
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4591

Recent Trends in STM Haskell

Priyanka Tiwari1, Smt.Meenu2

1Department of Computer Science & Engg.
Madan Mohan Malaviya University of Technology Gorakhpur, India

2 Asst.Professor, Department of Computer Science & Engineering,

Madan Mohan Malaviya University of Technology Gorakhpur, India
---***---

Abstract - Software Transactional Memory (STM) is an
encouraging programming concept in case of the shared
variable.STM expansion to Haskell supplied a simpler way of
applying the lock-free method in concurrent programming,
employing atomically composed block functioning on the
transactional variable. As Haskell consist of an abundant
collection of synchronization primitives for developing shared
state concurrency concepts, starting from greater level (STM)
to lower level (mutual variable using atomic read-alter-write).
In this review, we discussed transactional memory basics and
all its three approach namely HTM, STM & HyTM.Along with
this main focus is made on the software approach of TM and its
various implementation through Haskell till now. This paper
also state methods and software used by several authors for
STM implemenatation. Issues and challenges of STM is also
added in the end.

Key Words: STM Haskell, TVar, STM, HTM, HyTM,
Locks

1. INTRODUCTION

For STM, various modern systems have been developed in
recent years. Attention toward this system is more as
hardware sellers have mostly deserted the search for high
speed uniprocessor as writing good lock-based code is
difficult. Also, expanding of coarse grain locking is not
possible plus fine grain locks algorithm based algorithm is
notably hard to make. In contrast to locks, transaction averts
several essential problems such as priority inversion,
deadlock, and sensitivity to thread non-success also the
execution difficulty of lock convoying plus preemption and
page fault sensitivity. Perchance the greatest essential thing
is that they release programmers from making a sad choice
amidst concurrency and theoretical transparency:
transaction integrates the directness of individual coarse
grain lock with extreme contention execution of fine-grain
locks. In figure.1 [37] shows the difference between locks
and Transactional Memory in terms of work.

 Fig -1: Comparison between Lock and Transactional

memory (source [37])

Initially, Herlihy and Moss proffered the hardware
mechanism [1], transactional memory(TM) takes the
concept of atomicity, consistency, and isolation from
database transaction. With TM [2], shared location can be
concurrently accessed by multiple threads in an atomic
method, therefore every access made by a individual thread
either succeed or none, inside an atomic transaction. In the
case of two mutually conflicting transactions, one will
terminate and restart automatically. The capability to
terminate the transaction removes the complication present
in fine grain locking. The capability to accomplishing (non
conflicting) transaction concurrently results in feasibly high
performance. Current TM systems can be developed in
hardware, in software, or applying a mixture of both
hardware and software. Hardware transactional memory
(HTM) in 1993 first designed by Herlihy and Moss which was
based on a modification of standard cache coherence
protocol. In 1995 Shavit and Touitou [3] gave STM to
address the intrinsic limitation of HTM, like the absence of
commodity hardware along with suggested feature and an
insufficient number of locations which a transaction can
approach. Apart from above two approaches, vigorous
research on Hybrid transactional memory (Hytm) [4] is
going on that uses Hardware transactional and switch to
STM as the hardware resource requirement exceed. All the
three approaches of Transactional memory and their
description given above are shown in figure 2.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4592

Fig -2: Three different implementation approach of

Transactional memory

We mainly concentrated here on software. As STM is
relevant for today’s machines movability, and resiliency in
the face of timing irregularity and processor collapse. STM
has very eminent in Haskell. Haskell’s package archive
presently contains 500 such packages which can be used by
STM without any intermediary. There is a widespread real-
world application on STM Haskell. In this survey paper, we
addressed some of the STM Haskell based work followed by
deep analysis and comparison among various work focused
here. In section 2, we introduced the general idea of STM and
its variants that have been proposed till now. In section 3, we
discussed the STM Haskell design and its semantics. In
section 4 we overviewed various transactional memory
implementations using STM Haskell. Finally, we conclude
with a statement on upcoming direction work on STM
Haskell.

