FORMULATION OF A SECURE COMMUNICATION PROTOCOL AND ITS IMPLEMENTATION

M. Ranjith Kumar
Department of Mathematics, Jeppiaar Institute of Technology, Sriperumbudur, Chennai - 631604.

Abstract

The main objective of this paper is to develop a two-party mutual authentication protocol providing secure communications, focusing on those using a symmetric techniques. In this paper a cryptosystem with authentication and data integrity, using the Goldbach conjecture and the decimal expansion of an irrational number is obtained.

Key Words: Hill cipher, RSA algorithm, Pseudo inverse of a rectangular matrix, Goldbach conjecture and Chen's theorem.

1. INTRODUCTION

In our information age, the need for protecting information is more pronounced than ever. Secure communication for the sensitive information is not only compelling for military of government sectors but also for the business and private individuals. As the world becomes more connected, the dependency on electronic services has become more pronounced. In order to protect valuable data in communication systems from unauthorized disclosure ad modification, reliable non-interceptable means for data storage and transmission must be adopted.

In a communications[14], an intruder can see all the exchanged messages, can delete, alter, inject and redirect messages, can initiate the communications with another party, and can re-use messages from past communications. Hence the two communicating parties, exchanging a number of messages at the end of which they have assurances of each other's identities. In an authenticated key exchange, there is the additional goal that the two parties end up sharing a common key known only to them. This secret key can then be used for some time thereafter to provide privacy, data integrity or both.

We demonstrate in this paper how the above capabilities are incorporated in the communication system developed here using an idea proposed in [22]. However, some of the techniques that we use are quite different from the usual ones and make use of Goldbach conjecture [3, 4, 17] and new variants of RSA problem [15]. This resulting system provide relatively small block size, high speed and high security. Mainly, this paper surveys the development of symmetric key cryptosystem form their inception to present day implementations. Readers familiar with Hill Cipher, Pseudo inverse of a rectangular matrix, RSA algorithm and Goldbach conjecture may directly go to section seven for the working of our algorithm. Finally, the paper is finished of a
small illustration, security analysis and the conclusion of the proposed system.

2. HILL n-CIPHER

Hill cipher was first introduced by Lester S. Hill in 1929 in the journal The American Mathematical Monthly [5, 8]. Hill cipher is the first polygraphic cipher. A polygraphic cipher is a cipher where the plaintext is divided into blocks of adjacent letters of the same fixed length n, and then each such block is transformed into a different block of n-letters. This polygraphic feature increased the speed and the efficiency of the Hill cipher. Besides, it has some other advantages in data encryption such as its resistance to frequency analysis. The core of Hill cipher is matrix multiplication. It is a linear algebraic equation $C \equiv K P(\bmod N)$, where C represent the ciphertext block, P represent the plaintext block, K is the key matrix and N is the number of alphabets used. The key K is a $n \times n$ matrix and what is needed for decryption, is the inverse key matrix K^{-1}.

3. Digital Signature

A digital signature is an electronic signature that can be used to authenticate the identity of the sender or the signer of a document, and to ensure the original content of the message or document that has been sent are unchanged [9]. The digital signature provides the following three features:

3.1 Authentication

Digital signatures are used to authenticate the source of messages. The ownership of a digital signature key is bound to a specific user and thus a valid signature shows that the message was sent by that user.

3.2 Integrity

In many cases, the sender and the receiver of a message need assurance that the message has not been altered during transmission. Digital signatures provide this feature by using cryptographic message digest functions.

3.3 Non-Repudiation

Digital signatures ensure that the sender who has signed the information cannot at a later date deny having signed it.

4. RSA ALGORITHM

RSA is a public key algorithm which generates two keys and allow data encrypted with one of them to be decrypted with the other. It was created by Ron Rivest, Adi Shamir and Leonard Adleman [15], hence the name RSA. The algorithm is based on the difficulty of factoring large numbers. Public and private keys are functions of a pair of large prime numbers. To generate the two keys
i. Choose two random large primes p and q .
ii. Generate the modulus $\mathrm{n}=\mathrm{p} . \mathrm{q}$
iii. Choose a random encryption key, e such that e and $\varphi(n)=(p-1)(q-1)$ are relatively primes.
iv. To compute the decryption key d such that $e d \equiv 1(\bmod \varphi(n))$.
v. Discard p and q.

