

IRJET Volume: 06 Issue: 02 | Feb 2019 www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

One Day National Conference on Recent Advancement in Civil Engineering (RACE 2K19)
25th February 2019
Organized by

Department of Civil Engineering, T John Institute of Technology, Bangalore-83

COMPARATIVE REVIEW ASSESSMENT OF LEED AND GRIHA RATING SYSTEM

RAVIKUMAR S1, Dr. VIJAYALAKSHMI AKELLA2

¹Student, Department of Civil Engineering, K.S.School of Engineering and Management, Bengaluru, India.

²Head of Department, Department of Civil Engineering, K.S.School of Engineering and Management Bengaluru, India.

Abstract - A green building, also known as a sustainable building, is a structure that is designed, built, renovated, operated, or reused in an ecological and resource-efficient manner. With the increasing awareness of sustainable development in the construction industry, implementation of a green rating procedure to assess buildings is becoming more important. The rating tool set benchmarks for green measures for constructing and using buildings to make them sustainable and to reduce their negative impacts on The most representative building environment. environment assessment schemes in India that are in use today are Leadership in Energy and Environmental Design (LEED) and Green Rating for Integrated Habitat Assessment (GRIHA). This paper aims to focus on the study of LEED and GRIHA rating system and compare both with regards to their assessment methods; scopes, performance criteria and energy rating scales are presented. Through this study, an attempt is made to make clear understanding of LEED and GRIHA rating system assessment criteria that need to be considered during comparison.

Keywords: Green Building, LEED, GRIHA, Rating System Assessment ...etc.

I. INTRODUCTION

The green building trend has increased rapidly worldwide in recent decades. The idea of green rating of buildings has taken roots in India. This is in line with the global trend in which the rating tools set benchmarks for green measures for constructing and using buildings to make them sustainable and to reduce their negative impacts on environment. Based on the magnitude of green measures adopted, points are awarded to a building and, after appropriate weighting; a total score is ascribed to determine the rating of the building. This helps to convey the range of application of green measures in building construction.

A green building is one which uses less water, optimizes energy efficiency, conserves natural resources, generates

less waste and provides healthier spaces for occupants, as compared to a conventional building." Green or sustainable Building is a designing concept that reduces the environmental impact of buildings through innovative land use and construction strategies. A Green Building is a building which incorporates the use of clean, renewable energy and efficient use of natural resources and recycled or recyclable materials to provide healthy indoors. The modern buildings fulfil the requirements of artificial comforts, but in turn consume excess energy and other natural resources. On the contrary, Green Buildings combine various eco-friendly concepts thereby increasing the working efficiency, providing the luxuries with the reduction in costs.

In year 1998 the Leadership in Energy and Environmental Design (LEED) green building rating system was introduced in US and in 2003, Green Rating for Integrated Habitat Assessment (GRIHA) in India.

In the last two decades there has been a significant evolution in the way rating tool methodologies assess the building sector. In the beginning of the 1990's the rating tool technique's developed with main focus in design stage, whereas the actual construction was not so important. At the start of the 21st century, this trend has gone in reverse, where most rating tool methodologies show significantly increased concern in the actual construction and a less focus in merely building design. At the same time, since 2006 a new trend in a green building rating has arose, where the main focus is now on the form of sustainable performance. This recent performance trend has expanded the implications of sustainable buildings. As the orientation in direction to the construction stage and sustainable performance expands in time, the rating methodologies will accommodate accordingly, shifting increasing categories and weighting from building design perspective to building performance. Hence, this will have a powerful effect on the future configuration of the building sector.

IRIET Volume: 06 Issue: 02 | Feb 2019 www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

One Day National Conference on Recent Advancement in Civil Engineering (RACE 2K19) 25th February 2019 Organized by

Department of Civil Engineering, T John Institute of Technology, Bangalore-83

LEED India and GRIHA are the most accepted and common rating systems in Indian green building industry. In this regard, LEED & GRIHA systems are similar in aims, approach and structure to rate the performance of the building sector and create according grade levels for accreditation. However, the sustainability rating methodology varies considerably, from tool rating system one to another in terms of measurement of building performance, scope and environmental criteria within the infrastructure sector.

