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Abstract - Internet of Things (IoT) has developed to produce 
different intelligent applications based on the data collected 
by different “things”.It  is an effective scheme to achieve both 
cloud data privacy and verifiability of cloud data processing.  
The proposed scheme can play as a generic framework for 
verifiable computing in cloud with context awareness and 
privacy preservation in IoT cloud computing. It supports 
various data processes by applying full homomorphic 
technologies and deploying an auditing protocol to verify the 
correctness of encrypted data processing. To apply full 
homomorphic encryption (FHE) technologies to process data 
in an encrypted form at CSP in order to protect the privacy of 
data providers and data owners, four optional auditing 
protocols in order to satisfy different security and 
performance requirements. Three of them can ensure system 
security in case that RPs could collude with CSP.. In a further 
deployment an auditing protocol to verify the correctness of 
encrypted data processing by applying a Trusted Auditing 
Proxy (TAP). Concretely, a Data Provider (DP) encrypts its 
collected data with the homomorphic key offered by the TAP 
and signs it with a data context identifier (ID).It analyzed 
scheme security and evaluate the performance of the proposed 
protocols through rigorous analysis and comparison in order 
to show their pros and cons, as well as applicability. 
 

1.INTRODUCTION  
 
Internet of Things (IoT) is going to create a world where 
physical objects are seamlessly integrated into information 
networks in order to provide advanced and intelligent 
services for human-beings. The interconnected “things” such 
as sensors and mobile devices sense, moni-tor and collect all 
kinds of data about human social life. These data can be 
further aggregated, fused, processed, analyzed  and  mined  
in  order  to  extract  useful  infor-mation to enable 
intelligent and ubiquitous services. The IoT is evolving as an 
important part of next generation networking paradigm and 
service infrastructure. Various applications and services of 
IoT have been emerging into markets in broad areas, e.g., 
surveillance, health care, se-curity, transport, food safety, 
and distant object monitor and control. 

 
On the other hand, cloud computing offers a new way of 

service provision by re-arranging various resources (e.g., 
storage, computing and applications) and providing them to 
users based on their demands. The cloud compu-ting 
provides a large resource pool by linking network resources 
together. It has desirable properties, such as scalability, 
elasticity, fault-tolerance, and pay- per-use. Thus, it has 

become a promising service platform by rear-ranging the 
way that information technology services are provided and 
consumed. 

 
1.1 Motivations 
 
In practice, cloud computing can cooperate with IoT by 
providing computing services in order to release the load of 
big data processing at user devices and some service 
providers. One practical scenario is that the data moni-tored 
or sensed from the ‘things’ can be aggregated and sent to the 
cloud to process in order to provide data com-putation and 
processing results to requesting parties (e.g., IoT service 
providers). However, Cloud Service Provider (CSP) is a party 
that cannot be fully trusted by IoT data providers and data 
requesting parties. The CSP could disclose the privacy of data 
providers or owners by mali-ciously miming data. It may 
provide wrong data pro-cessing results to the requesting 
parties to intentionally destroy IoT service quality. In this 
case, how to ensure the facticity and genuine of data sources 
and the correctness of IoT data processing, computation, and 
mining becomes a practically crucial issue that greatly 
impacts the contin-uous success of IoT and cloud computing, 
as well as the future Internet. 

 
Since the CSP cannot be fully trusted and the privacy of 

monitored objects should be preserved, data collected by 
‘things’ are generally provided to the CSP in an en-crypted 
form for further processing. In practice, different types of 
data could be collected and processed at the cloud. For 
example, a personal mobile phone can collect its user 
information about location, calling, radio connec-tivity 
quality, inbound/outbound data traffic, personal heart beat 
rate, blood pressure, breathing vol-ume/frequency and so 
on. The collected data can be fur-ther processed and used by 
different IoT services to offer a diversity of smart services. 
The algorithms used for computing or processing different 
types of data could be different at the cloud. For the purpose 
of preserving data privacy, the cloud processes the 
encrypted data and pro-vides processing results to 
requesting parties mostly in an encrypted form. How to 
ensure, audit and verify the fac-ticity and correctness . 

