
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 5041

Analysis of Micro Inversion to Improve Fault Tolerance in High Speed

VLSI Circuits

Somashekhar1, Vikas Maheshwari2, R. P. Singh3

1Research Scholar, Dept of ECE, SSSUTMS, Sehore (M.P), India-
2Associate Professor, Dept of ECE, Bharat Institute of Engineering and Technology, Hyderabad. India-

3Vice-Chancelor & Professor, Dept of ECE, SSSUTMS, Sehore (M.P), India-
1somashekhar49@gmail.com, 2maheshwarivikas1982@gmail.com, 3provc@sssutms.co.in

---***---

Abstract - With technology scaling, the reliability of circuits

is becoming a rising concern. The emergence of logic errors

in the field cause by faults escaping manufacturing testing,

aging, single event upsets, or process variations is increasing.

Conventional techniques for online testing and circuit

protection repeatedly require a high design effort or result in

high area overhead and power consumption and are

unsuitable for low cost systems. The primary motive for

introducing fault tolerance in VLSI circuits is yield

enhancement, increasing the percentage of fault free chips

obtained. The active area of monolithic VLSI chips has

always been limited by random fabrication defects, which

appear impossible to eliminate in even the best

manufacturing processes. The larger the circuit, the more

likely it will contain such a defect and fail to operate

correctly. Thus, the defect density in any fabrication line

limits the size of the largest defect free chip producible with

commercially viable yields. Larger circuits demand a fault

tolerance capability to overcome fabrication defects while

avoiding unreasonable costs. In nm technologies, circuits be

more and more sensitive to a variety of perturbations.

Transient faults can take place in a processor as a result of

electrical noise, like crosstalk, or high energy particles, like

neutrons and alpha particles. These faults be able to cause a

program running on the processor to behave erratically, if

they propagate and change the architectural state of the

processor. These faults can occur in memory arrays,

sequential elements or in the combinational logic in the

processor. Protection against transient faults in

combinational logic has not received much attention

traditionally because combinational logic has a natural

barrier stopping the propagation of the faults. System

performance is increased when the nodes are able to recover

locally from most errors caused by transient faults. The

circuitry added for concurrent error detection generally

reduces performance. By means of a technique called micro

rollback, it is achievable to eliminate the performance

penalty of concurrent error detection.

Keywords: Micro inversion, Fault Tolerance, VLSI,
Processor, IC, Register file.

1. INTRODUCTION

As with every piece of machinery, ICs are prone to failure.

Through technology scaling, transistor sizes are reduced to

open the way for increased functionality with reduced in

general power dissipation, device dimensions and

manufacturing costs but despite those advantages, the

reliability of ICs has been affected. The increasing probability

of circuit failure caused by increasing device complexity and

the errors caused by increased delay due to temperature rise

in CMOS circuits. Faults in a distributed embedded system

can be permanent, intermittent or transient (also known as

soft errors). Permanent faults cause long-term

malfunctioning of components. These faults emerge for a

short time. Causes of intermittent faults are within system

boundaries, while causes of transient faults are external to

the system. They might damage data or lead to logic

miscalculations, which can outcome in a fatal failure. Due to

their higher rate, these faults cannot be addressed in a cost-

effective way by applying traditional hardware-based fault

tolerance techniques suitable for tolerating permanent

faults. Embedded systems with fault tolerance have to be

carefully designed and optimized, in order to satisfy strict

timing requirements without exceeding a certain limited

amount of resources. Moreover, not only performance and

cost related requirements have to be considered but also

other issues such as debug ability and testability have to be

taken into account.

2. LITERATURE REVIEW

A fault-tolerant system may be able to tolerate one or more

fault-types including -- i) transient, intermittent or

permanent hardware faults, ii) software and hardware

design errors, iii) operator errors. Gayathri and Prabakaran

mailto:somashekhar49@gmail.com
mailto:2maheshwarivikas1982@gmail.com

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 5042

[1] discussed some important factors of failures. One

important factor is arbitrary node or link failure which

results in denial of service. In cloud computing, load

balancing is required to distribute the dynamic local

workload evenly across all the nodes. It helps to attain a

more user fulfillment and resource utilization ratio by

ensuring an efficient and fair allocation of every computing

resource. Identified some of the load balancing algorithms

which distribute workload across multiple computers or a

computer cluster, network links, central processing units,

disk drives, or other resources, to achieve best possible

resource utilization, maximize throughput, minimize

response time, and avoid overload. When all these issues are

addressed naturally the system becomes a fault tolerant one.