II. OVERVIEW ON GREEN BUILDING RATING SYSTEMS

A. LEED Rating System

The Leadership in Energy and Environmental Design (LEED) Green Building Rating System represents the U.S. Green Building Council's effort to provide a national standard for what constitutes a "green building." LEED-India programmed has adapted from United States Green Building Council's (USGBC) in 2007. This is purely a private initiative which is run by the Indian Green Building Council (IGBC) in India. IGBC has set up the LEED 2011 for India Core Committee with the objective of the LEED rating system for the Indian context. LEED provides guidelines and specifications for building construction to achieve its sustainability goals and objectives. LEED is similar to checklist of credits that can be achieved 7 major categories. Following are these categories.

- 1) Sustainable Sites
- 2) Water Efficiency
- 3) Energy & Atmosphere
- 4) Materials & Resources
- 5) Indoor Environmental Quality
- 6) Innovation & Design Process
- 7) Regional Priority

Through its use as a design guideline and third-party certification tool, it aims to improve occupant well-being, environmental performance and economic returns of buildings using established and innovative practices, standards and technologies. LEED is similar to checklist of credits that can be achieved in 7 major categories. LEED evaluates a building for the amount of sustainability objectives it achieves and recognizes building at four certification level (Certified, Silver, Gold, Platinum) LEED is

considered to be one of the most successful green building rating systems in the world because of its early market penetration and adoption by professionals. Since the CII-Godrej GBC achieved the prestigious LEED rating for its own centre at Hyderabad in 2003, the Green building movement has gained tremendous momentum. The Platinum rating awarded for this building sparked off considerable enthusiasm in the country. This rating system is based on accepted energy and environmental principles and strikes a balance between known established practices and emerging concepts. It is performance oriented, wherein credits are earned for satisfying criteria addressing specific environmental impacts inherent in the design and construction. Different levels of green building certification are awarded based on the total credits earned. The system is designed to be comprehensive in scope, yet simple in application. The specific credits in the rating system provide guidelines for the design and construction of buildings of all sizes in both the public and private sectors. The intent of LEED 2011 for India is to assist in the creation of high performance, healthful, durable, affordable and environmentally sound commercial and institutional buildings.

Figure 1-LEED Credit Categories

SOURCE:https://www.google.co.in/url.LEED-System-Credit-Category.

- Credit Points under Different Categories
- 1. 100 possible points under the five core categories SS, WE, EA, MR & IEQ
- 2. 6 possible points under 'Innovation in Design'
- 3. 4 possible points under 'Regional Priority'

IRJET Volume: 06 Issue: 02 | Feb 2019 www.i

www.irjet.net p-ISSN: 2395-0072

e-ISSN: 2395-0056

One Day National Conference on Recent Advancement in Civil Engineering (RACE 2K19) 25th February 2019 Organized by

Department of Civil Engineering, T John Institute of Technology, Bangalore-83

- 4. Total possible points achieved are 110.
- Credit Point for Different Levels of Certification

CERTIFIED	40-49 points
SILVER	50-59 points
GOLD	60-69 points
PLATINUM	80 points and above

B.GRIHA Rating System

GRIHA is a national rating system for Green buildings in India. Conceived by TERI and developed jointly by the Ministry of New and Renewable Energy, Government of India, it is based on nationally accepted energy and environmental principles. Over 300 projects across India of varying scale and function are being built based on GRIHA guidelines.

Most of the internationally devised rating systems have been tailored to suit the building industry of the country where they were developed. TERI, being deeply committed to every aspect of sustainable development, took upon itself the responsibility of acting as a driving force to popularize green buildings by developing a tool for measuring and rating a building's environmental performance in the context of India's varied climate and building practices. This tool, by its qualitative and quantitative assessment criteria, would be able to 'rate' a building on the degree of its 'greenness'.

The rating shall evaluate the environmental performance of a building holistically over its entire life cycle, thereby providing a definitive standard for what constitutes a 'green building'. The rating system, based on accepted energy and environmental principles, seeks to strike a balance between the established practices and emerging national and international. concepts. both guidelines/criteria appraisal may be revised every three years to take into account the latest scientific developments during this period. On a broader scale, this system, along with the activities and processes that lead up to it, will benefit the community at large with the improvement in the environment by reducing GHG (greenhouse gas) emissions, improving energy security, and reducing the stress on natural resources. The rating applies to new building stock - commercial, institutional, and residential of varied functions. Endorsed by the Ministry of New and

Renewable Energy, Government of India as of November 1 2007, GRIHA is a five star rating system for green buildings which emphasizes on passive solar techniques for optimizing indoor visual and thermal comfort. In order to address energy efficiency, GRIHA encourages optimization of building design to reduce conventional energy demand and further optimize energy performance of the building within specified comfort limits. A building is assessed on its predicted performance over its entire life cycle from inception through operation.

