
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3800

Cloud Based Deduplication Using Middleware Approach

Sujit Tilak1, Shrey Jakhmola2, Arvind Hariharan Nair3, Bhabya Mishra4 , Isha Dwivedi5

1Professor, Department of Computer Engineering, Pillai College of Engineering, Maharashtra, India

2B.E. Student, Department of Computer Engineering, Pillai College of Engineering, Maharashtra, India
3B.E. Student, Department of Computer Engineering, Pillai College of Engineering, Maharashtra, India
4B.E. Student, Department of Computer Engineering, Pillai College of Engineering, Maharashtra, India
5B.E. Student, Department of Computer Engineering, Pillai College of Engineering, Maharashtra, India

---***---

Abstract – Data Deduplication is an integral part of cloud
storage. It efficiently reduces redundant data and thus
reducing storage space. Data deduplication can be done in the
server side or in the client side location. But, providing a
middleware will be beneficial for the users, as they can have
their preference for the storage solution. The benefit of
implementing through client side is a reduction in the use of
bandwidth and storage which would in turn results in user
satisfaction, but it induces load on the user system,
synchronization problem with the server and also increases
difficulties in the technical aspect of the overall architecture.
Data deduplication is done by splitting the file into small
chunks in the server side and further generating a hash value
which will be unique to the file content. The hash values are
stored in the database. The hashing can be effectively
performed by the SHA1 algorithm, since it has no noticeable
collision thereby maintaining security. If the same hash value
has been found in the storage server database then the file is
not stored again but a pointer is created that points to the
original file which will be used when a user requests for the
file. Here, the entire deduplication process is performed in a
middleware which connects the user and the server.

Key Words: Cloud storage, deduplication, middleware,
chunking, hashing, SHA1,

1.INTRODUCTION

Cloud storage is a cloud computing model that is used to
store data online which can be accessed anytime by the user
with active Internet connectivity. It can provide strong
protection for our data and can be beneficial for cases like
data backup and archival. It is also reliable during natural
disasters, as the data can be stored in a remote server. The
overall cost of using a cloud storage device is low as there is
no need to purchase hardware; therefore reducing
maintenance cost drastically compared to the traditional
storage systems. Cloud not only store data. It is also known
for being the shared pool of resources. In cloud computing,
duplication of data is the main problem. Data duplication, as
the name suggests is duplication of file while storing in the
cloud. Removing the duplicate file from the storage space is
termed as deduplication.

Data deduplication can be performed at various locations and
levels using several methodologies. Deduplication can be

either be implemented in a client side or server side location.
But implementing in either side has its' advantages and
disadvantages. Performing the process in the client side will
increase the load on the client system. Software is required in
the client side to proceed for deduplication. While on the
server side, high bandwidth is utilized by the client. To
overcome some of these issues in the client and server side,
the middleware approach comes in to picture. The
middleware acts as a bridge for the user and the storage. It
allows the software to be isolated from the storage solution.
It also helps reduce storage space. Instead, the user can rely
on existing storage like Google Drive, Dropbox or any other
user preference as this application is platform independent.
Middleware is the place where the core deduplication
procedure takes place that involves fixed size chunking and
hashing using the SHA1 algorithm.

2. LITERATURE SURVEY

Many researchers have done commendable work on the
subject. This section contains the overview of the work done
by some of the researchers on deduplication.

1) Data Deduplication Cluster Based on Similarity-Locality
Approach [2] .

Data deduplication can be done in file level, block level and
byte level. The block level deduplication will reduce the
expenses of the system and detection of segment within a file
which is redundant can be detected. The similarity and
locality concept is combined and used in this deduplication.
The similarity deduplication take the similar kind of
characteristics from backup stream. While on the other hand,
locality deduplication means the order of the backup stream
chunks will remain same in other high probability backup
streams. The file is segmented and distributed to several
nodes. These incoming segments are checked with respect to
the local finger print. The Bloom filters are used to store
these fingerprints. The incoming segments are identified by
using MD5 or SHA1 algorithm by the fingerprints. If the
fingerprint is similar then the segment isn't stored. But if it's
not, then based on the degree of similarity comparison is
done with the fingerprint summary or corresponding nodes.

