
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 02 | Feb 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1683

Radix 8 Booth Encoded Interleaved Modular Multiplication

Jhashank Gandhi1, R. Sakthivel2

1M. Tech, VLSI Design, School of Electronics Engineering, Vellore Institute of Technology, Vellore,
Tamil Nadu, India

2Associate Professor, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
---***--
Abstract - In most public key cryptosystems, such as Rivest-
Shamir-Adleman (RSA), Elliptic curve cryptography (ECC),
Digital Signature Algorithm (DSA), Diffie-Hellman (DH) key
exchange, modular multiplication is the critical operation. To
provide sufficient security strength, large numbers (order of
1024 or 2048 bits) are used. Usage of such large numbers
reduces the speed of the whole cryptographic system. This
paper introduces an efficient architecture for calculating
modular multiplication of two large numbers A and B modulo
a given modulus P. Radix–8 booth encoding techniques are
used to modify the existing bit serial interleaved modular
multiplication algorithm. The modified radix-8 version reduces
the delay (number of clock cycles) required for performing one
modular multiplication but at the cost of increased resources
(hardware). The proposed architecture is implemented in
Verilog HDL and simulated using Model Sim and Xilinx ISE 8.1i
simulator. It is synthesized using Spartan3E FPGA and a
comparison is made between 8 bits and 16 bits numbers for
delay and hardware utilization.

Key Words: Modular multiplication, radix-8 interleaved
multiplication, booth encoding, cryptosystems, etc.

1. INTRODUCTION

Cryptography is the study and design of ways to protect
valuable information over an insecure channel against
attackers. Efficient cryptographic protocols are required to
fulfill the growing demands for security in many different
systems, such as large servers or small hand-held devices.
Many restrictions such as computation time, silicon area, and
power consumption must be taken care of by the designer of
the hardware accelerators of cryptographic protocols.

Modular multiplication is a very time-consuming process that
is extensively used in various cryptographic systems such as
ECC, RSA etc. Elliptic curve cryptographic systems use much
smaller key sizes as compared to RSA, which results in better
bandwidth utilization, fewer storage requirements, and lower
power consumption. Due to the computational complexity of
ECC, there is a requirement of a dedicated hardware
implementation to meet the time limitations of many real-
time applications.

A simple approach to do modular multiplication (x × y mod p)
is to first compute (x × y) then perform reduction under
prime number p. Various algorithms have been proposed to
avoid this reduction step as this step involves division by a

prime number p which is a very costly operation to be
performed in software and hardware platforms, as it takes a
lot of time and more area.

To speed up modular multiplication technique many designs
have been proposed. Two most used designs are Interleaved
Modular Multiplication [1] and Montgomery Multiplication
[2]. Various designs based on modified interleaved
multiplication algorithm have been reported [3] [4] [5].

In this paper, the proposed modular multiplier is based on
interleaved multiplication technique combined with booth
encoding. Interleaved multiplication algorithm is proposed
by Blakely [2]. The interleaved multiplication technique is
based on iterative addition and reduction of partial products.

Partial products accumulation and intermediate results
reduction are integrated in such a way so that the final
division step is eliminated. Basic idea is to reduce the
intermediate results below the modulus value in each
iteration so that there is no need to perform the division
operation. The Algorithm starts with traversing the multiplier
from its most-significant-bit (MSB) to least-significant-bit
(LSB).

Section II introduces the Radix-8 interleaved modular
multiplication algorithm with booth encoding. Section III
presents an architecture of the algorithm. Section IV provides
the implementation results. Finally, the document ends with
the conclusion in section V.

Partial products accumulation and intermediate results
reduction are integrated in such a way so that the final
division step is eliminated. Basic idea is to reduce the
intermediate results below the modulus value in each
iteration so that there is no need to perform the division
operation. The Algorithm starts with traversing the multiplier
from its most-significant-bit (MSB) to least-significant-bit
(LSB).

2. RADIX-8 BIT INTERLEAVED MODULAR
MULTIPLICATION (R8BIM)

In classical modular multiplication approach first, the
product (x × y) is computed and then the result is reduced by
dividing the product with the given modulus p. In
interleaved modular multiplication, multiplication and
reduction overlap. At each step, the intermediate results are

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 02 | Feb 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1684

reduced to the range {0 p-1} before resuming to
multiplication process.

