
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3251

Load Balancing and Crash Management in IoT Environment

Md. Arfath Azeez1, D.T. Supreeth Rao2, Chinmay Kini3

1,2,3Eight Semester, Dept. of Ise, The National Institute of Engineering, Mysore
---***--
Abstract - The standard IoT architecture or system that is
present today connects the clients (users) to the various
devices in a uniform manner using a socket connection in a
network. After the clients are connected to the devices, the
devices are further connected to the data centers nearest to
the user’s vicinity which collect all the data sent from the users
and send the data to the users if the user requests it. The main
intention of this paper to solve the issue of crash management
encountered in the traditional IoT architecture. This paper
implements the MQTT cloud-based protocol to access the
various server’s information and provides publish/subscribe
mechanisms to the clients connected to the severs. The
proposed system includes an application delivery controller,
an application delivery controller (ADC) is a network
component that manages and optimizes how client machines
connect to server for processing or data center to store / read
information between the devices and the data center. The
devices and the data centers are connected to this distributor
(ADC) via a network. Here, if there is any increase in load, the
distributor (ADC) handles this by sending the data to a data
center which is idle, if there are any crashes or if the data
center handling the requests goes down, the distributor (ADC)
then would re-route all the data to the other data centers until
it recovers. This provides an alternative way to handle the
unexpected network failures or crashes so that the whole
system does not go down.

Key Words: IoT, Crash management, Load balancing,
cloud architecture, MQTT protocol.

1. INTRODUCTION

The main objective of this paper is to provide load balancing,
uninterrupted connectivity and crash management to all the
clients (users) connected to various devices in an IoT
environment, even if there is an increase in load, network
failure or any crashes encountered between the client’s
devices and the data centers. To facilitate the communication
between the various devices we use the concept of cloud
computing, which is implemented by the cloud services
provided by Amazon’s EC2. In this paper we introduce an
additional component which provides an interface between
the users and the data centers, called the “Application
Delivery controller” which implements the performance
counter algorithm, it extracts load information about the
servers and broadcasts to the Application delivery Controller
(ADC). ADC also manages the load balancing part of the IoT
environment by keeping tabs on the various servers which
are distributed widely by continuously monitoring the
servers by assessing the data sent to them in the cloud. It

uses the MQTT protocol, which is a publish/subscribe based
messaging protocol. The users can publish some information
to the cloud using it or the users can subscribe for a
particular service through it. Application Delivery Controller
(ADC) monitors all the data centers by assessing their
availability (RAM), accessibility and load (CPU). If any data
center goes down due to network failure or if it gets
overloaded the Application Delivery Controller redirects all
the requests or service required to other data centers.

Fig-1: Working of application delivery controller

2. RELATED WORK

a) Klaithem Al Nuaimi, Nader Mohamed, Mariam Al Nuaimi
and Jameela Al- Jaroodi 2012, proposed survey of the
current load balancing algorithms developed specifically to
suit the Cloud Computing environments.

b) Martin Randles, David Lamb, A. Taleb-Bendiab, 2010
Investigates three possible distributed solutions proposed
for load balancing; approaches inspired by Honeybee
Foraging Behavior, Biased Random Sampling and Active
Clustering.

c) Sidra Aslam, MunM Ali Shah, 2015, focused and provide a
comprehensive overview of interactive load balancing
algorithms in cloud computing. Each algorithm addresses
different problems from different aspects and provides
different solutions. Some limitations of existing algorithms
are performance issue, larger processing time, starvation
and limited to the environment where load variations are
few etc.

d) Reena Panwar, Prof. Dr. Bhawna Mallick, 2015, included
some algorithms of load balancing algorithms in cloud
computing which is analyzed on a specific environment of
virtual machine. In this paper, they proposed a Dynamic Load
Management algorithm which will distributes the load
uniformly at the servers by considering the current status of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3252

all the available virtual machines intelligently and later
response time of this algorithm is compared with the
existing VMAssign Algorithm.

e) K. Venkata Subba Reddy, J. Srinivas, A. Abdul Moiz
Qyser, 2014, have proposed dynamic hierarchical load
balancing service architecture for cloud data centers.
Objective of the work is to enhance the load balancing
performance from the virtual component of cloud
datacenter and also proposes a generic performance
evaluation matrix to evaluate the performance of cloud
datacenters. The various parameters are based on
availability, computational speed, storage and redundancy.
This work improves the performance of load balancing
algorithm using virtual migration policy and evaluated the
validity of virtual machine and physical host using
performance evaluation matrix.

f) S M S Suntharam, 2013, has proposed load balancing by
Maxi-Min Algorithm in private cloud environment. The
objective is to use max-min algorithm in Cloudsim to show
how to balance the load across the different storage nodes
in the private cloud, which reduce the make span and data
traffic. Max-Min algorithm is also used to reduce idle time
and so efficient in mapping the load across the nodes. The
parameters considered are VM processing power,
bandwidth, memory. The result obtained is algorithm
consumes less time in storing a job in node and decreases
problem of deadlock in cloud environment. Thus, algorithm
attains high sufficiency and scheduling efficiency to all jobs
in the private cloud. In future work, considered to improve
the complexity and fault tolerance.