2) A Hybrid Cloud Approach for Secure Authorized
Deduplication [3] .

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3801

Hybrid Cloud Approach is a combination of both private and
public cloud. The private cloud is responsible here for the
sharing the file token to the user on request and providing
with the private key. Through this way the private cloud does
the authentication of the user so that only authorized user
can check for deduplication of data, upload or download the
file. Once the user gets hold of the token, it then shares it with
the public cloud for upload or download purpose. The file
token is received by the public cloud and results are given
accordingly as per the request.

3) Try Managing Your Deduplication Fine-grained-ly: A Multi-
tiered and Dynamic SLA-driven Deduplication Framework for
Primary Storage [4].

The primary storage system is made up by two main
modules: proxy server and object storage cluster (OSC). The
client side requests are sent to the OSC storage node by the
proxy server. The newly entered files meta data is present in
the buffer zone present in the proxy server. OSC is a
distributed storage cluster that contains approximately
hundreds of storage nodes made up of various chunks. These
storage nodes maintain the fingerprint in the index table for
all the chunks. Fingerprint is nothing but hash of the content
that is done by using SHA1 technique. Deduplication doesn't
interfere with the Mudder on going operations, instead it
performs the task in the background itslef. DCL-Module, SLA-
Handler, Deduplication Executor(Deduper) and Workload
Monitor (Monitor) are the main modules of the Mudder.
When new files meta data are filles in the buffer zone and the
entries reach a threshold value N, DCL module fetches all
these entries and generate a Target list. DCL module is
operable inside the proxy server. Initially the entry in the list
is predefined as dirty, meaning not duplicate. The DCL
module then calculated for deduplication. DCL-Module
pushes the list to Deduper which is a channel where
deduplication between storage nodes and proxy takes place.
Procedure of removing redundant data and index update is
similar to other systems.

4) Deduplication in cloud storage using Hashing technique for
encrypted data [6].

The data to be sent for uploading purpose is encrypted first
before sending it to the Cloud Service Provider. The
encryption is done using the AES 128 bit encryption that is
protected from various attacks, one being Birthday brute
force attack. The data is encrypted in the data owner machine
by using a secure key. In this way the Cloud Service Provider
doesn’t have access to the plain text of the file to be uploaded
because it receives a encrypted copy of the file. The encrypted
file received undergoes chunking and hashing. The hashing is
performed using the MD5 algorithm. If the hash value of the
data is same as that already present in the cloud, then the
data isn’t stored again. If the hash isn’t present in the cloud
then the file is stored in the cloud and the location is updated
in theindex table of Cloud Service Provider.

5) Improving the Performance of System in Cloud By Using
Selective Deduplication [7].

The user of the system can request for upload. This upload
takes place from LAN or WAN or MAN to the cloud. It depend
on the users whether they want to check the deduplication of
the data or not. The selective deduplication is applied on the
data to find the duplicate data if any. If any duplicate data is
found then the feedback is sent to user and the redundant
data is deleted from the cloud storage. If in case, the data is
unique, that is, not redundant, then user is asked for
encryption. Security key for the file is generated and
encryption is performend on the file. After encryption, the
file is stored in the cloud storage. When the user requires,
decryption can be performed on the file and thus a key is
generated for decrypting file from cloud.

6) PFP: Improving the Reliability of Deduplication-based
Storage Systems with Per-File Parity [8].

During the process of deduplication, the reliability gets
affected because of the removal of redundant chunks. These
identified duplicate chunks are removed because they are
common to other files too. At the end, there is just one chunk
that is shared by all the files after the deduplication. This
removal of chunks renders the sharing files unavailable. This
paper gave an idea of Per File Parity(PFP) to improve the
reliability. PFP performs the XOR parity within the parity
groups of data chunks which are part of each file after the
chunks are created but before these chunks are deduplicated.
PFP performs XOR parity within the data chunks parity
group. Therefore, PFP provides security from the parity
redundancy. The PFP doesn't hinder the flow of data
duplication.The fingerprint calculation, chunking, detection of
duplicate chunks and removal of these duplicate chunks,
nothing changes.Parity generation is implemented on every
file to prevent deduplication of the data. The resulting parity
metadata is stored as the metadata of file. The incoming file
data chunks are created and the fingerprints are checked. PFP
then divides these chunks into groups as per predefined
group size of N. For N data chunk group the parity is
calculated by using XOR operation. This scheme can tolerate a
single chunk failures.