GRIHA was developed as an indigenous building rating system, particularly to address and assess non-air conditioned or partially air conditioned buildings. GRIHA has been developed to rate commercial, institutional and residential buildings in India emphasizing national environmental concerns, regional climatic conditions, and indigenous solutions. GRIHA stresses passive solar techniques for optimizing visual and thermal comfort indoors, and encourages the use of refrigeration-based and energy-demanding air conditioning systems only in cases of extreme thermal discomfort. GRIHA integrates all relevant Indian codes and standards for buildings and acts as a tool to facilitate implementation of the same.

Figure 2-GRIHA Credit Categories

SOURCE:https://www.google.co.in/url.GRIHA-System-Credit-Category.

- Credit Points under Different Categories
- 1. 100 possible points under the Eight categories
- 2. 4 possible points under 'Innovation in Design'

IRIET Volume: 06 Issue: 02 | Feb 2019 www.irjet.net

vw.irjet.net

One Day National Conference on Recent Advancement in Civil Engineering (RACE 2K19) 25th February 2019 Organized by

Department of Civil Engineering, T John Institute of Technology, Bangalore-83

3. Total possible points achieved are 104.

Points achieved GRIHA Rating

ONE star	50-60
TWO stars	61-70
THREE stars	71-80
FOUR stars	81-90
FIVE stars	91points and above

3. COMPARATIVE ANALYSIS

In terms of the specific rating systems, LEED has similarities and differences with GRIHA program. A key similarity between the two programs is the use of credit based system with some flexibility for what credits or measures building developers want to pursue, along with mandatory requirements that must be met for certification. For rating new construction design, both LEED and GRIHA also use similar rating criteria's focusing on land, energy, water, indoor environmental quality.

Similarity and dissimilarity of green building rating systems and it also reflects whether respective rating systems have considered or not considered the various criteria while assessment. As it reflects from this analysis that there are many assessment criteria considered which have the same meaning but they are denoted by a different wording in respective rating systems.

There are Differences between the two systems in terms of process, popularity, transparency, cost, and criteria.

PROCESS: The GRIHA rating system uses an offline questionnaire-based approach. Once the questionnaire has been completed, a report is generated that provides ratings, a list of sustainability achievements, and recommendations for improvement. An independent third-party verifier (known as a Green Globes assessor) completes the task, which eliminates the need for binders or templates, and is more adaptable to specific project requirements. LEED, on the other hand, is very documentation-intensive, more complex, time consuming and (ironically) is still a mostly paper based system.

POPULARITY: LEED is very popular in comparison to GRIHA. More than 22 countries have adopted LEED and USGBC has a stated goal of becoming the global standard

for green building rating systems. Since its introduction a dozen years ago, more than 12,000 commercial projects have been certified under LEED according to USGBC. GRIHA was formed in 2006 and indicates that more than 2,000 buildings have been certified under GRIHA in India. Much of the growth in the India has been in the last 2 to 4 years, and they continue to see increasing interest in GRIHA from building owners, design professionals, and governmental agencies.

e-ISSN: 2395-0056

p-ISSN: 2395-0072

TRANSPARENCY: GRIHA use prerequisites or minimum performance requirements. However, what some might consider a disadvantage can actually mean that a building could have better all-around performance, even if it is disqualified by LEED for not meeting a minimum requirement. GRIHA awards points for implementing strategies, as well as for outcomes, whereas LEED primarily allocates points for achieving a certain performance level. Additionally, USGBC has come under growing criticism recently for keeping its LEED process more closely held and 'internal' than many stakeholders would like to see, especially when it comes to adoption of LEED by governmental agencies.

COST: GRIHA has free associate membership, no appeal costs, and fewer registration costs. It also reduces the costs of billable hours for LEED consultants on documentation. Therefore, it is possible to certify under GRIHA for a lower cost than under LEED.