 

1.2 Main Contributions 
  
In this paper, we propose a scheme of verifiable compu-ting 
with context awareness and privacy preservation in IoT cloud 
computing. We first apply full homomorphic encryption 
(FHE) technologies to process data in an en-crypted form at 
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CSP in order to protect the privacy of data providers and data 
owners. We further deploy an auditing protocol to verify the 
correctness of encrypted data processing by applying a 
Trusted Auditing Proxy (TAP) . Concretely, a Data Provider 
(DP) encrypts its col-lected data with the homomorphic key 
offered by the TAP and signs it with a data context identifier 
(ID) . Then it transmits the encrypted data, context ID and the 
signa-ture to the CSP as an input of multi- party computation. 
The CSP computes the encrypted data from all DPs based on 
the context IDs by selecting a corresponding algorithm and 
signs the computation result (which is in an encrypt-ed 
form). For accessing the computation result, a request-ing 
party (RP) requests the result from the CSP with re-gard to a 
context, the CSP passes the request to the TAP to check its 
eligibility in order to allow the RP to access the data 
processing result. 
  
When the RP wants to verify the correctness of data 
processing and computation of CSP, it reports the pro-cessing 
result signed by the CSP and its hash code to the TAP. The 
TAP queries the CSP to get the encrypted data with regard to 
the RP request in order to audit the data processing at the 
CSP. For supporting the CSP to check the facticity and genuine 
of data sources, the scheme re-quests that DP signs its 
provided data regarding a context in order to allow the TAP 
later on to figure out malicious DPs during auditing by finding 
malicious data input through analysis and mining. We design 
four auditing protocols to satisfy different security 
requirements. Their performance is evaluated and compared 
in order to show the pros and cons of each protocol and its 
feasibility in different scenarios. 
 
Specifically, the contribution of this paper can be summarized 
as below: 
  
We motivate context-aware verifiable computing for cloud 
and propose an effective scheme to achieve both cloud data 
privacy and verifiability of cloud data pro-cessing. 
  
To the best of our knowledge, our scheme is one of the first to 
realize verifiable cloud computing with con-text-awareness. 
It supports various data processes by ap-plying full 
homomorphic technologies and deploying an auditing 
protocol to verify the correctness of encrypted data 
processing. The proposed scheme can play as a ge-neric 
framework for verifiable computing in cloud. But one 
important issue missed in the above studies is verifiable 
computing that can audit the correctness of en-crypted data 
processing 

 
2. RELATED WORK 
 
2.1. Privacy-Preserving Data Mining (PPDM) 
  
Privacy-Preserving Data Mining (PPDM) aims to support data 
mining related computations, processes or opera-tions with 
privacy preservation [32]. PPDM is a ‘must-solve’ problem in 
IoT for securely and intelligently sup-porting various IoT 

services in a pervasive and personal-ized way. From the 
practical point of view, PPDM is still a challenge, considering 
trustworthiness, computation complexity and 
communication cost [32]. 
  
Mishra and Chandwani proposed an architecture to enable 
Secure Multi-party Computation (SMC) by hiding the 
identities of the parties that take part in the process of 
Business Process Outsourcing [4]. A class of functions was 
pro posed to provide additional abilities to a party to split its 
huge data before providing it for computation, making it 
almost intractable for other parties to know the actual source 
of the data in order to achieve secure and privacy-preserving 
data mining. Liu et al. proposed a secure multi-party multi-
data ranking protocol and a se-cure multi -party addition 
protocol to complete private-preserving sequential pattern 
mining [5]. 
  