Win Naing [2] proposed a fault-tolerance

management framework for private clouds development.

Previous researchers developed Eucalyptus in organize to

facilitate the creation of private clouds. But Eucalyptus is no

fault tolerant system and no VM monitoring is performed

thus limiting the support for advanced VM placement

policies (e.g., consolidation). Eucalyptus does not also

include any self-healing features and strictly distinguishes

between cloud and cluster controllers. Therefore, they

proposed the fault-tolerance management framework over

Eucalyptus by adding new component Cluster Controller

Manager (CCM).

 Sheheryar and Fabrice [3] proposed a scheme of

fault tolerance mechanism for real time computing on cloud

infrastructure. It has advantages of forward recovery

mechanism. It performs the reverse recovery if the node

with best reliability could not achieve the SRL. There is

another big advantage of this scheme. It does not suffer from

domino effect as check pointing is made in the end when all

the nodes have produced the result.

Y Tamir [4] proposed a Fault-tolerant system frequently rely

on self-checking compute nodes. It detect errors

immediately they occur, hence prevent the spread of invalid

information throughout the system.

3. MICRO INVERSION

A key to achieving a high degree of fault tolerance is the
ability to detect errors as soon as they occur and prevent
erroneous information from spreading throughout the
system. In highly reliable systems, this is usually
accomplished by checkers and isolation circuits in the
communication paths from each module to the rest of the
system. This additional circuitry reduces performance by
requiring either longer clock cycles or additional pipeline
stages. This presents a technique, called micro rollback.
Operations performed on this erroneous information are

“undone” by means of a hardware mechanism for fast
rollback of a few cycles. Straightforward realization of micro
rollback will need of significant performance and chip area
overheads for replicating all the storage elements in each
module.
This paper discusses techniques for efficient analysis of

micro rollback in VLSI systems. It focuses on the micro

architecture and VLSI realization of a VLSI RISC processor

that is able of micro rollback. A micro rollback of a

subsystem consists of bring the subsystem back a only some

cycles to a state reached in the past. It is so necessary to save

the state of the subsystem at each cycle boundary [10]. If the

‘‘subsystem’’ is a processor, the state is the contents of all

storage elements which carry useful information across cycle

boundaries. It is composed of the program counter, the

program status word, the instruction register, and the

register file, it also includes the contents of some pipeline

latches and some registers in the state machine which can be

changed during the execution of a multicycle instruction.

Since instructions also modify external memory, the state of

the cache must also be preserved. A rollback restores the

contents of the cache to its state a few cycles earlier.

Figure 1. A register file with support for micro Inversion

4.MULTI MODULE SYSTEM

Periodic check pointing of process states and roll back to a
previous state when an error is detected is a common
technique for error recovery in distributed systems[11]. If
each process is check pointed independently, rolling back
one process may require rolling back a second process

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 5043

further in time which, in turn, may cause a third process to
roll back, etc. leading to an uncontrolled domino effect [11].
In the worst case this can result in all processes in the
system rolling back to their state when the system is
initialized. In the context of micro rollback, which is done at
the level of hardware modules, the domino effect cannot
occur in such system. However, if the modules are connected
in an arbitrary topology, where there are several
independent communication paths between pairs of
modules, the domino effect could, potentially, occur. Since
the range of rollback is severely limited (a few cycles), this
can make recovery impossible.

Figure 2. Multi-Module System

In a system if modules are interconnected via a common bus,
this problem can be solved by using bus transactions as a
common logical clock.

5.CONCLUSION

One of the keys to achieving a high degree of fault tolerance
is the ability to detect errors instantly after they occur &
prevent invalid information from distribution all over the
system. This primary problem in achieving fault tolerance in
VLSI systems is able to overcome by performing checks in
parallel with intermodule communication. This paper
analyses the parallel error checks in concurrence with micro
rollback can be used to support fault tolerance in complex
multi module high performance VLSI systems.

REFERENCES

[1] Ms. G. Gayathri and Dr. N. Prabakaran, “Achieving Fault

Tolerance in Cloud Environment by Efficient Load

Balancing”, International Journal of Emerging

Trends & Technology in Computer Science (IJETTCS)

Volume 2, Issue 3, May – June , 2013 ISSN 2278-6856.

[2] WinNaing “Fault-tolerant Management for Private Cloud

System”, International Journal of Emerging Trends &

Technology in Computer Science (IJETTCS), Volume 1,

Issue 1, May-June 2012 ISSN 2278-6856.

