28 by 28 square matrix 
of neurons which are used to encode the pixel 
intensities.Then it is followed by a convolutional layer of 5 by 
5 local receptive field and containing 3 feature maps. The 
result is passed is passed onto pooling layers , which takes 2 
by 2 regions as kernals. The output layer is a fully connected 
layer , in this layer every neuron from the pooled layer 
connected to every one of 10 neurons in output layer. 
 
3.2 LeNet Architecture of CNN’S 
 
In our implementation of Convolutional networks we will be 
using Lenet engineering which is primarily based on local 
receptive fields and kernels and sub-sampling or pooling to 
make sure that the invariance of several distortions possible. 
A typical convolutional neural network for classifying and 
recognizing digits as shown in figure 4 . The input layer gets 
the input images from MNIST dataset which can be 
downloaded by libraries available. They are normalized and 
centralized . With local receptive fields neurons can learn 
different vision features such as end-points,oriented 
edges,curves .These features are further extracted with more 
accurate by subsequent layers.Units in a feature map are all 

derived to perform same operation on different places of 
image. A complete convolutional network comprises of 
several feature mappings with different weights and biases 
so that multiple features can be extracted at once and can be 
applied on every part of image. A practical example is the 
first layer of our LeNet architecture which is shown in figure 
4. Units which are present in the first hidden layer of LeNet 
are arranged in 6 feature mappings in our network. Each 
unit takes a 5 by 5 local receptive filed or kernel from input 
layer. Hence each neuron in hidden layer has 25 different 
trainable variable equations which when applying learning 
algorithm can be learned and these variables can be 
optimized using cost function and activation function. It 
additionally has a trainable variant bias which is unique for 
every feature learned. The receptive fields which are 
contiguous in manner are formed by corresponding 
contiguous units in the input layer. The other feature maps 
in the layer learn different weights and biases and can be 
useful for prediction of other features. In our LeNet 
architecture of CNN’s at each input layer locates six different 
types of features are being derived by six units at same 
location in feature maps. A step by step implementation of 
feature map would scan the given input image with a single 
unit that has a local receptive field and stores the data of unit 
at corresponding locations in feature maps. This operation is 
identical to a convolution , followed by an additional bias and 
activation function so the name convolutional neural 
network.The kernel which we use in the network is set of 
weights used by units in feature mapping in mathematical 
approach to convolution . An astonishing property is that the 
amount by which the input image is shifted , the same 
amount is shifted towards the output of feature map. This 
property ensures that our network is invariant to shifts and 
disturbances of the input. 
           
Once the feature is extracted , its exact position in image is 
not required , only the approximate location relative to other 
extracted features is important. For example in our analysis 
we came to know that the input image contains  the endpoint 
of a horizontal line segment in upper left area , and the 
endpoint of a vertical line segment is located in the lower 
portion of image we can predict that image is a 7. But these 
precise positions of each of their features are required 
because the positions are likely to vary for different 
instances of the input digit. The only way to deal with this 
problem is by reducing the spatial resolution of feature map. 
This is implemented with sub sampling layers which 
performs a local averaging and a sub-sampling and therefore 
reducing the resolution of feature map. The second hidden 
layer of LeNet architecture is a sub-sampling layer . This 
layer compromises of distinct six feature maps one from 
every feature map in the previous layer. The receptive field 
for each unit compromises of 2 by 2 kernel in previous layer 
feature map. Each unit performs a typical operation like 
convolution which is averaging of its four inputs and 
multiplied by trainable weight’s matrix ,adds a trainable bias 
and passes through the activation function like sigmoid 
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function , in our implementation we will be using ReLu 
activation function which is used in rectifiers. By practical 
approach a sub-sampling layer feature map has half number 
of rows and coloums as the feature maps in our 
convolutional layers had. The trainable coefficient and bias 
have control over the effect of activation function. If the 
coefficient is small , the unit operates in a quasi-linear mode 
and sub sampling layer merely blurs the image. Successive 
layers of convolution and sampling if performed on the 
imaged results in a bi-pyramid at each layer. A higher degree 
of invariance can be obtained with this successive reduction 
of spatial resolution of feature maps and also enables us to 
predict and detect more finer details and increase in the 
representation of data more richer. It makes easy for the 
network to identify features at very fast rate which makes 
CNN’s more preffered to be used. 
      