A number of operations on securely input data are supported 
in PPDM. Zhu et al. proposed schemes for se-curely extracting 
knowledge from two or more parties’ private data [6]. They 
presented three different approach-es to privacy-preserving 
Add to Multiply Protocol, as well as further extended it to 
privacy- preserving Adding to Scalar Product Protocol. Wang 
and Luo studied a pri-vate preserving shared dot product 
protocol that is a main building block of various data mining 
algorithms with privacy concerns, and provides fundamental 
securi-ty guarantee for many PPDM algorithms [7]. They con-
structed a privacy-preserving two-party shared dot prod-uct 
protocol based on some basic cryptographic tech-niques, 
which is provably secure in a semi-honest model. Shen, Han 
and Shan proposed a Horizontal Distribution of the Privacy 
Protection DK- Means (HDPPDK-Means) algorithm based on 
Horizontal partitioned database and DK-means idea to realize 
distributed clustering and ap-plied a secure multi-party 
computation protocol to achieve privacy preservation [8]. 
  
Many studies focused on supporting specific data min-ing 
techniques with privacy preservation. Statistical hy-pothesis 
test is an important data analysis technique. Liu and Zhang 
investigated nonparametric Sign Test (NST) theory in such a 
context that two parties, each with a pri-vate dataset, would 
like to conduct a sign test on their joint dataset, but neither of 
them is willing to disclose its private dataset to any other 
third parties [9]. Their pro-posed protocol does not make use 
of any third party nor cryptographic primitives. 
  
To exchange the data while keeping it private by using 
homomorphic encryption techniques [10]. Kant-arcioglu and 
Clifton [11] proposed two protocols to im-plement privacy- 
preserving mining of association rules over horizontally 
partitioned data. Zhang and Zhao fur-ther revised its security 
proof [12]. Privacy-preserving association rule mining was 
surveyed by Wang [13] with regard to basic concepts, general 
principles and methods. 
 
In the case that agencies want to conduct a linear re-gression 
analysis with complete records without disclos-ing values of 
their own attributes, Ashish et al. described an algorithm that 
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enables agencies to compute the exact regression coefficients 
of the global regression equation and also perform some 
basic goodness-of- fit diagnostics while protecting the 
confidentiality of their data [14]. This work can be applied for 
distributed computation for re-gression analyses in data 
mining. 
  
Finding the nearest k objects to a query object (k-NN queries) 
is a fundamental operation for many data mining algorithms 
to enable clustering, classification and outlier detection tasks. 
Efficient solutions for k- NN queries for vertically partitioned 
data were proposed by Amirbekyan and Estivill-Castro [18]. 
These solutions include L ∞ (or Chessboard) metric as well as 
detailed privacy-preserving computation of all other 
Minkowski metrics, privacy pre-serving algorithms for 
combinations of local metrics into global metric that handles 
large dimensionality and di-versity of attributes common in 
vertically partitioned da-ta, a privacy-preserving SASH (a 
very successful data structure for associative queries in high 
dimensions) for managing very large data sets. Liu et al. 
presented priva-cy preserving algorithms for DBSCAN 
clustering for the horizontally, vertically and arbitrarily 
partitioned data distributed between two parties [15]. 
DBSCAN [16] is also a popular density-based clustering 
algorithm for discov-ering clusters in large spatial databases 
with noise. 
 
 Gradient descent is a widely used method for solving 
optimization and learning problems. Wan et al. presented a 
generic formulation of secure gradient descent methods with 
privacy preservation [17]. It underlies many com-monly used 
techniques in data mining and machine learning, such as 
neural networks, Bayesian networks, genetic algorithms, and 
simulated annealing. 

 
 Current solutions of PPDM are still not practical. The 
existing methods are impractical, ineffective, inefficient or 
inflexible with regard to generality, trustworthiness, 
computation complexity and communication cost. Sel-dom, a 
PPDM protocol can satisfy all essential require-ments for 
practical usage. 
 