To encrypt a message, divide it into numerical blocks smaller than n , encryption of each chunk M_{i} is: $C_{i} \equiv M_{i}^{e}(\bmod n)$. Decrypting a chunk requires performing the same operation using the key d: $M_{i} \equiv C_{i}^{d}(\bmod n)$.

5. THE GOLDBACH CONJECTURE

In a letter to Euler dated 7 June of 1742 , Goldbach stated the following conjectures [12]:
"If N is an integer such that $N=p_{1}+p_{2}$, with p_{1} and p_{2} are primes, then for every $2 \leq k \leq N$,
$N=p_{1}+p_{2}+\cdots+p_{k}$ with $p_{1}, p_{2}, \cdots, p_{k}$ are primes."
We have to keep in mind that in Goldbach's time the number 1 was considered to be a prime, in contrast with the modern definition. In the margin of the same letter, Goldbach stated another conjecture,
"If N is an integer greater than 2 , then $N=p_{1}+p_{2}+p_{3}$, with p_{1}, p_{2} and p_{3} are primes."

In this reply letter, dated 30 June of the same year, Euler wrote a third conjecture which is ascribed to Goldbach.

$$
\begin{aligned}
& \text { "If } N \text { is a positive even integer, then } N=p_{1}+p_{2} \text { with } p_{1} \\
& \text { and } p_{2} \text { are primes." }
\end{aligned}
$$

Today, these three conjecture are known to be equivalent, while the modern version of the third conjecture is the famous Goldbach conjecture [12].

Although Goldbach conjecture is still an open conjecture to show that all even numbers are expressible as a sum of two primes, the case for odd numbers is easier.

5.1 Chen's theorem

In 1996 Chen Jing Run [3] made a considerable progress in the research of the binary Goldbach conjecture; in [4] he proved the well-known Chen's theorem:
"Let N be a sufficiently large even integer then the equation $N=p+P$ is solvable, where p is a prime and P is an almost prime with atmost two prime factors."

Chen's theorem is a giant step towards the Goldbach conjecture, and a remarkable result of the Sieve methods.

6. CONSTRUCTION OF THE PROPOSED CRYPTOSYSTEM

The main objective of this paper is to develop a two party mutual authentication protocol using Goldbach conjecture and the decimal expansion of an irrational number, which provide confidentiality, integrity and authenticity of the informatics shared over a public channel. This work is a novel method of developing a two party communication protocol which prevents from all the known attacks. The protocol is as follows:

Bob and Alice chooses two large numbers (even) and exchanges it over a secure channel. The above Chen's theorem guarantee the existence of two primes P and Q from the numbers N and M (say) exchange over secure channel. We exploit the theorem of J.R.Chen, obtaining the primes P and Q where integers N and M are given. Suppose N is even, then choose the largest prime P such that $N=P+r_{1} s_{1}$ where r_{1} and s_{1} are suitable primes. As N and M are exchanged over a secure channel only. Bob and Alice are aware of it for example if $\mathrm{N}=100$, then $100=79+7.3$.

After ascertaining Alice's identity, Bob asks Alice to send him a largest even number N_{i}. Then by Chen's theorem Alice sends the even number N_{i} to Bob, N_{i} can be expressed as $N_{1}=P_{1}+r_{1} \cdot s_{1}$ where $\mathrm{r}_{1}<\mathrm{s}_{1}$. Then Bob chooses a suitable even number M_{i} such that Q_{i} is the largest prime that satisfies $M_{1}=Q_{1}+r_{2} \cdot s_{2}$ and $\mathrm{r}_{2}>\mathrm{s}_{2}$ and $\mathrm{s}_{1}=\mathrm{s}_{2}$. Bob sends this number M_{i} to Alice. Thus both the users Bob and Alice have the numbers N_{i} and M_{i} and both compute $\left(P_{1}, r_{1}, s_{1}\right)$ and $\left(Q_{1}, r_{2}, s_{2}\right)$. They keep this three tuples with them respectively. Bob and Alice chooses an irrational number I which has a decimal expansion upto more than million places of decimals.