3. PROPOSED SYSTEM

The proposed system comprises of components like the
Client, Middleware and the Server. Middleware is the core
component where all the processing takes place.

Fig -1: System Architecture

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3802

A middleware is a software that acts as a bridge between two
endpoints, generally a client and a server. The middleware
gives the users an interface to upload the files. The user has
to create an account on the application in order to perform
functions like upload or download. Once the user has an
account, they can add files to their storage using the
Middleware. The Middleware will be handling the process of
data deduplication.

 Fig -2: Middleware and associated modules

The middleware consists of the the following modules:

1. Authentication Module : It is used to authenticate the user
so that the user can access the middleware dashboard. The
user needs to supply their credentials in the login form to get
access to their account. The authentication module also
provided a service to sign up for the account of the
middleware.

2. Chunking Module: The chunking module is invoked by an
API call which chunks the file into small fixed size pieces in a
synchronized manner which is then passed on to the hashing
module.

3. Hashing Module: The hashing module takes the chunked
file input from the chunking module and generates SHA1
hash of each chunk and stores it in an array until the the
chunks of the current file being processed is completely
supplied to the module. After the individual hashing of the
chunks, the SHA1 of the whole array which consists of hash of
the chunk is hashed and returned to the API.

4. Drive Module: The drive module is used for uploading the
user file to the user’s drive storage. It is also used by the cron
job process to sync drive storage content information with
the middleware by using the metadata of the files present on
the cloud of the user and also to download the file from users
cloud for deduplication processing.

5. API: The API Module is used by other modules to interact
to other middleware or to pass the data throughout the entire

middleware. It handles the incoming requests and data
response for other modules using HTTP requests. The data is
wrapped on the response body.

6. Cron Module: The cron module runs automatically
everyday once to sync with the users cloud storage. The job of
the cron module is to check whether the user has uploaded
any file directly to the cloud storage by fetching the file’s
metadata and checking in the database. If the file has never
been processed by the middleware, then it fetches the file
from the cloud storage using the API and drive module for the
process of deduplication.

The processing of the file can take place based on the two
scenarios with respect to the method of file upload. In the
first scenario, the user uploads the file to the middleware via
the uploader. In the second scenario, if the user uploads the
file directly to the cloud storage or for the old files on cloud
storage need to go through the process of deduplication
which is done using the cron job module.

The file which is uploaded to the middleware or downloaded
from the user’s cloud storage will go through chunking and
hashing. Based on the value of hash generated it is
determined whether duplication is present or not by
checking in the database with respect to that individual user.
If the hash of the file exists in the database then a pointer is
added to the location where the original file exists and the file
at hand is discarded. But, if the hash is not present in the
database then the current file information along with its hash
value is added in the database. While syncing with the cloud
storage, using file ID from the metadata of the file, we check
whether the file has been ever processed or not. If not
processed then it goes through the above process otherwise
it is sent for batch processing.

3.1. Techniques Used

The system focuses on removal of the duplicate data once the
file is uploaded by the user. The major techniques used in the
system are chunking and hashing that is performed in the
middleware. The chunking and hashing are used for the
deduplication process. The deduplication is done in order to
remove the redundancy. If the user uploads a file, and the
same is present in the storage server then a pointer is
assigned to the original file instead of saving the new file
again. Deduplication reduces use of storage space.

This is performed in two steps:

1. Chunking: This is a technique that breaks a large piece of
information say file into multiple pieces or chunks. These
chunks are helpful for further data deduplication. Chunking
can be done by either using fixed size chunking or file level
chunking.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3803

Fig -3: Chunking Process

2. Hashing: This is a method used to generate a value of the
incoming data of a file through a mathematical function. This
is performed during the deduplication procedure in the
middleware. The hash values can be generated by either
using SHA1 or MD5 algorithm. SHA1 is preferred over MD5 as
the collision experience is less. Also, SHA1 is faster with
respect to it's successors.