2.1. SMC Applications 
  
Secure Multi-party Computation (SMC) deals with the 
problem of secure computation among participants who are 
not trusted with each other, particularly with the preference 
of privacy preserving computatio nal geome-try. SMC refers 
to the parties, who participate in the com-putation with their 
own secret inputs, wish to coopera-tively compute a function. 
When the computation is over, each party can receive its own 
correct output with cor-rectness insurance, and know its own 
output only with privacy preservation. It is an important 
research topic in IoT. The problems of SMC are specifically 
different in different scenarios. Based on the problems 
solved, SMC mechanisms can be classified into four 
categories: priva-cy-preserving database query, privacy-
preserving scien-tific computation, privacy-preserving 

intrusion detection and privacy-preserving data mining. A 
detailed survey on SMC technologies is provided in [32]. 
 
 SMC together with homomorphic encryption is widely 
applied into many areas, such as distributed electronic 
contract management [19], smart meter based load man-
agement [20], healthcare frauds and abuses [21], policy-agile 
encrypted networking for defense, law enforcement, 
intelligence community, and commer cial networks [22], 
privacy preserving path inclusion [29], privacy preserving 
string matching [23], privacy- enhanced recommender 
system in a social trust network [24], user profile match-ing 
in social networking [25], credit check applications [26], 
private collaborative forecasting and benchmarking [27], 
privacy-preserving genomic computations [28], pro-tection 
against insider threats (e.g., business partners) [30], privacy 
preserving electronic voting [31], and so on. But one 
important issue missed in the above studies is verifiable 
computing that can audit the correctness of en-crypted data 
processing. 
 

2.3. Cloud Computing Auditing 
  
Current researches about verifiable cloud computing fo-cus 
on auditing cloud data storage and data integrity with regard 
to data management, such as insertion, dele-tion, and 
addition [1- 3, 38, 41]. It has not yet investigated data 
calculation and computation seriously. Yang et al. proposed 
an approach to fast detect data errors in big sensor data sets 
based on a scale-free network topology and most of detection 
operations can be conducted in limited temporal or spatial 
data blocks instead of a whole big data set [39]. Some 
researchers applied a MapReduce framework to anonymize 
large-scale data sets in cloud [40]. 
 
 We notify that all above presented work did not con-sider 
how to solve the problems of verifiable computing with 
context awareness as described in Section 1 in cloud. 
 

3. PROBLEM STATEMENT 
 
3.1. System and Threat Models 
  
We consider an IoT cloud computing system that in-volves 
four different kinds of entities, as illustrated in Fig.1: the Data 
Providers (DPs) that interact with the physical world, 
detect/monitor/sense information of objects in different 
contexts and provide collected data to a CSP for processing; 
the CSP that has functions and ca-pabilities that the DPs do 
not have and can process the data provided by the DPs. Thus, 
the DPs encrypt the data provided to the CSP; the TAP is 
responsible for issuing essential keys to DPs for 
homomorphic encryption, checking the eligibility of data 
access at the CSP, issuing access keys to eligible Requesting 
Parties (RPs), and auditing the facticity and genuine of data 
sources and the correctness of CSP data processing and 
computation; the RP that requests CSP’s data processing 
results in different contexts for offering intelligent and 
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ubiquitous services to IoT end users. We assume that all 
system entities communicate with each other via a secure 
channel (e.g., OpenSSL). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the system, TAP and CSP do not collude. RP can on-ly 
access the final data processing results from CSP. CSP has no 
rights to offer the data collected from DPs to RPs. RP can 
request TAP and delegate TAP to audit the fac-ticity and 
genuine of data collection and processing.  
 
1) Security and safety: it is hard or impossible for CSP to get 
the raw data during data processing;   the data processed at 
the cloud can only be accessed by eligible system entities; 
 
 2) Gener-ality: the proposed scheme supports various data 
pro-cesses in different contexts in the cloud. 3) Reasonable 
overhead: the scheme fulfills data processing and audit-ing 
with reasonable computation and communication costs. 
  
Introducing TAP enhances the facticity of DP. TAP can mine 
the collected data of CSP and analyze if the data source has 
some abnormal behav-iors by comparing such an 
assumption: CSP does not collude with its users, e.g., 
colluding with some RPs to gain raw data and allow other RPs 
to access data stored at CSP. But some inci-dental collusion 
between CSP and RPs could happen, which requests higher 
level security assurance in the sys-tem design. 
 