CRITERIA: GRIHA better integrates life-cycle thinking into its rating system through sourcing of materials and the durability and adaptability of the building itself. Some categories are emphasized differently in the two systems. For example, GRIHA emphasizes energy use above all other categories while LEED allocates comparatively more points to materials. This difference in emphasis may begin to shift somewhat, since LEED vision (formerly LEED India-NC) incorporates more life cycle thinking than previous versions.

Table 1: Details of LEED and GRIHA Rating Systems.

Heads	LEED	GRIHA
Inception year	2001	2007
Total Buildings registered	2000	550
Total Buildings Rated	553	Not Provided
Area Registered	107.5 million sq.m	Not Provided

IRJET Volume: 06 Issue: 02 | Feb 2019

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

One Day National Conference on Recent Advancement in Civil Engineering (RACE 2K19) 25th February 2019

Organized by

Department of Civil Engineering, T John Institute of Technology, Bangalore-83

Area Rated	Not Provided	Not Provided
Professionals Trained	16000	10000
Total Footprints	1.2 billion sq. Ft	20000 million sq. Ft

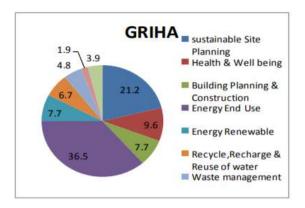


Figure 3: GRIHA Category Chart

SOURCE:https://www.google.co.in/url.GRIHA-Rating-System-Pie-Chart.

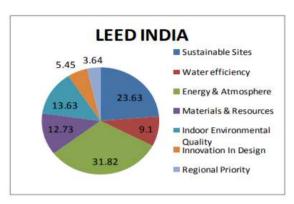


Figure 4: LEED Category Chart

SOURCE:https://www.google.co.in/url.LEED-Rating-System-Pie-Chart.

Table 2: Comparative Analysis of LEED and GRIHA Rating System

No.	CATEGORY	LEED	GRIHA
1	MANAGEMENT/SUSTAINABLE SITE		
a) :	Site selection/Reuse of land/Reclaimed land/Sustainable construction	¥.	V.
b)	Preserve and protect the landscape during construction / Preserve top soil / Existing vegetation	*	*
e)	Soil conservation/Top soil laying & stabilization/Hard landscaping & boundary protection	×	1
d)	Brownfield redevelopment	4	×
0)	Design to include existing site features		1
0	Building & site operation & maintenance	×	1
g)	Project management	×	1
2	ENERGY/ENERGY EFFICIENCY/ENERGY USE		
a) .	Renewable energy utilization	V	1
b)	Minimum energy performance/Optimize ozone depletion	4	×
e)	Fundamental building commissioning/Measurement & verification/ Energy monitoring/menering & monitoring		4
d)	Ozone depletion	4	1
0)	Additional commissioning	*	×
f) :	Energy improvement/Green power	4	1
3	INDOOR ENVIRONMENTAL QUALITY		
a).	Optimize building design to reduce the conventional energy demand/Naturally ventilated design/Localized ventilation	v .	× .
b)	Day lighting & views / Visual confort / Day lighting / External views / Artificial lighting minimization / Interior lighting normally specified.		1
c).	Reduced heat island effects/Thennal comfort/Thermal insulation/Thermal performance of building	¥ .	×
d)	Low emitting material/Indoor chemical and pollutant source control/CO2 monitoring and control / Huzardous material / Indoor air pollutants/ETS control	1	
c)	Minimize ozone depleting substance/HCFC & CFC free HVAC/Low &	1	-