Fig -4: Hashing Process

The chunks created from the chunking process are hashed
and pushed into an array. Finally after all the chunks hash are
pushed into an array, the arrays' hash is generated that is
used for deduplication. The middleware runs a service which
is used to sync the data already present on the user's cloud
storage. The sync checks whether the file present on the
cloud storage is processed by the middleware or not using
the fileID from metadata. The file is fetched and processed
from the cloud server and same deduplication process is
done if the file is not processed ever otherwise the files are
sent for batch processing which is optional or not required if
the cloud is only used for storage and not for editing files.

3.2 Proposed System Procedure Flow

The user's file upload command is examined by the
middleware. The middleware fetches the file from the user
for chunking and hashing. The chunking process first takes
place which gives small chunks of the file whose hash is
generated. The number of chunks depend on the size of the
file with respect to the chunk size. One by one the hash of the
chunks are generated and pushed into an array. Once all the
chunks of the file are created, the hashing of the complete
array is generated. This generated hash of the file is now
compared with the hash values present in the database.

As shown in Fig 5, there are two scenarios as stated below:

Fig -5: Procedural Flow

Case I: Hash generated of the file is not present in the
database. In this case the database is updated along with the
new hash value. The file in this case is uploaded in the
storage server.

Case II: Hash generated of the file is present in the database.
In this case the file is not saved again. Rather a pointer is
added that will point to the original file present in the storage
server.

3.3 Use Case Diagram

There are three actors involved in the system as shown in Fig
6. Those can be described as:

1. User: The user is the one who will use the deduplication
application.

2. Middleware: The middleware is the system which will
check for deduplication and ensure that there is no duplicate
file in the storage server.

3. Storage: Storage is a system where the file of the users is
stored and retrieved.

The system validates the user credentials and logs in them
into the system. The middleware fetches the file from the
storage server using the appropriate credentials. The
middleware uploads the processed file to the storage server
using appropriate credentials. The user uploads the file to the
middleware using the dashboard. The middleware create
chunks of the file which was uploaded by the user. The
chunks created will be hashed and stored in a hash digest.
The middleware will now store the hash generated to the
database.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3804

Fig -6: Use Case Diagram

4. PERFORMANCE EVALUATION

4.1 Datasets Used

The datasets used in this section are iso files. An ISO file is a
disc image of an optical disc and contains everything that can
be written to the optical drive. In earlier days ISO was the
format used to burn CDs and DVDs whereas, in the present
days an ISO file is used to transfer a larger amount of files
compressed into a single ISO file which is then shared over
the internet using peer to peer or FTP servers. The name ISO
is taken from the ISO 9660 file system. The datasets taken are
ISO image of Linux distributions that are most widely used.
These datasets are relatively large, usually, the size ranges in
Gigabytes. The large dataset will ensure harmonious and
distinct results between fixed size hashing and file level
hashing.

Table -1: Datasets Involved

Datasets Dataset Name Type Provide

d By
Size

(GiB)

Dataset 1 Antergos-18.12-

x86_64.is
ISO

File
Antergos

.com
2.1

Dataset 2 openSUSE-

Tubleweed-DVD-

x86_64Snapshot2

0181128-

Media.iso

ISO

File
Suse

Linux
4.1

Dataset 3 Popos_18.10_amd

64_intel_11.iso
ISO

File
System

76 inc.
2

Dataset 4 Ubuntu-18.04.1-

desktop-

amd64.iso

ISO

File
Canonica

l inc.
1.8

4.2 Tools Involved

The performance analysis done on the proposed system
involves the use of following tools:

1. Time command linux: The time command runs the
specified program with the provided arguments. When
command finishes the execution time writes back a message
to standard error giving timing and processing statistics
about the program that was runned.

2. htop for cpu usage: Htop is an interactive system viewer
and process managing tool. It is based on UNIX tool top. Htop
allows the user to view process or tasks statistics like CPU
usage, ram consumption, and the process uptime.