3.2. Design Goals 
  
To achieve trustworthy data processing and avoid poten-tial 
risks in cloud services, our design should achieve the 
following security and performance goals: 1) Security and 
safety: it is hard or impossible for CSP to get the raw data 
during data processing; the data processed at the cloud can 
only be accessed by eligible system entities; 2) Gener-ality: 
the proposed scheme supports various data pro-cesses in 
different contexts in the cloud. 3) Reasonable overhead: the 
scheme fulfills data processing and audit-ing with reasonable 
computation and communication costs. 
 
 

4. PROPOSED SCHEME 
 
4.1. Preliminaries, Notations and Definitions 
 
4.1.1. Full Homomorphic Encryption 
  
Full Homomorphic Encryption (FHE) mainly consists of four 
algorithms: Key-Generate (KG), Encrypt (E), Decrypt (D) and 
Evaluate (    (    ,       ,   ) , where pk is a public key used to 
calculate ciphertexts. In these four algorithms, the Evaluate 
algorithm does computation on a set of cipher-text = 〈  !, … , !〉 
(  ! =   (    , !)) , which is the input of circuit Cir. Circuit Cir 
represents a function or an algo-rithm. Based on these four 
algorithms, we define FHE as below. 
 

For any key pair (    , ) generated by KG algorithm， any 

circuit Cir, any plaintext = 〈  !, … , ! 〉, and any ciphertext =  !, 

… , !  ! =     , !  : 
 

if   ! =     (    ,       ,   ) (1) 

then       , !  =       (  !, … ,  !). (2) 
 
This means that we can do operations on the ciphertext in 
order to get the encrypted version of the result of plaintext 
operations. In scheme implementation and evaluation, we use 
Brakerski Gentry Vaikuntanathan (BGV) FHE [33]. 
 

4.1.2. Limitaions of Partial Homomorphic 
Encryption 
  
Partial Homomorphic Encryption (PHE) is a cryptograph-ic 
algorithm that can achieve the same goal of processing 
ciphertexts as that of the FHE. It preforms much better than 
FHE in terms of computation and storage overhead. However, 
it can only support some specific operations, e.g., addition 
and subtraction. This means it is only appli-cable in some 
specific scenarios. The goal of our work is to design a generic 
scheme of verifiable cloud computing that can adapt to 
various operations,  
 
Protocol 1 
 
1)Data provision 
  
This step is the same as the data provision described in Fig. 3. 
 
2)Privacy preserving data computing 
  
This step is the same as the privacy preserving data 
computation as described above in Fig 3. 
 
3)RP data request and authorization 
  
! requests CSP for the result of data processing and 
computation in ! by sending a requesting message that 
contains ! = {    !"! , !} and         (    !"! , !) . Once re-ceiving the 
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request, the CSP passes the request to TAP for checking its 
access right. If the check based on the current access policy is 

positive, the TAP requests the data pro-cessing result  !, !  

from CSP. After receiving  !, !  with !"# =         (    !"#, {  (    !, , 

!)}) , the TAP first decrypts  !, !  to get !, and then re-encrypts 
! with the !’s public key !"! to get   ′(    !"! , !) based on a public 
key encryption scheme (e.g., RSA) and issues   ′(    !"! , !) to RP 
with its signa-ture !"# =         (    !"#, {  ′(    !"! , !)}). 
 
4)Data access 
 
After receiving   ′(    !"! , !), ! can decrypt it with its own secret 
key !"! to get of !. 
 
5)Data auditing 
  
RP can request TAP to audit the correctness of data 
processing and computation by providing ! , the hash code of 

!, ℎ  ! , and !"#. Note that the auditing request should be 
signed by RP to ensure non-repudiation. Thereby, the 

auditing request ! contains ! ={ ! , ℎ  !  , !"# ,         (    !"! , {  !, ℎ  

! , The de-tailed protocols are described below. 
 
