Monowheel Motorcycle

Sujata Shenkar ${ }^{1}$, Dnyaneshwar Devade ${ }^{2}$, Lokesh Gopale ${ }^{3}$, Mahesh Tathe ${ }^{4}$, Suraj Yadav ${ }^{5}$
${ }^{1}$ Professor, Dept. of Automobile Engineering, Dr. D Y Patil SOET, Pune, Maharashtra, India. 2,3,4,5 Student Dr. D Y Patil SOET, Pune, Maharashtra, India.

Abstract

The monowheel is a one wheel which is driven by four stroke petrol engine; the power is transmitted from engine to friction wheel by using chain sprocket. There are outer wheel, inner frame and three rollers. The three rollers mounted between the outer wheel and inner frame. The outer wheel rotates relatively to the inner frame by using three rollers

Key Words: Four stroke engine, Rollers, Inner Frame, Outer Wheel and Friction Wheel.

1. INTRODUCTION

The monowheel history begins in the second half of $19^{\text {th }}$ century, when there were manufactured some vehicle, driven by pedals. The first motor driven monowheel was the "petrol monocycle" of caravaglia presented in 1904. The principal is easy to understand, the outer wheel with tyre which may rotate relatively to the inner frame being fitted with three rollers as its 120 degree between them, the inner frame supports the driver and petrol engine and all the arrangement like seating, engine, petrol tank, inside the inner frame. The friction wheel engages to the outer wheel which receive the power from engine and transmitted to outer wheel and that's why, outer wheel rotate around the driver.

2. CONSTRUCTION

Fig. 1: Block Diagram of Monowheel.

1. Outer wheel; It is made up of mild steel having cylindrical cross section. Diameter of mild steel pipe is 4 cm . Diameter of outer wheel is 140 cm .
2. Rollers; Rollers are made up of nylon. This material maintains good tensile strength, chemical resistance, stiffness, flexural memory. Nylon is excellent in high temperature application.
3. Inner frame; It is also made up of mild steel. The inner frame takes weight of driver, engine and all other system. The engine is mounted on inner plate attached to the inner frame. The handle and driver seating position also on inner frame.
4. Friction wheel; It is made up of rubber. It transmitted power from engine output shaft to outer wheel by chain sprocket.

3. DESIGN AND CALCULATION

Then monowheel motorcycle with an effective power transmission system has to be designed such that it can be handled and controlled by a single person even in the rest position. The main and basic factor that are being taken into consideration are

1. Height of the person riding the vehicle
2. Maximum weights that the vehicle can withstand
3. Power Transmissions

3.1 Important Dimension

1. Outer wheel ring diameter : 140 cm
2. Circumference of outer wheel : 439 cm
3. Diameter of outer wheel : 4 cm
4. Square cross section of inner frame : $2 \times 2 \mathrm{~cm}$
5. Width of outer wheel : 1 cm
6. Length of roller : 8 cm
7. Diameter of roller : 6 cm
8. Length of friction wheel: 7 cm
9. Diameter of friction wheel: 12 cm

3.2 Solid modelling

The monowheel motorcycle is modeled by using CATIA. It is one the world's leading CAD/CAM/CAE packages.

Following fig shows component of monowheel motorcycle

Fig. 2: CATIA Model

Fig. 3: Assembly of Monowheel

Fig. 4: Four Stroke Engine

Fig. 5: Inner Frame

Fig. 6: Roller

Fig. 7: Friction Wheel

3.3 Calculation

1) Engine maximum rpm- 8000rpm.
2) Ratio between engine output and friction wheel input is $4: 1$.
3) So friction wheel rpm is $8000 / 4=2000$
4) Circumference of friction wheel is 37 cm .
5) Circumference of outer wheel is 408 cm .
6) So ratio of friction wheel and outer wheel is $408 / 37=11.02$.
7) Then rpm of outer wheel is $2000 / 11=182$.

Fig. 8: Forces Acting On Monowheel

1) Center of gravity:

$$
\text { C.G. }=\frac{M 1 \times X 1+M 2 \times X 2}{M 1+M 2}
$$

Where, M1 = mass of left half side of monowheel
$\mathrm{M} 2=$ mass of right half side of monowheel
$\mathrm{X} 1=\mathrm{X} 2=$ radius of outer wheel

$$
\text { C.G. }=\frac{90 \times 65+50 \times 65}{90+50}
$$

$$
=65 \mathrm{~cm} \text { from the side }
$$

2) Height Of Centre Of Gravity

$$
\mathrm{H}=\frac{M 1 \times Y 1+M 2 \times Y 2}{M 1+M 2}
$$

Where, M1 = mass of left half side of monowheel
$\mathrm{M} 2=$ mass of right half side of monowheel
$\mathrm{X} 1=\mathrm{X} 2=$ radius of outer wheel
$\mathrm{H}=\frac{90 \times 65+50 \times 65}{90+50}$
$\mathrm{H}=65 \mathrm{~cm}$ from the ground
3) Rolling Resistance Force