When Alice wants to send a confidential message P to Bob then Alice has both tuples $\left(P_{i}, r_{1}, s_{1}\right)$ and $\left(Q_{i}, r_{2}, s_{2}\right)$ with her even though the numbers exchanged over the secure channel are N_{i} and M_{i}.

6.1 Plaintext encryption protocol:

a. Alice computes $\alpha_{1}=N_{1} \cdot M_{1}+\left(r_{1} \cdot s_{1}\right)^{\delta+j}\left(\bmod P_{1}\right)$ and $\quad \beta_{1}=N_{1} \cdot M_{1}+\left(r_{2} \cdot s_{2}\right)^{\delta+j}\left(\bmod Q_{1}\right) . \quad$ She chooses an integer δ randomly. Here j denotes the number of messages exchanged between Alice and Bob. The keys δ and j are security parameters.
b. She computes $r_{1} s_{1}$ sequence of decimal places from the position α_{i} in the expansion of the irrational number I and forms the $r_{1} \times s_{1}$ rectangular matrix K_{A}.
c. Similarly she computes the rectangular matrix K_{B} using Bob's number M_{i}. where K_{B} is a $r_{2} \times s_{2}$ rectangular matrix and the entries of K_{B} are the $r_{2} s_{2}$ consecutive decimal places picked from β_{i} in the decimal expansion of I.
d. She arranges the plaintext P in blocks of length r_{1} with its numerical equivalents and the ciphertext C is obtained by $C=K_{B} K_{A}^{\#} P$.

6.2 Encryption protocol for integrity

Alice computes the product $n_{i}=P_{i} Q_{i}$ and finds $\varphi\left(n_{1}\right)=\left(P_{1}-1\right)\left(Q_{1}-1\right)$. Alice chooses a number e such that $\left(e, \varphi\left(n_{1}\right)\right)=1$. The integrity of the message is maintained by considering the words occurring in the $\mathrm{r}_{1}{ }^{\text {th }}$ place and $\mathrm{s}_{1}{ }^{\text {th }}$ place of the first sentence in P and considering the words occurring in the appropriate places of the second sentence using the number M_{i}. The compilation of words in the exact order is taken as a message digest. If w_{i} is a word in the message digest then she encrypts w_{i} as $m_{i}=w_{i}^{e}\left(\bmod n_{1}\right)$. She sends the encrypted and the password protected message pair $\left(C, m_{1} m_{2} m_{3} m_{4}, \delta\right)$ to Bob along with the key pair (e, l). The one time password (OTP) used for protection by Alice is $\left[e l\left(t_{1} t_{2} t_{3} t_{4}\right)\right]$ where t_{1} and t_{2} are the numbers occurring in the decimal expansion of I in the $r_{1}{ }^{\text {th }}$ and $\mathrm{s}_{1}{ }^{\text {th }}$ place of α_{i} respectively, and t_{3} and t_{4} are the numbers occurring in the $\mathrm{r}_{2}{ }^{\text {th }}$ and $\mathrm{s}_{2}{ }^{\text {th }}$ place from β_{i} respectively. This is a dynamic passwords as we use α_{i} and β_{i} are only once for encryption. Similarly when Bob sends a reply with the OTP is $\left[d l^{\prime}\left(t_{4}^{\prime} t^{\prime}{ }_{3} t^{\prime}{ }_{2} t_{1}^{\prime}\right)\right]$ where t_{1} and $\mathrm{t}^{\prime}{ }_{2}$ are the numbers occurring in the decimal expansion of I in the $\mathrm{r}_{1}{ }^{\text {th }}$ and $\mathrm{s}_{1}{ }^{\text {th }}$ place of α_{i} respectively, and $\mathrm{t}^{\prime}{ }_{3}$ and $\mathrm{t}^{\prime}{ }_{4}$ are the numbers occurring in the $\mathrm{r}_{2}{ }^{\text {th }}$ and $\mathrm{s}_{2}{ }^{\text {th }}$ place from β_{i} respectively. Here l denotes the length of the ciphertext.