 Protocol 2 
 
1)Data provision 
  
This step is the same as the data provision described in Fig. 3. 
 
2)Privacy preserving data computing 
  
CSP processes data, it selects algorithm ! based on ! to process 
the collected encrypted data   (    !, !,!) in context ! and gains 
the encrypted form of data pro-cessing result   (    !, !) , that is:   
(    !, !) = 
!{  (    !, !,!)}, ( = 1, … , ). The CSP then select a ran-dom and 
compute   (    !, ! ∗     ). 
 
3)RP data request and authorization 
  
! requests CSP for the result of data processing and 
computation in ! by sending a requesting message that 
contains ! = {    !"! , !} and         (    !"! , !) . Once re-ceiving the 
request, the CSP passes the request to TAP for checking its 
access right. If the check ba sed on the current access policy is 
positive, the TAP then requests the data processing result 

from CSP. After receiving the package  !, ! ∗ , !"# , the TAP 

first decrypt  !, ! ∗  to get ! ∗ , and then re-encrypt ! ∗ with 
the ! ’s public key !"! to get   (    !"! , ! ∗     ) based on a 
homomorphic encryption scheme and issues   (    !"! , ! ∗     ) to 
! through CSP. Note that !"! used herein is a homomorphic 
public key of ! and !"! is a corresponding homomorphic secret 
key of !. 
 
 
 

4)Data access 
 

CSP receives  !"! , ! ∗ , which means TAP is-sues ! the right to 
access !. CSP uses a homomor-phic multiplication algorithm 
to erase from 

   !"! , ! ∗  : 
  (    !"! , ! ∗     ) ∗   (    !"! , 1/    ) =   (    !"! , !). And then it issues   (    
!"! , !) and !"# = 
        (    !"#, {   (    !"! , !), !}) to ! . The ! can de-crypt it with its 
own secret key !"! to get the plaintext 
of !. 
 
5)Data auditing 
  
RP may not trust the processing result of CSP. In this case, it 
requests TAP to audit the correctness of data pro-cessing and 

computation by providing !, the hash code of !, ℎ  ! , the 
signature of CSP data provision, i.e., !"# =         (    !!", {   (    !"! , 
!), !}). Note that the auditing request should be signed by RP 
to ensure non-repudiation. Thereby, the auditing request ! 

contains ! ={ ! , ℎ  !  , !"# ,         (    !"! , {  !, ℎ  ! , !"#})}. In this 
case, TAP handles it by querying CSP to get ! and all   (    !, !,!) 
used for generating   (    !, !). TAP decrypts   (    !, !,!) to get all !,! 
and input them into ! to get plain ! , that is ! =!({  !,!}) ( = 1, … , 
). TAP further compares the hash code of ! output from F! and 
the one provided by RP in order to judge if the data 
computation and processing at CSP is correct. 
 
!"#})}. In this case, TAP handles it by querying CSP to get ! and 
all   (    !, !,!) used for generating   (    !, !). TAP decrypts   (    !, 
!,!) to get all !,! and input them into ! to get plain ! , that is ! =!({  
!,!})(   = 1, … ,   ) . TAP further compares the hash code of ! 
output from ! and the one provided by RP in order to judge if 
the data computation and processing at CSP is correct. 
 
 Comparing with the original Protocol 1, Protocol 2 per-
forms re-encryption at TAP to convert the encrypted version 

of ! from  !, !  to !  !"! , ! , which can be decrypted by 
corresponding ! directly. ! will never have the chance to get 
access to the homomorphic secret key ! . Therefore, this 
protocol can reduce the risk caused by the CSP-RP collusion 
attack. 
 