In Radix-2 bit interleaved modular multiplication (R2BIM),
the total number of loop iterations (clock cycles) is same as
the number of bits in the multiplier. In radix-4 bit
interleaved modular multiplication (R4BIM), the total
number of loop iterations (clock cycles) is reduced from n to
[n/2], where n is the number of bits of the multiplier. In
R8BIM, the number of loop iterations (clock cycles) is further
reduced to [n/3]. Therefore, with increasing radix clock
cycles are getting reduced but at the cost of increased
hardware utilization.

The radix-8 BE technique is given in Table 1 where every
four bits are encoded as {0, ±1, ±2, ±3, ±4}. The effective
number of bits processed in R8BIM is three, but we group
four bits where one-bit acts as an overlapping bit which tells
about the previous group. As in ECC, only positive numbers
are used, so adding zeroes to the left of MSB is sufficient to
complete the four bits group. The rule for adding zeroes to
the left of MSB is as follows:

 If n mod 3 = 0 add three zeroes to the left of MSB

 If n mod 3 = 2 add two zeroes to the left of MSB

 If n mod 3 = 1 add single zero to left of MSB

One zero is added to the right of LSB bit to complete the first
group, where that zero acts as an overlapping bit for the first
group.

Table-1: Radix-8 Booth Encoding

The modified R8BIM algorithm based on radix-8 and BE
techniques is given below:

Algorithm-1 Radix-8 bit interleaved multiplication (R8BIM)

Input: x, y, p n bit numbers, 0 ≤ x, y ≤ p

Output: z = (x × y) mod p

1. z ← 0,

2. R1← 2x mod p,

3. R2 ← 3x mod p,

4. R3 ← 4x mod p,

N =

n+3 , if n mod 3 = 0 append three

zeroes to the left of MSB

n+2 , if n mod 3 = 1 append two

zeroes to the left of MSB

n+1 , if n mod 3 = 2 append single

zero to the left of MSB

5. N← N + 1 append single 0 to the right of LSB of y

6. for(i = N, i ≥ 3, i = i-3) do

7. z = 8z mod p

8. switch (y (i:i-3)) do

9. when {0000|1111}  z ← z

10. when {0001|0010|1101|1110} z ← z ± x mod p

11. when {0011|0100|1011|1100}z ← z ± R1mod p

12. when {0101|0110|1001|1010} z = z ± R2 mod p

13. else  z ± R3 mod p

14. endsw

15. end

16. return z

The R8BIM algorithm takes [n/3] + 4 iterations to perform
an n-bit modular multiplication. It consists of several steps
that are as follows:

1. In Step 1 of algorithm 1, 2x mod p, 3x mod p and 4x mod p
values are calculated. These are pre-computed values
done by a pre-computation process.

Yi Yi-1 Yi-2 Yi-3 Encoded Value
0 0 0 0 0
0 0 0 1 +1
0 0 1 0 +1
0 0 1 1 +2
0 1 0 0 +2
0 1 0 1 +3
0 1 1 0 +3
0 1 1 1 +4
1 0 0 0 -4
1 0 0 1 -3
1 0 1 0 -3
1 0 1 1 -2
1 1 0 0 -2
1 1 0 1 -1
1 1 1 0 -1
1 1 1 1 0

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 02 | Feb 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1685

2. Step 4 of algorithm 1 is performed iteratively throughout
the loop iterates. In this step value of accumulator, z is
updated and is equal to three-bit left shift modulo p i.e, 8z
mod p.

3. In steps 7-10, respective partial products are calculated
according to current four bits of the multiplier y and are
modularly added or subtracted from the accumulator z
i.e, z = z ±{x, R1, R2, R3, R4}.

3. HARDWARE ARCHITECTURE

The Hardware architecture of R8BIM is shown in Figure 1.
The R8BIM architecture is composed of four major blocks:
three doubling blocks and one add/sub block cascaded in
series. As they are cascaded in series, it implies that each
block output is input to the next block. Apart from these
major blocks, there are also some minor blocks like BE, a
temporary register, a multiplexer-based look-up table, and
four n-bit data registers R1, R2, R3, and z.

Execution of the algorithm is done in two phases. The phases
are as follows:

Phase 1:

1) 2x mod p, 3x mod p, and 4x mod p values are computed
and assigned to R1, R2, and R3 respectively in the first clock
cycle.

2) 2x mod p and 4x mod p is calculated by instantiating
doubler block whereas 3x mod p is calculated using add/sub
block. For 3x mod p, the inputs to add/sub block are x, 2x
mod p, and cin. cin is set to zero to perform the addition
operation.

Phase 2:

1) Iterations of the loop is controlled by a counter which is
decremented by three after each iteration.