[3] Sheheryar Malik, FabriceHuet, “ Adaptive Fault Tolerance

in Real Time Cloud Computing”, IEEE World Congress

on Services, Jul 2011, Washington DC, United States.

IEEE, pp.280-287.

[4] Y Tamir, “Self-checking self-repairing computer nodes

using the Mirror Processor”, IEEE Journal of solid-state

circuits, vol. 21. No. I. January 1992.

 [5] Han C.C., Shin K. G. and Wu J., “A Fault-Tolerant

Scheduling Algorithm for Real-Time Periodic Tasks

with Possible Software Faults”, IEEE Computers 2003.

[6] Prasenjit Kumar Patra, Harshpreet Singh, Gurpreet Singh,

“Fault Tolerance Techniques and Comparative

Implementation in Cloud Computing”, International

Journal of Computer Applications (0975 – 8887)

Volume 64– No.14, February 2013.

[7] Jasbir Kaur, SupriyaKinger, “Efficient Algorithm for Fault

Tolerance in Cloud Computing”, International Journal

of Computer Science and Information

Technologies(IJCSIT), Vol.5 (5) , 2014, 6278-6281.

[8] S. Sudha Lakshmi, Sri Padmavati, “Fault Tolerance in

Cloud Computing”, International Journal of Engineering

Sciences Research-IJESR, Vol 04, Special Issue 01,2013,

issn:2230-8504, e-ISSN-2230-8512.

[9] Pandeeswari.R, Mohamadi Begum “Rsfts: Rule-Based

Semantic Fault Tolerant Scheduling For Cloud

Environment”, Council for Innovative Research

International Journal of Computers & Technology.

Volume 4 No. 2, March-April, 2013, ISSN 2277-3061.

[10] W. W. Hwu and Y. N. Patt, ‘‘Checkpoint Repair for Out-

of-order Execution Machines,’’ 14th Annual Symposium

on Computer Architecture, Pittsburgh, PA, pp. 18-26

(June 1987).

[11] B. Randell, P. A. Lee, and P. C. Treleaven, ‘‘Reliability

Issues in Computing System Design,’’ Computing

Surveys 10(2), pp. 123165 (June 1978).

[12] L. D. Babu and P. Krishna, “Honey bee behavior inspired

load balancing of tasks in cloud computing

environments”, in Applied Soft Computing, Vol. 13(5),

pp. 2292-2303, (2013).

[13] R. Kaur and P. Luthra (2012), “Load Balancing in Cloud

Computing”, In Proceedings of International

Conference on Recent Trends in Information,

Telecommunication and Computing, ITC.

[14] M. Dorigo, G. D. Caro and L. M. Gambardella (1999), “Ant

algorithms for discrete optimization”, Artif. Life, Vol.

5(2), pp.137-172.

[15] Virendra Singh Kushwah, Sandip Kumar Goyal and

Priusha Narwariya, “ A survey on various fault tolerant

approaches for cloud Environment during load

balancing”, IJCNWMC, Vol. 4, Issue 6, Dec 2014, 25-34

ISSN(P): 2250-1568; ISSN(E): 2278-9448.

[16] I. Koren, “A Reconfigurable and Fault-Toler- ant VLSI

Multiprocessor Array,” Proc. 8th Ann. Symp. Computer

Architecture, May 1981, pp. 425-441.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 5044

 [17] N.R. Rejinpaul, L. Maria Michael Visuwasam,

“Checkpoint-based Intelligent Fault tolerance For

Cloud Service Providers”, International Journal of

Computers and Distributed Systems Vol. No.2, Issue 1,

December 2012 ISSN: 2278-5183.

[18] FetahiWuhib, Mike Speritzer and Rolf Stadler (2012),

“Gossip Protocol for Dynamic Resource Management in

Large Cloud Environments” IEEE Transactions on

Network and Service Management, vol. 9, no. 2, pp.

213- 225.

[19] Ramtilak Vemu et al, “A low-cost concurrent error

detection technique for processor control logic”, 978-3-

9810801-3-1/DATE08 © 2008 EDAA.

[20] Peng Hu, Wei Dai, “Enhancing Fault Tolerance based on

Hadoop Cluster”, International Journal of Database

Theory and Application Vol.7, No.1 (2014), pp.37-48.

[21] Samudrala, P. K., Ramos, J., and Katkoori, S. (2004)

“Selective triple modular redundancy (STMR) based

single-event upset (SEU) tolerant synthesis for FPGAs”,

Nuclear Science, IEEE Transactions on, Vol.51, No.5, pp

2957-2969.