4.2. Further Optimization 
 
In this section, we show a potential problem of Protocol 2 and 
then propose two optimized protocols to ove rcome it. As 
specified in our design goals, data should be pro-cessed and 
computed in a confidential measure at CSP and only eligible 
parties can access the processing results. TAP is responsible 
for issuing access rights and auditing. Normally, we do not 
expect TAP to know ! during data request and access. In 
Protocol 2, TAP gets to know the data processing result ! 
before auditing during the procedure of re-encryption. This 
could cause some prob-lem since TAP may not be an eligible 
party to access ! even though it is fully trusted for auditing 
when RP dele-gate it for this purpose.In order to avoid this 
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problem, we further propose two optimized protocols. In 
these two protocols, we let CSP fuzzifies ! by selecting a 
random denoted as a mask, computing   (    !, ! ∗     ), and then 
using differ-ent methods to remove and finally get !. The de-
tailed protocols are described below. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2: Protocol 3 - optimized verifiable computing protocol 

for avoiding TAP to know! before auditing 
 

4.3. Justification of Design 
 
The proposed schemes were designed due to the follow-ing 
advantages. 
 
Privacy preservation: the scheme ensures data 
mining/processing/computing privacy at CSP. CSP has no 
way to learn the plain data of DPs’ input and the ir pro-
cessing output. Thus, it is impossible to intrude the privacy of 
data and related objects. ! cannot know ! , thus one ! is 
impossible to obtain the data of other DPs.  
 
Verifiable computing : the correctness of the data pro-
cessing result of CSP can be verified by TAP triggered by RP. 
Thus it is impossible for CSP to behave dishonestly or 
maliciously during data processing and computation. 
 
Facticity enhancement: introducing TAP enhances the 
facility of DP. TAP can mine the collected data of CSP and 
analyze if the data source has some abnormal behaviours by 
comparing newly generated data patterns with historical 
ones and analyzing collected data from different DPs. 
 
Context awareness: the scheme supports data pro-cessing 
under different contexts by applying different algorithms, 
requesting data processing results based on context IDs, and 

auditing the correctness of data processing in different 
contexts. 
 
Generality: the scheme supports various data pro-
cessing/computing/mining cases served at the cloud. 
Meanwhile, it supports auditing data pro-
cessing/computing/mining at a distrusted or semi-trusted 
CSP under any situations and contexts. Limitation could be 
caused by the shortcomings of FHE operations. But our 
scheme provides a generic framework to perform verifiable 
cloud computing. It is flexible to adopt the pro-posed four 
protocols to satisfy different security de-mands, as analyzed 
in Section 5.6. 
 

5.PERFORMANCE ANALYSIS AND   EVALUATION 
  
We evaluated the performance of four protocols by ana-
lyzing and comparing their security, computational com-
plexity, and communication cost. We then report the re-sults 
of experimental performance tests on operation time. 
  
We implemented the proposed protocols in a work-station 
with Intel(R) CoreTM i7 4710HQ CPU and 8 -GB RAM, 
running Ubuntu 14.04 that virtually executes the functions of 
DP, CSP, TAP and RP based on libraries NTL [34], GMP [35], 
and FHE [36]. In our implementation, we applied BGV full 
homomorphic encryption [33], RSA for Public Key 
Cryptosystem (PKC) and SHA-1 hash func-tion. We used a 
function provided by the FHE library to randomly generate 
plaintext with a length of 8 bytes to simulate the raw data 
provided by DP. Then we encrypt-ed plaintexts into 
ciphertexts and conducted a number of multiplications and 
additions to simulate data processes at CSP. For s imulating 
the audit process, we decrypted the ciphertext of data at TAP. 
 

5.1 Operation Efficiency 
  
We mainly tested the operation time of the scheme in terms 
of different operations: encryption, data processing and 
decryption, as shown in Fig.7-9. The “data number” in Fig.7-9 
refers to the number of data input by DPs. In-Table 5, we 
report the operation time carried out by some basic 
operations. Compared with homomorphic opera-tions, RSA 
operation time is very trivial. This result sup-ports our 
analysis on computation complexity. 
 