2) 8z mod p is performed by three doubler blocks
cascaded in series. The register z is initially loaded with zero
and after each iteration, it is three bits left shifted and
reduced modulo p. Then a respective partial product is added
or subtracted.

3) Steps 5-10 are executed by M block and add/sub block.
Block M is a look-up table that selects the appropriate partial
product to be modularly added or subtracted from z in the
add/sub block.

4) BE block is the block which decides whether to add or
subtract the partial product. It takes the four bits of a
temporary register in each iteration and calculates cin
accordingly. If cin is 1 modular subtraction is performed and
if cin is 0 modular addition is performed.

A doubler block contains one adder and one multiplexer
whereas an add/sub block contains two adders and one
multiplexer. Therefore the critical path delay is:-

T critical path = 5tadder + 6tmux (1)

+

<<

1

z

p

2z mod p

cout cin

Fig – 1: Doubler block (2z mod p)

+

+

y
sel

x

cin

coutp

S = (x ± y) mod p

cin

cout

Fig-2: Add/Sub Block

2z mod p 2z mod p 2z mod pAdd/Sub

z

M

TEMP REGISTER

BE

0
X

R1

R2

R3

p

1

Fig-3: Hardware Architecture of R8BIM

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 02 | Feb 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 1686

4. IMPLEMENTATION AND RESULTS

The radix-8 multiplier is coded in Verilog HDL and
synthesized targeting Spartan 3E FPGA. The Xilinx ISE 8.1i is
used for synthesis. For behavioral simulation ModelSim is
used. 8 bits implementation of R8BIM occupies 208 slices and
363 LUTs whereas, 16 bits implementation occupies 375
slices and 680 LUTs as shown in Table 2. For 8 bits
implementation, R8BIM architecture computes one modular
multiplication in 16.651ns whereas for 16 bits
implementation it computes one modular multiplication in
19.579ns. Furthermore, the AT/b (area × time per bit) value
is 0.432 for 8 bits whereas it is 0.458 for 16 bits. Different
values of x, y, and p were taken, and output z was verified.
Output came after four clock pulses for n = 8 bits and after
nine clock cycles for n = 16 bits. Figure 4 shows the Finite
State Machine of R8BIM Algorithm.

a) Inputs: x =20 (00010100), y = 28 (00011100),

p = 29 (00011101)

Output: z = 9 (00001001) (For 8 bits)

b) Inputs: x = 12548 (0011000100000100),
y=12540(0011000011111100),

p = 12553 (0011000100001001)

Output: z = 65 (0000000001000001) (For 16 bits)

Table-2: R8BIM implementation comparison of different
bits

No. of
bits

Slices Flip
Flops

LUTs AT/b Delay
(ns)

8 bits 208 43 363 0.432 16.651

16bits 375 49 680 0.458 19.579

S0 S1

! (i≥3)

! go

(i≥3)

go

Reset

Figure-4: FSM of R8BIM

5. CONCLUSION AND FUTURE WORK

This paper introduces a comparison for radix-8 booth
encoded modular multiplication with different bits. R8BIM
takes [n/3] + 4 clock cycles to compute n-bit modular
multiplication. For 8 bits multiplication, it takes 6 clock
cycles whereas for 16 bits multiplication it takes 9 clock
cycles. Modular interleaved multiplication will be
implemented using a radix-16 booth encoding technique
which will further reduce the number of the partial product
(clock cycles) to [n/4] and hence will be faster but will utilize
the additional hardware.

REFERENCES

[1] P.L. Montgomery, “Modular Multiplication without trial
division, ”Mathematics of Computation, vol. 44, no. 170,
pp. 519-521, 1985.G.

[2] G. Blakely, “A computer algorithm for calculating the
product ab modulo m,” IEEE Transactions on
Computers, vol. 32, no. 5, pp. 497–500, 1983

[3] K. Javeed and X. Wang, “Radix-4 and radix-8 booth
encoded interleaved modular multipliers over general
Fp,” in Field Programmable Logic and Applications
(FPL), 2014 24th International Conference on, Sept 2014,
pp. 1–6.

[4] J. Wolkerstorfer, “Dual-field arithmetic unit for GF(p)
and GF(2m),” in Cryptographic Hardware and
Embedded Systems-CHES 2002. Springer, 2003, pp.
500–514.

[5] D. Narh Amanor, C. Paar, J. Pelzl, V. Bunimov, and M.
Schimmler, “Efficient hardware architectures for
modular multiplication on FPGAs,” in Field
Programmable Logic and Applications, 2005.
International Conference on, Aug 2005, pp. 539–542.