g) Kousik Dasgupta, Brototi Mandal, Paramartha Dutta,
Jyotsna Kumar Mondal, Santanu Dam, 2013, have proposed
a novel load balancing strategy using Genetic Algorithm
(GA). Objective of the work is to balance the load of the
cloud infrastructure while trying minimizing the make span
of a given tasks set using the mechanism of natural selection
strategy and performance of the algorithm is compared with
Round Robin, FCFS and local search algorithm. The
parameters considered are average response time,
processing power and performance. The result obtained by
genetic novel load balancing algorithm, it outperforms the
existing algorithms and achieve the system performance by
maximum resource utilization. It also guarantees the
quality of service required. In future work, single point of
crossover and variation in selection strategy can be
considered.

3. MODULES

The modules implemented in this paper are briefly
described below.

A. Performance counter algorithm to extract load
information.

Performance counter algorithm is used to extract load
information about the servers and broadcast to the
application delivery controller.

The Pseudo code for the above is shown below:

 Total percent CPU processor time
("Processor", "% Processor Time")

 Percent committed memory ("Memory",
"% Committed Bytes in Use")

 Percent page file usage ("Paging File", "%
Usage")

 Network adapter throughput.

B. Development of a cloud based MQTT Protocol

The MQTT protocol which is a publish/subscribe
messaging protocol is implemented in a cloud environment
to submit each machine load to the application delivery
controller (ADC), which is a better alternative to the socket
communication used in the network. There are many
advantages of this protocol, to quote a few:

 Lightweight
 Reduced Network Traffic
 Less expensive

 C. Implementation of Application Delivery Controller:

 An application delivery controller (ADC) is a network
component that manages and optimizes how client machines
connect to web and enterprise application servers. In
general, it is a hardware device or a software program that
manages or directs the flow of data between two entities
(client and server). An ADC essentially functions as a load
balancer, optimizing end-user performance, reliability, data
center resource use and security for enterprise applications.
But ADCs also perform other functions, like application
acceleration, caching, compression, traffic shaping, content
switching, multiplexing and application security.

D. Client implementation for sending request and
acknowledge after processing:

The clients (users) are given functionalities to either request
for a service they require or publish their own information
to the servers via the MQTT protocol which acts as an
interface between the users and the servers. Finally, when
the user completes his task, the server acknowledges it by
sending a unique id called the “machine id” to the user which
can be used by the users as a reference to connect to the
servers to either send new requests or complete their tasks
in the future.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3253

4. SYSTEM DESIGN

In this section we introduce our proposed system design
that aims at solving the problem of load balancing and
crash management. The system is designed based on the
Master-Slave architecture. A brief description about each
component is explained below:

A. System Components

The proposed system design consists the following
components:

1) Clients (Users): Many clients (remote processors) request
and receive services from a centralized server (host
computer) or publish some information to the server. The
client computer sends request to the Application delivery
controller which acts as a “master” over the network
connection, the requests are then processed and delivered to
the client directly by the server which acts as a “slave”. These
requests can include application access, storage, file sharing,
printer access etc. Client’s computers provide an interface to
allow a computer user to request services of the server and
to display the results the server returns. Clients are often
situated at workstations or on personal computers. For
example, a client computer can be running an application
program for entering patient information while the server
computer is running another program that manages the
database in which the information is permanently stored.
Many clients can access the server’s information
simultaneously, and, at the same time, a client computer can
perform other tasks, such as sending e-mail. The requests
from the client could include HTTP request for page
download or fetch address using Google API.

2) Application Delivery Controller (Master): The Application
Delivery Controller is a data center architecture that
distributes network traffic evenly across a group of servers.
It acts as the “traffic cop” sitting in front of the servers and
routing client requests across all servers capable of fulfilling
those requests in a manner that maximizes speed and
capacity utilization and ensures that no server is
overworked, which could degrade performance. If a single
server goes down, the load balancing server redirects traffic
to the remaining online servers. When a new server is added
to the server group, the load balancing server automatically
starts to send requests to it. The main goal of load balancing
server is to distribute client requests or network load
efficiently across multiple servers and also ensures high
availability and reliability by sending requests only to
servers that are online. The Application Delivery Controller
(ADC) collects memory usage, process counts and CPU load,
and based on the requests of the client, it redirects the
requests to the servers with the least load. It also provides
crash management. Suppose if the server crashes due to
network failure or if it is subjected to any kind of attacks, it
provides uninterrupted connectivity by redirecting the
requests of the client to an alternative server which has

minimum load. This acts as a master where it monitors all its
slaves (servers).