6.3 Ciphertext decryption protocol:

a. Once Bob receives the password protected message pair $\left(C, m_{1} m_{2} m_{3} m_{4}, \delta\right)$ along with the key pair (e, l), he first unlock it with the respective $\operatorname{OTP}\left(e\left(t_{1} t_{2} t_{3} t_{4}\right) l\right)$.
b. He checks the length of ciphertext C and confirms whether $|C|=l$.
c. Bob knows α_{i} and β_{i}, and so he can computes both the keys K_{A} and K_{B}.
d. He applies the key $K_{A} K_{B}{ }^{\#}$ to C, obtaining the original plaintext by $P=K_{A} K_{B}{ }^{\#} C$.
e.

6.4 Decryption protocol for integrity:

Bob computes the multiplication inverse d of e such that $e d \equiv 1\left(\bmod \varphi\left(\mathrm{n}_{1}\right)\right)$. He then computes $\left(m_{1}\right)^{d}\left(\bmod n_{1}\right)$ which gives him w_{i}. Bob checks the appearance of w_{1}, w_{2}, w_{3} and w_{4} in the appropriate places in the plaintext P and can confirm the validity of the ciphertext obtained. Bob can reply to Alice by using the prime numbers occurring immediately after P_{i} and Q_{i}. Since the prime numbers are changing the N_{i} and M_{i}, keys K_{A} and K_{B} changes rapidly and thus way one can contact each other continuously without providing any additional information. The cryptosystem developed here is a secure communication protocol satisfying all the requirements of a good cryptosystem.

Fig -1: Algorithm Structure

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 06 Issue: 04 | Apr 2019
www.irjet.net
p-ISSN: 2395-0072

7. ILLUSTRATION

Assume that the system uses a 29-letter alphabet

a	b	c	d	\ldots	y	z	-	.	$!$
\downarrow	\downarrow	\downarrow	\downarrow	\ldots	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
0	1	2	3	\ldots	24	25	26	27	28

Consider the case the irrational number $I=\pi$, $=17, \delta=4$, $N_{1}=98$ and $M_{1}=1002$ then $\left(P_{1}, r_{1}, s_{1}\right)=(83,3,5)$ and $\left(Q_{1}, r_{2}, s_{2}\right)=(967,7,5)$

Encryption:

Assume Alice contacts Bob for first time, therefore $j=1$.

Then
$\alpha_{1} \equiv\left(N_{1} \times M_{1}\right)+\left(r_{1} S_{1}\right)^{\delta+1} \equiv(98 \times 1002)+(3 \times 5)^{4+1} \equiv 15(\bmod 83)$
$\beta_{1} \equiv\left(N_{1} \times M_{1}\right)+\left(r_{2} S_{2}\right)^{\delta+1} \equiv(98 \times 1002)+(7 \times 5)^{4+1} \equiv 766(\bmod 967)$
Alice finds the two sequences of decimal places from the positions of $\alpha_{1}=15$ and $\beta_{1}=766$, and chooses $r_{1} \cdot s_{1}=15$ and $r_{2} \cdot s_{2}=35$ consecutive decimals say α and β respectively from this position in the decimal expansion of π. In this cases the sequence of decimals are $\alpha=693993751058209$
$\beta=44592307816406286208998628034825342$. She generates the two rectangular matrices K_{A} and K_{B} of order 3×5 and 7×5 respectively \quad from α and β.

$$
K_{A}=\left(\begin{array}{lllll}
6 & 9 & 7 & 0 & 2 \\
9 & 9 & 5 & 5 & 0 \\
3 & 3 & 1 & 8 & 9
\end{array}\right) \quad K_{B}=\left(\begin{array}{lllll}
5 & 1 & 6 & 6 & 2 \\
9 & 6 & 2 & 2 & 5 \\
2 & 4 & 0 & 8 & 3 \\
3 & 0 & 8 & 0 & 4 \\
0 & 6 & 9 & 3 & 2
\end{array}\right)
$$

Then she computes $K_{A}^{\#}$ easily,

$$
K_{A}^{\#} \equiv K_{A}^{T}\left(K_{A} K_{A}^{T}\right)^{-1} \equiv\left(\begin{array}{ccc}
23 & 27 & 22 \\
4 & 0 & 19 \\
16 & 11 & 12 \\
5 & 16 & 7 \\
17 & 11 & 24
\end{array}\right)(\bmod 29)
$$

Alice encrypts the secret plaintext $\mathrm{P}=$ "Enemy will attack tomorrow, hit the target tonight." Then the plaintext is divided into blocks of length three with the numerical
equivalent and apply the plaintext encryption process $C \equiv K_{B} K_{A}^{\#} P(\bmod 29)$ which gives the ciphertext C,
"yisausybtkyrhqazb,ntssvylxoy,kxfdfefenbbej,g,tgffoiuibmhbt tmsrximrofsmmncoskbvhk.trnwlcszwlalqxhz,rsowuwdkiyg.d n,isuvb".