Encryption : Homomorphic encryption mainly takes place at 
DPs. Each encryption costs 1200 milliseconds. The 
encryption time is lineally increased with the number of data 
collected by DP, as shown in Fig.6. Each DP en crypts its data 
separately. 
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Fig. 3. (a) Operation time of ciphertext addition; (b) 

Operation time of ciphertext multiplication; (c) Operation 
time of plaintext addition; (d) Operation time of plaintext 

multiplication 

Data Processing: Data processing takes place at CSP and 
TAP. CSP deals with data in encrypted forms, while TAP in 
plaintext forms during auditing. Since most algo-rithms can 
be divided into a number of additions and multiplications, we 
only tested these two operations. As shown in Fig.8.a, the 
operation time of ciphertext addition almost proportionally 
increases with the number of data, which costs about 4 
milliseconds (ms) to add two cipher-texts. The operation time 
of ciphertext multiplication  
 
Table -1: OPERATION TIME AT EACH SYSTEM ENTITY IN 

PROTOCOL  (UNIT: MILLISECOND) 
 

 
 

Table -2: OPERATION TIME AT TAP IN THE ACCESS OF 
DATA PROCESSING RESULT (UNIT: MILLISECOND) 

 
Table 7, Table 8 and Table 9 show the differences of 
operation time of the four protocols at TAP, RP and CSP in 
terms of data processing result access. We can see from 
Table 7 that, Protocol 1 is the most efficient design with 
regard to the computation cost at TAP, while Protocol 3 is the 

Protocol Operation Time 

Protocol 1 1 RSA encryption 0.3 

Protocol 2 
1 homomorphic 
decryption + 600.3 

 1 RSA encryption  

Protocol 3 
1 homomorphic 
decryption + 1800 

 
1 homomorphic 
encryption  

Protocol 4 
1 homomorphic 
decryption + 600.3 

 1 RSA encryption  
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least efficient and Protocol 2 and Protocol 4 sit in the middle. 
From Table 8, we can conclude that the computa-tion 
workload is not heavy in each protocol. But Protocol 2 and 
Protocol 4 work very efficiently at RP. With regard to the 
computation cost at CSP, Protocol 3 is the least effi-cient, 
while Protocols 1, 2 and 4 have zero or a bit compu-tation 
overhead. 
 

Table -3: OPERATION TIME AT CSP IN THE ACCESS OF 
DATA PROCESSING RESULT (UNIT: MILLISECOND) 

 
 Protocol Operation Time 

 Protocol 1 None None 

 Protocol 2 None None 

 Protocol 3 
1 homomorphic 
encryption and 11200 

  
1 homomorphic 
multiplication  

 Protocol 4 1 RSA encryption 0.3 
    

 
5.2 Scalability 
 
DPs: In our scheme, DPs only need to conduct homo-morphic 
encryptions that take about 1200ms on each data in our test. 
Each signature generation only takes 0.3ms, which can be 
ignored. Notably, the number of DPs does not affect the above 
operation time. This means that no matter how many DPs 
send their data to CSP, the time spent at each DP is fixed. 
 
CSP: CSP takes responsibility to process ciphertexts. Since the 
ciphertext is the data encrypted by a full ho-momorphic 
encryption algorithm, the computation of the ciphertext could 
be very complicated. It is indicated that this cost is 
proportional to the number of data uploaded to CSP 
regarding a specific context that costs about 4ms for one 
addition and 10000ms for one multiplication. As-sumed that 
the processing capability at CSP is powerful 
 

6. CONCLUSIONS 
 
 In this paper,we propose an effective a scheme of verifiable 
computing with context aware and privacy preservation,.In a 
further deployment an auditing protocol to verify the 
correctness of encrypted data processing by applying a 
Trusted Auditing Proxy (TAP). Concretely, a Data Provider 
(DP) encrypts its collected data with the homomorphic key 
offered by the TAP and signs it with a data context identifier 
(ID).It analyzed scheme security and evaluate the 
performance of the proposed protocols through rigorous 
analysis and comparison in order to show their pros and 
cons, as well as applicability. 
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