Since all weights are learned using learning algorithm , in 
our case we will be using back propogation , convolutional 
networks can be viewed as self extractor of its features. The 
weight sharing method has reduced memory to store and 
time to compute these weights. 
              

 
 

Fig 4. Architecture of LeNet Convolutional networks. 
 
 4. Methodology 
 
We can implement Convolutional neural networks in 
PYTHON/MATLAB. In our implementation we will be using 
python because we have our keras deep learning library 
built in python . So by using keras models we can implement 
our network and create a driver program to call the network 
to take inputs from the data set. The driver program also has 
learning algorithm , training  and testing datasets. MNIST 
datasets are the best and well known , and easily understood 
dataset in the computer vision branch and machine learning 
to use it as first dataset which we can use in our journey of 
deep learning. After implementing we can find that our 
network can classify the digits upto >98% accuracy with less 
training time. This implementation can be done in both CPU 
or GPU enabled system , but CPU takes more training time 
than GPU. We will be using 66% of data for training our 
network and rest of theb data to test our network. Each digit 
is taken as 28 by 28 greyscale image which are available 
from MNIST dataset and can be directly downloaded. These 
greyscale pixel intensities fall in the range of 0 to 255 . All 
digits are presented on black background colour with a light 
foreground colour being white, the digit itself and includes 
various shades of grey. The code is is organized this way, we 
will define a package name pyimagesearch and within that 

module we will create a cnn sub-module which will help us 
to store the Convolutional neural networks implementation. 
Then going into our cnn module or folder you should have 
your networks submodule , this is where the network 
implementations must be stored. So now create a python file 
inside that folder which implements our network and define 
a class inside our file which is our code implementing the 
LeNet architecture using Python + keras. Now we need a 
driver program to instantiate the LeNet architecture, train 
the model, load the datasets, and give the accuracy rate of 
our network and test the results. Finally the output folder we 
will store out LeNet model after it has been trained , so that 
it is not required to train the network after sub-sequent calls 
to classify digits. 
 
4.1 Libraries required to install 

 
Here we define our list of libraries we need to install for 

keras library to work for our networks. The most important 
library is the NUMPY is a library that provides support for 
large, multi-dimensional arrays where we can store our input 
pixel matrix of size 28 by 28 , using numpy we can express 
images as multi-dimensional arrays of pixel intensity values. 
We can also rely on the NumPy’s built-in highly advanced 
mathematical functions and we can apply logistic regression 
on the image. The next library which is to be installed is the 
Python SCIPY library. It adds futher help for scientific and 
technical computing of our functions. The important 
subpackage of SciPy is the package that has a huge amount of 
distance funtions which are implemented using trees. 
Normally after extracting features the image is represented 
as a list of numbers , in order to compare these two images 
we need distance computation methods , such as Euclidean 
distance.. Next up is PILLOW library useful for manipulations 
on image such as resizing, rotation. Then we come to OPENCV 
library and the main goal of this library  is real-time image 
processing. Next we can install SCIKIT-LEARN library which 
is by the way not a image vision library but a machine 
learning library.This library helps us with advanced 
computer vision whether it may be in clustering, 
quantization, classification models. The library next to be 
installed is h5py to store large numerical datasets, it also 
provides support for NumPy arrays it has efficient and long 
term storage of NumPy arrays.  
       