3. console.time() and console.timeEnd() for nodejs function:
These inbuilt methods are used to benchmark javascript
applications for response and average computation time
required to complete the given task. console.time(label) is
used to set the initial reference from where the timer would
begin. console.timeEnd(label) is used as the closing statement
the tasks in between console.time() and console.timeEnd is
bench marked for time.

4.3. Evaluation Metrics

The metrics used for benchmarking the systems performance
with respect to the defined constraints is the Evaluation
metrics.

1. Hashing Time: The Hashing Time is the time required (in
Seconds) to produce the hash of a given input. The hash
function encodes each byte as two hexadecimal characters.
The hash time should be lower in order to increase the
efficiency of the application. Lower hash time also helps in
scaling the application if needed.

Table -2: Hashing Time in seconds

Datasets File Level Fixed Size

Dataset 1 67.3 24.19

Dataset 2 132.66 46.1

Dataset 3 82.59 22.6

Dataset 4 34.5 25

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3805

Fig -7. Time consumption graph for hashing

2. Chunking Time: The time required to divide a file into
chunks is termed as chunking time . It is usually measured in
milliseconds (ms). The lesser the chunking time, the faster
the file data will be processed and analyzed. It obtained
results won't be better than file level processing, as the
chunking time increase.

Table -3: Chunking Time in milliseconds

Datasets Fixed Size

Dataset 1 1.7

Dataset 2 2.47

Dataset 3 2.93

Dataset 4 2.41

Fig -8. Time consumption graph for chunking

3. CPU load: CPU load measures the amount of computational
work in percentage that the system performs in order chunk
and hash the input data. The load on the CPU should be
neutral and consistent. The more the load on the CPU the
more the chances of the application getting halt. Also, less

CPU load ensures less cost on dedicated hardware and
increased scalability of the application.

Table -4: CPU Load in Percentage

Datasets File Level Fixed Size

Dataset 1 40 23

Dataset 2 66 40

Dataset 3 38 37

Dataset 4 40 33

Fig -9: Tme consumption graph for CPU

5. CONCLUSION

In effect of all the results that were obtained in our proposed
system, the evaluation of the performance of our project, as
well as the extensive Literature survey conducted by us in
this project it can be concluded that the the middleware
approach for performing the deduplication is more effiecient
and cost effective. The workload on the client and server side
is reduced. The performance evaluation reveals that chunking
is the most efficient form of file processing and hence it must
be used in data dedupication. The hashing is performed using
SHA1 algorithm. We discovered that, SHA1 is significantly
more secure than MD5 as it is prone to less collisions and it is
significantly faster than SHA256 and SHA512. Hence, it
provides the best balance between security and performance.

REFERENCES

[1] W. Litwin, Thomas Schwarz,"Combining Chunk

Boundary and Chunk Signature Calculations for
Deduplication ", IEEE, 2012.

[2] Jian Zhang, Xingyu Zhang, "Data Deduplication Cluster
Based on Similarity-Locality Approach",IEEE, 2013.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3806

[3] Jin Li, Yan Kit Li, Xiaofeng Chen, Patrick P. C. Lee,
Wenjing Lou, "A Hybrid Cloud Approach for Secure
Authorized Deduplication", IEEE, 2014.

[4] Yan Tang, Jianwei Yin, and Zhaohui Wu, "Try Managing
Your Deduplication Fine-grained-ly: A Multi-tiered and
Dynamic SLA-driven Deduplication Framework for
Primary Storage", IEEE, 2016.

[5] Nancy Digra1 , Sandeep Sharma, "A Noval Approach of
Enhancing Security in Cloud Using Diffie Hellman
Algorithm",IJSRM, 2017.

[6] Vaishnavi Moorthy, Arpit Parwal and Udit
Rout,"Deduplication in Cloud Storage Using Hashing
Technique For Encrypted Data",IEEE, 2018.

[7] Mr. Nishant N.Pachpor, Dr. Prakash S.Prasad,
"Improving the Performance of System in Cloud by
Using Selective Deduplication", IEEE, 2018.

[8] Suzhen Wu, Bo Mao, Hong Jiang, Huagao Luan, Jindong
Zhou,"PFP: Improving the Reliability of Deduplication-
based Storage Systems with Per-File Parity",IEEE, 2019.