	Zero carbon technology		
0	Acceptable indoor & outdoor noise levels / Acoustic performance /Background noise	ж	× .
4	HEALTH & WELL BEING		
a).	Minimum level of sanitation/Safety facilities for construction workers	×	4
h)	Reduce air pollution during construction	1	17
5	RECYCLE, RECHARGE & REUSE OF WATER	100	
a)	Water consumption/Water munitoring/Water meter/Water usage monitoring	×	
b):	Waste Water Treatment	4	4
c)	Water recycle & reuse	×	- 2
d)	Minimize wasts generation/Waste segregation/ Storage & disposal/Recovery from waste	×	-
e)	Innovative waste water technologies/ Storm water management / Water recycling effluent discharge to feul sever.	•	6
6	MATERIALS		
n):	Building reuse/Reuse of façade/Reuse of structure	1	×
bi	Conservation and efficient utilization of resources	1	V
ci	Utilization of fly ash in the building structure	×	V
d).	Storage and collection of recyclables/Contraction water management / Resource roune / Recycled content / Construction waste management / Recycled aggregates / Recycled content of concrete / Recycled content of steel / Recycled content of roused products.k materials		
0)	Reduce volume, weight & time of construction by adopting an efficient technology	×	*
Đ.	Use low energy materials in the interiors	1	1
g)	Sustainable procueement/Recycling waste storage / Sustainable construction/Sustainable products / Adaptability & Deconstruction / Sustainable forest products / Waste recycling facilities / Waste management	*	
h)	Local or regional materials	1	×
7	TRANSPORTATION	100	
a)	Alternative transportation / Public transport accessibility / commuting mass transport / Green transport / Local transport / Vehicular access	*	*
fr)	Alternative transportation/Cyclist facilities	*	×
(1)	Alternative transportation / Travel plan / Fuel efficient transport	4	×
0):	Pedestrian route/ Local transport	*	- /
0	Proximity to amenities/ Neighborhood amenities/ Amenities features	2	×
ß.	INNOVATION		1 22
a):	Innovation in design	4	- 0

One Day National Conference on Recent Advancement in Civil Engineering (RACE 2K19)
25th February 2019
Organized by

Department of Civil Engineering, T John Institute of Technology, Bangalore-83

4. CONCLUSIONS

Green building is a building which is environment friendly as it is using certain principles during its design, construction and functioning phase which allow it to get maximum advantages from the environment and cause minimum damage. There are many factors which have to be considered while constructing a green building. It is very necessary to know how effective a particular project is in term of its environment friendliness. The unique system suggested would rate the building on various factors so as to give a fair idea of where it stands in being a green building.

There are many factors which have to be considered while constructing a green building. It is very necessary to know how effective a particular project is in term of its environment friendliness. This brief comparison would check the building on various points so as to give a fair idea of where it stands in being a green building. Both rating systems are good enough to be used in certain part of the country but they are not unique in nature. Since these two systems are based on different parameters, there is a possibility of the both rating systems rate the same buildings differently. Also they are quite complex in nature and do not necessarily give a clear idea of the projects effectiveness. Each system has certain strong points and certain weak points and they are not specific on some assessment criteria. Due to this both systems are currently confusing the Indian developers, builders over the certification of their projects and buildings.

As from above comparative study of LEED and GRIHA rating system some suitable points for green building which is simple and effective is suggested for small contractors to achieve green agenda simply and economically. This point is an integration of various points such as it carries the advantages of both system where as it overcomes the individual shortcomings.

ACKNOWLEDGEMENT

The authors wish to place on record the help provided by the management and the academic teaching and non-teaching faculties of K. S. School of Engineering and Management, in the completion of this study.

I take pleasure in expressing my sincere thanks to

Dr. Vijayalakshmi Akella, Head of the department, Department of Civil Engineering, K.S. School of Engineering and Management, Bengaluru for guiding me for the completion of this study.

REFERENCES

 Prajakta S. Gurav, Nandini S.Mayekar, Monali B. Kamble, Sayali M. Pinage," DESIGN OF ENERGY EFFICIENT BUILDING", International Research Journal of Engineering and Technology (IRJET), Volume: 05, Issue: 04, Apr-2018.

e-ISSN: 2395-0056

- Shubhangi Maheshwari, Pallavi Chauhan, Shubh Tandon, Shammi Sagar, "A REVIEW STUDY ON NET ZERO ENERGY BUILDING", International Research Journal of Engineering and Technology (IRJET), Volume: 04, Issue: 04, Apr -2017.
- 3. Mr. Iliyas Ikbal Sande, PROF. Mrs. N. S. Phadtare,"COMPARATIVE STUDY OF LEED AND GRIHA", Journal of Information, Knowledge and Research in Civil Engineering ISSN: 0975 6744| NOV 14 TO OCT 15 | Volume 3, Issue 2 Page 168.
- Dr.M.N. Hedaoo, Mr. Sharad R. Khese, "A COMPARATIVE ANALYSIS OF RATING SYSTEMS IN GREEN BUILDINGS", International Research Journal of Engineering and Technology (IRJE T) e-ISSN: 2395 -0056 Volume: 03 Issue: 06 | June-2016