$$
F_{R}=\mathrm{P} \times f_{R}
$$

Where, $\mathrm{F}_{\mathrm{R}}=$ Rolling resistance force

$$
\mathrm{P}=\text { Normal load on vehicle }
$$

$f_{R}=$ Coefficient of friction
$=110 \times 9.81 \times 0.013$
$F_{R}=14.02 \mathrm{~N}$
4) Aerodynamic Drag = Negligible
5) Cross Section Area Of Outer Wheel

$$
\mathrm{A}=\frac{\pi}{4}\left(D_{0^{2}}-D_{1^{2}}\right)
$$

Where, $\mathrm{A}=$ Cross section area of outer wheel
$\mathrm{D}_{0}=$ Outer diameter of outer wheel
$D_{1}=$ Inner diameter of outer wheel

$$
\begin{aligned}
& \mathrm{A}=\frac{\pi}{4}\left(40^{2}-20^{2}\right) \\
& \mathrm{A}=942.47 \mathrm{~mm}^{2}
\end{aligned}
$$

6) Stress On Outer Wheel

Assume,

$$
\begin{aligned}
\sigma_{c} & =200 \mathrm{~N} / \mathrm{mm}^{2} \\
\sigma_{c} & =\frac{P}{A}
\end{aligned}
$$

Where, $\sigma_{c}=$ Tensile stress on outer wheel
$\mathrm{P}=$ Load acting on outer wheel
$A=$ Cross section area of outer wheel

$$
\begin{aligned}
\sigma_{c} & =\frac{110 \times 9.81}{942.47} \\
200 & =1.14 \mathrm{~N} / \mathrm{mm}^{2} \\
200 & >1.41
\end{aligned}
$$

7) Torque On Drive Wheel
$T_{w}=\frac{I x \times I o \times T e}{2}$
Where, $T_{w}=$ Torque on drive wheel
$I_{x}=$ Ratio between engine output and friction wheel input
$I o=$ Final drive ratio
$T_{e}=$ Engine torque
$=I x \times I o \times T e \quad$ For Monowheel
$=4 \times 11 \times 7.95$
$T_{w}=349 \mathrm{~N}-\mathrm{m}$
8) Wheel Force

$$
F_{W}=\frac{T w}{R w}
$$

Where, $F_{W}=$ Wheel Force

$$
\begin{aligned}
T_{W} & =\text { Torque on wheel } \\
R_{W} & =\text { Radius of outer wheel } \\
F_{W} & =349 / 0.65 \\
F_{W} & =536.92 \mathrm{~N}
\end{aligned}
$$

9) Stopping Distance

$$
\mathrm{D}=\frac{v^{2}}{2 \times \mu \times g}
$$

Where, D = Stopping distance

$$
v^{2}=\text { Velocity of vehicle }
$$

$$
\mu=\text { Coefficient of friction }
$$

$$
g=\text { Acceleration due to gravity }
$$

$$
\begin{aligned}
D & =\frac{11.11^{2}}{2 \times 0.8 \times 9.81} \\
D & =7.86 \mathrm{~m}
\end{aligned}
$$

9) Braking Force

$$
\text { K.E. }=\frac{1}{2} m v^{2}
$$

Where, K.E. = Kinetic energy
$m=$ Mass of vehicle
$v^{2}=$ Velocity of vehicle
$=\frac{1}{2} \times 110 \times\left(11.11^{2}\right)$
$=6788.7 \mathrm{~J}$

$$
\begin{aligned}
& =\frac{\text { Kinetic Energy }}{\text { Stopping Distance }} \\
& =\frac{6788.7}{7.86} \\
& =863.70 \mathrm{~N}
\end{aligned}
$$

4. ADVANTAGES

1) Fuel efficiency is more.
2) As compared to two wheeler, weight is reduced
3) Monowheel is cheaper than two wheeler.
4) Easy to man transport in industry.
5) Easy to park anywhere.

5. DISADVANTAGES

1) Turning problem.
2) Only one person can be seated.
3) During turning time handle so hard.

6. APPLICATION

1) For fun, entertainment and adventure purpose.
2) In bigger industry and company.
3) It is used in portland police department.

7. CONCLUSION

The driver must centralize his weight once the turn is complete. The balancing of vehicle is better at below $40 \mathrm{~km} / \mathrm{hrs}$ as compared to above $40 \mathrm{~km} / \mathrm{hrs}$ at the time of turning the driver feel the steering hard.

8. ACKNOWLEDGMENT

To begin with we thanks almightily for giving us strength and knowledge to carry out this project work we express our special thanks to our project guide Prof. Sujata Shenkar, our H.O.D of automobile engineering department and all the staff member who have been a source of great help in multiple ways in our venture.

9. REFERANCES

1). Botezatu, D., Deliu, G.: The Study and the Design of the Monowheel Vehicle Model using CAD software. Proceedings of COMEC 2007 2nd International Conference, Transilvania University of Brasov, p. 213-216, ISBN 978-973-598-117-4, October 2007, Brasov, Romania
2) Deliu, G.: Mechanics for Engineering Students. Albastra Publishing House, ISBN 973-650-082-9, Cluj-Napoca, 2002
3) Dragos, L.: Principiile mecanicii analitice (Analytical Mechanics Principles). Tehnica Publishing House, Bucuresti, 1976 (in Romanian).