4.2 Implementation of our LeNet architecture 
 
After installing these libraries in python we can use our keras 
deep learning library to implement our network and create 
python files for network creation and instantiation. In our 
implementation we have trained the network in such a way 
that it learns many filters of size 5 by 5 and then pass it 
through a ReLU activation function followed by 2 by 2 max 
pooling in both dimensions. We then take the output of Max-
pooling layers to apply it to fully connected layers. Our fully 
connected layers contain around 500 units which we will 
pass through another ReLU activation that enables us to 
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combine them into classes , which are useful for identifying 
our image , we have 10 classes one for each digit to classify. 
Finally we apply a softmax classifier that will give us the list 
of probabilities , one for each of the 10 classes created . The 
class label with largest probability will be taken as the final 
classification of our network. In our driver program datasets 
can be downloaded from mldata submodule and load it to our 
network , then train the network using Stocastic Gradient 
Descent with learning rate and number of iteration. Now we 
atre running keras on the top of TENSOR FLOW as backend to 
train the network. In our implementation we have given 20 
epochs for better accuracy  

                      
5. RESULTS AND DISCUSSION  
 
Our network has been trained with and tested with 70,000 
datasets and we obtained an accuracy of > 98% which is good 
enough to test our classification implementation. We have 
given a learning rate of 0.01 to our algorithm and obtained 
good classification results , everytime after training we are 
taking random inputs from our testing dataset and 
calculating the efficiency each time it is excecuted. An 
interesting property of these networks is that the training 
error keeps decreasing over time but the test error goes 
through a minimum and starts increasing after a certain 
number of iterations , this is possibly because of the higher 
learning rate and by decreasing it we can get our results , if 
not reduced the learning rate the Stocastic gradient descent 
may get stuck in local minimum and finds it difficult to 
predict the optimized weights , which affects the prediction 
and accuracy of our network.  The figure 5 shows how they 
change when the learning rate is high.  
 

 
 

Fig 5. Showing how the test and train error changes and 
predicting the best model to be used. 

 
 In our discussion we can refer to other methods and their 
accuracy  although all methods did well with all the 
classifiers, boosted LeNet 4 did best , achieving a score of 
0.7% and rest of them acquired better accuracy than other 
methods . So it us best to rely on LeNet architecture rather 
than other methods for classification. 

 
 

Fig 6.  Showing the raw error rate of the classifiers on the 
10,000 example test set. 

 
 6. CONCLUSION 
 
Performance of a network depends on many factors like low 
memory requirements, low run time and better accuracy , 
although in this paper it is primarily focused on getting better 
accuracy rate for classification . Before Artificial neurons had 
better accuracy but now the branch of computer vision 
mainly depends on deep learning features like convolutional 
neural networks. Research is still going on in this field and 
researches have developed many forms of LeNet architecture 
like LeNet-1,LeNet-4, Boosted LeNet-4 and also combination 
of many methods like LeNet-4 with KNN’s , but for a quite 
long time our LeNet architecture was considered as state of 
the art.Many other methods like Tangent Distance Classifier 
were developed using LeNet architecture. The main aim of 
this paper deals with one of the method in which it can be 
implemented , there are several methods in which they can 
be done and using different frameworks like matlab,octave. 
The branch of computer vision in artificial intelligence 
primary motive is to develop a network which is better to 
every performance measure and provide results for all kinds 
of datasets which can be trained and trained and recognized. 
 
7. FUTURE WORK 
 
Fixed size Convolutional Neural Networks has been applied 
to many applications like handwritten digit recognition , 
machine printed character recognition and on-line 
handwriting recognition, they can also be useful for signature 
verification .The more the training examples the more is the 
accuracy of the networks .Unsupersived machine learning 
was made easier using Convolutional Neural networks , some 
of the future works possible to implement by CNN’s are 
compressing or obtaining same results from smaller 
networks by optimization tricks , more invariant feature 
learning such that the input images dosen’t gets distorted. 
The major 3D vision networks is a scope for researches to 
develop using LeNet architecture and more biologically 
concordant methods , a hope for future is that Unsupervised 
CNN’s .   
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