Note that $|P|=51 \neq 119=|C|$.
For message integrity, Alice chooses $3^{\text {rd }}$ and $5^{\text {th }}$ words in the plaintext are "attack hit" and she can encode two letters per block, substituting a two digit numerical value for each letter. Thus the message "(at)(ta)(ck)(_h)(it)" is encoded: $(0019)(1900)(0210)(2607)(0819)$. Since $e=17$, the blocks are enciphered with $n_{1}=P_{1} Q_{1}=80261$,
$\varphi\left(n_{1}\right)=\left(P_{1}-1\right)\left(Q_{1}-1\right)=79212$.

$$
\begin{aligned}
& m_{1}=w_{1}^{e}=(0019)^{17} \equiv 7018 \quad(\bmod 80261), \\
& m_{2}=w_{2}^{e}=(1900)^{17} \equiv 2344 \quad(\bmod 80261), \\
& m_{3}=w_{3}^{e}=(0210)^{17} \equiv 6219 \quad(\bmod 80261), \\
& m_{4}=w_{4}^{e}=(2607)^{17} \equiv 0952 \quad(\bmod 80261), \\
& m_{5}=w_{5}^{e}=(0819)^{17} \equiv 1058 \quad(\bmod 80261) .
\end{aligned}
$$

The whole message enciphered as
(7018)(2344)(6219)(0952)(1058).

Now the encrypted plaintext and message digest pair protected by the password $\left(e\left(t_{1}+t_{2}+t_{3}+t_{4}\right) l\right)=(17 \times(3 \times 9 \times 2) \times 119)=2109242$ is sent to Bob for decryption along with the key tuple $(e, l, \delta)=(17,119,4)$.

Decryption:

First Bob unlocks the message pair using the prearranged password 28322 and finds the rectangular matrices K_{A} and K_{B} using α_{1} and β_{1} in the decimal expansion of I. Then he obtains $K_{B}^{\#}$ as follows:

$$
K_{B}^{\#} \equiv\left(K_{B} K_{B}^{T}\right)^{-1} K_{B}^{T} \equiv\left(\begin{array}{ccccccc}
5 & 24 & 18 & 19 & 12 & 2 & 24 \\
21 & 25 & 22 & 0 & 26 & 20 & 18 \\
25 & 14 & 15 & 19 & 20 & 17 & 14 \\
28 & 22 & 18 & 11 & 8 & 10 & 25 \\
24 & 26 & 13 & 17 & 12 & 17 & 2
\end{array}\right)(\bmod 29)
$$

He divides the ciphertext into blocks of length seven and decrypts C as $P \equiv K_{A} K_{B}{ }^{\#} C(\bmod 29)$. Which gives the
original plaintext P: "Enemy will attach tomorrow, Hit the target tonight."

The decryption of the message digest, Bob finds the multiplication inverse $d=849$ of $e=17$ such that $e d \equiv 1(\bmod 7018)$. Then he decrypts the entire message digest by computing $w_{i}=\left(m_{i}\right)^{849}(\bmod 80261)$, which gives the decrypted original message digest "attack hit".

8. CONCLUSIONS

We have proposed a method for implementing a cryptosystem whose security rests in part on the difficulty of finding the encryption/decryption keys. The security of our method proves to be adequate, it permits secure communication to be established without the use of couriers to carry the actual keys, as the keys and password used are dynamic and it also permits authentication, non-repudiation and message integrity of digitized documents.

The security of this system needs to be examined in more detail. In particular, the use of integers appearing in the decimal expansion of π in the encryption will make the decryption difficult by the usual methods of cryptography. The encryption/decryption keys known only to both Bob and Alice, it is not possible for any intruder to break this system. Also since N and M changes each time during an encryption, and also the encryption/decryption keys K_{A} and K_{B} are dynamic, hence the system is secure against knownplaintext attack. The proposed data encryption scheme given above has advantages of large key space, high level security and is mathematically and computationally simple, unlike the existing cryptosystems.