3) Servers (Slaves): Servers are considered as slaves in this
architecture where it is controlled by master (Application
delivery controller). Servers wait for requests to arrive from
clients and then respond to them. Ideally, a server provides a
standardized transparent interface to clients so that clients
need not be aware of the specifics of the system (i.e. the
hardware and software) that is providing the service. Here
the server hosts, delivers and manages most of the resources
and services to be consumed by the client. The server acts as
the producer whereas the client acts as a consumer. Also, the
server provides high-end, computing-intensive services to
the client on demand. A server computer can manage several
clients simultaneously whereas one client can be connected
to several servers at a time, each providing a different set of
services. All the communication between client and server in
our system designed is taking place in a cloud environment
(Amazon EC2) instance where mosquito broker is
preinstalled which uses MQTT protocol to respond directly
to each client machine.

Fig-2: Overview of the system designed

5. IMPLEMETATION AND EXPERIMENTAL RESULTS

The system designed is implemented using various
technologies. This design is carried out on Microsoft’s Visual
Studio and the core language being used is C#. Window’s
applications are created for each component and are
appropriately linked to the cloud (Amazon EC2). The cloud
has mosquito broker installed on it, which provides the
desired MQTT protocol to help the communication between
the two entities (clients and servers).

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3254

Fig-3: The Slave System

Fig-4: The Master System

6. CONCLUSION

The main motive of this paper, is to implement or solve the
problem of crash management and provide load balancing
in an IOT Environment, this is achieved simply by adding an
additional component to the network called the Application
delivery controller(ADC), whose task as described earlier is
to find out which particular Server in the network is free to
service the request of the client, providing this feature will
greatly Enhance the performance/efficiency of a particular
IOT environment, since Application delivery Controller
(ADC), makes sure that the clients request will always be
served immaterial of how many servers are
down/overloaded in the network , this particular concept
can be applied to any particular scenario to extract the best
possible results from it. However, this concept in future can
be made more efficient by creating interface for the client
System using both wired and wireless technologies to
provide seamless connectivity in IOT Environments.

REFERENCES

[1] Sandeep Sharma, Sarabhijit Singh, and Meenakshi
Sharma “Performance Analysis of load balancing

algorithms”, World Academy of Science, Engineering and
Technology International Journal of Civil and
Environmental Engineering Vol:2, No:2, 2008.

[2] Klaithem Al Nuaimi, Nader Mohamed, Mariam Al Nuaimi
and Jameela Al-Jaroodi “A Survey of Load Balancing in
Cloud Computing:Challenges and Algorithms”, IEEE Second
Symposium on Network Cloud Computing and
Applications,2012.

[3] Raza Abbas Haidri, C. P. Katti, P C Saxena,” A Load
Balancing Strategy for Cloud Computing Environment”,
International Conference on Signal Propagation and
Computer Technology (ICSPCT) 2012.

[4] S M S Suntharam,” Load Balancing by Max-Min
Algorithm in Private Cloud Environment”, International
Journal of Science and Research (IJSR) ISSN (Online): 2319-
7064 Index Copernicus Value (2013): 6.14.

[5] Kousik Dasgupta, Brototi Mandal, Paramartha Dutta,
Jyotsna Kumar Mondal, Santanu Dam,” A Genetic Algorithm
(GA) based Load Balancing Strategy for Cloud Computing”,
International Conference on Computational Intelligence:
Modeling Techniques and Applications (CIMTA) 2013.

[6] Tingting Wang, ZhaobinLiu, Yi Chen, Yujie Xu,” Load
Balancing Task Scheduling based on Genetic Algorithm in
Cloud Computing”, IEEE 12th International Conference on
Dependable, Autonomic and Secure Computing,2014.

[7] K. Venkata Subba Reddy, J. Srinivas, A. Abdul Moiz
Qyser,” A Dynamic Hierarchical Load Balancing Service
Architecture for Cloud Data Centre Virtual Machine
Migration”, S. C. Satapathy et al. (eds.), Smart Intelligent
Computing and Applications, Smart Innovation, Systems
and Technologies 104, 2014.

[8] Sachin Uttam Kadam and Sandip U Mane,” A Genetic-
Local Search Algorithm Approach for Resource Constrained
Project Scheduling Problem”, International Conference on
Computing Communication Control and Automation, 2015.

[9] Medhat Tawfeek, Ashraf El-Sisi, Arabi Keshk and Fawzy
Torkey,” Cloud Task Scheduling Based on Ant Colony
Optimization”, The International Arab Journal of
Information Technology, Vol. 12, No. 2, March 2015. [10]
Subasish Mohapatra, Ishan Aryendu, Anshuman Panda,
Aswini Kumar Padhi,” A Modern Approach For Load
Balancing Using Forest Optimization Algorithm”,
Proceedings of the Second International Conference on
Computing Methodologies and Communication (ICCMC
2018) IEEE Conference Record # 42656; IEEE Xplore
ISBN:978-1-5386-3452-3 2018.

[10] Er. Pooja Yadav, Er. Ankur Mittal, Dr. Hemanth Yadav,
“IoT: Challenges and Issues in Indian Perspective”, 2018
3rd International Conference on Internet of Things: Smart
Innovation and Usages (IoT-SIU).