The proposed system also takes care of data integrity and authentication. Even if an intruder pretends as Alice and sends Bob a message, Bob can send a standard message to the intruder for encryption along with the key (e, l, δ) different form the one already used. The ciphertext of the standard message form the intruder will en able Bob to determine the authenticity of the intruder. This system is very secure against Brute-force attacks, since the number of possible keys are very large. Length of the plaintext and ciphertext are nor equal, hence does this system prevent from frequency attack. And also this system is secure against all possible known attacks.

REFERENCES

1) M. Bellare, R. Canetti and H. Krawczyk, Keying hash functions for message Authentication. In N. Koblitz, editor, CRYPTO'96, vol. 1109 of LNCS, Pages 1-15, Springer-Verlag, 1996.
2) T.L. Boullion and P.L. Odell, Generalized Inverse Matrices. Wiley, Newyork, pages 41-62, 1971.
3) J.R. Chen, On the representation of a large even integer as the sum of a prime and the product of atmost two primes, Kexue Tongbao (Chinese), (17), 1966, 365-386.
4) J.R. Chen, On the representation of a large even integer as the sum of a prime and the product of atmost two primes, Sci. Sinica, 16, 1973, 157-176. Ibid, 21, 1978, 477-494 (Chinese).
5) M. Eisenberg, Hill ciphers and Modular Linear Algebra. Mimeographed Notes, University of Massachusetts, 1998.
6) Howard Anton and Rorres chris, Elementary Linear Algebra. $8^{\text {th }}$ edition, Newyork: JohnWiley \& Sons Inc., pages 678-688, 2000.
7) I.A. Ismail, M. Amin and H. Diab, How to repair the Hill cipher. Journal of Zhejiang University Science vol.7, no.12, 2006.
8) S. Lester Hill, Cryptography in an algebraic alphabet. Amer. Math., pages 306-312, 1929.
9) A.J. Menezes, P.C. Van Oorchot and S.A. Vanstone, Handbook of Applied Cryptography. CRC Press, 2000.
10) Neal Koblitz, A course in Number Theory and Cryptography, Springer, $2^{\text {nd }}$ edition, 1994.
11) R. Penrose, A generalized Inverse for matrices. Communicated by J.A. Todd Received 26 July 1954.
12) J. Pintz and I.Z. Puzsa, On Linnik's approximation to Goldbach's problem, I. Acta Arithmatica, 109(2), 2003, 169-194.
13) Predrag Stanimirovic and Miomir Stankovic, Determinants of rectangular matrices and MoorePenrose inverse. Novi sad J.Math., Vol.27, No.1, pages 53-69, 1997.
14) Rhee and Man Young, Cryptography and Secure Communications. McGraw - Hill co., 1994.
15) R.L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public key cryptosystems. Communications of the ACM, vol.21, No. 2 pages 120-126, 1978.
16) A. Selberg, An elementary proof of the Primenumber theorem, Ann. Of Math, (2), 50, 1949, 305313.
17) I.M. Vinogradov, The representation of an odd number as a sum of three primes, Dokl.Akad. Nauk, SSSR 15, 1937, 169-172, Russia.
18) M.K. Viswanath, Transcendental Numbers and Cryptography. Applied Mathematical Sciences, Vol. 8, no. 174, pages $8675-8677,2014$.
19) M.K. Viswanath and A.R. Deepti, An improvised version of Hill's Cipher. Journal of Discrete Mathematical Sciences and Cryptography, volume 11, No.2, India, 2008.
20) M.K. Viswanath and A.R. Deepti, A New Approach to a Secure Cryptosystem using the Microcontroller, Journal of Information Assurance Security, Volume 1, Issue 4, USA, 2006.
21) M.K. Viswanath and M. Ranjithkumar, A Public Key Cryptosystem Using Hill's

Cipher. Journal of Discrete Mathematical Sciences \& Cryptography, Vol. 18, No. 1 \& 2, pages. 129138, 2015.
22) M.K. Viswanath and M. Ranjithkumar, A secure cryptosystem using the decimal expansion of an Irrational number. Applied Mathematical Sciences, Vol. 9, pages 5293-5303, 2015.