1.1 STM Haskell Background

The GHC inherently consist of STM functions in concurrent
Haskell library [16], supporting abstraction for
communication among explicitly fork threads. Harris et al.
assert in his paper [17], that STM can be conveyed
exquisitely within a declarative language. Also, Haskell type
system (especially monadic operation) compels threads to
access approach shared variable solely within the
transaction. Even though the crux of the language is
dissimilar to languages such as C++ or C#, the real STM
operation is applied in a uncomplicated command form as
well as STM application applies the same technique applied
in the primary languages.
 STM Haskell includes following benefits (i) runtime system
is tiny, which makes it easier to make experimental changes.
(ii) Number of example application has been developed
using STM support and transactions: certainly leading to the
application which has been written by “common”
programmers instead of those who built the STM-Haskell.
STM gives secure way of accessing shared variable amidst
simultaneously running threads by the application of

monads [18]. Containing I/O action within the I/O monad as
well as STM action within the STM monad. Only STM action
and pure computation can be conducted inside a memory
transaction using different STM & I/O action, though outside
the transaction only I/O action plus pure computation can be
performed. This ensures that outside the protection of
atomically TVars cannot be altered. This type of protection is
called “strong atomicity”[19]. Furthermore, computation
with side effects and computation that are impact free are
totally detached due to monads and Haskell background.
Making use of declarative language in TM helps it to provide
specific read/writes from/to changeable/variable (mutable)
cell: Needlessly STM doesn’t try to track memory operation
that is implemented through functional computation.
because they are never required to roll back[17].In STM
Haskell threads interact by reading and writing transactional
variable or TVars.STM monad is used by all STM
operation.STM monads provide a series of transactions
operation, counting, allotting, writing and reading
transactional variables, especially functions that are shown
below in figure 3[25].

STM OPERATION

Atomically :: STM a-> IO a
retry :: STM a
or Else :: STM a-> STM a-> STM a

TRANSACTIONAL
VARIABLE

data TVar a
newTVar:: a-> STM(TVar a)
readTVar::TVar a-> STM a
writeTVar::TVar a-> a-> STM()

 Fig -3: STM Operations and Transactional Variable

In Haskell transactions are initiated inside the IO monad
with the help of atomically construct. When a transaction
completes, it is approved with the help of runtime system
that the transaction was carried out upon a consistent
system state plus no further completed transaction may have
altered the appropriate portion of the system state at the
same time[12].In such situation, the alteration of the
transaction are committed or else they are aborted. Record
of acquired transactional variables in every transaction is
maintained by Haskell STM runtime. The written variable in
the record is known as “writeset” and every variable that
was read is known as “readset” in transaction. It is important
to note that above two sets can overlap. Atomically take the
temporary update as well as employ the updates to TVars
used in the operation which makes these effects seeable to
other transaction. This mechanism for each thread keep
transaction log which store the temporary acquiring done on
TVars.When atomically is initiated, the STM runtime
examines that these accesses are authentic as well as no
other conflicting updates have been committed by a
concurrent transaction. If the validation becomes successful,
then the alteration is committed collectively to the heap.

Transactional Memory

HardwareTransactionalMemory

STM addresses the intrinsic

limitation of HTM like

absence of Commodity

hardware

Software Transactional

Memory

HyTM uses HTM and switch to

STM as the hardware resource

requirement exceeds

Hybrid Transactional Memory

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4593

2. STM AND ITS VARIANTS

The thorough analysis of software transactional memory
(STM) started in 1995 when Shavit & Touitou used the word
“STM” first. Shared memory words were used as concurrent
objects in Shavit & Touitou model. Only one transaction at a
given time will be permitted to hold the shared memory
word. The shared memory word ownership information is
kept in another equivalent word known as ownership
record. Every memory word is having different connected
ownership record. The ownership record stores either a null
value (indicating that equivalent shared memory word is not
owned by any other transaction currently) or a instance of
its owner ‘transaction record. A transaction record is defined
as a data structure which keeps information regarding
equivalent transaction’s STM accesses. A transaction holds
one transaction record at a given time. Each and every
transaction is given shared access to every present
transaction record. Yet transaction record is held by just one
transaction.

 Rec1 Rec2 Rec N

Fig -4: STM Implementation: shared data structure

(source [3])

Figure 4 gives the clear-cut idea of above explaination. If a
transaction miss to achieve an ownership (since the memory
location is held by any other transaction at the same time),
the transaction let go previously acquired ownership after
aborting. If the transaction gains all the acquired ownership,
it makes its state atomically as Committed do the updates
and discharge the achieved ownership.
In [1] they focused on the fundamental case such transaction
that is non-nesting and that do updates on shared memory
inside single multithreaded operation, concentrating on the
primary issues that STM must deal. A greater level difference
between STM application is the way it arranges data inside
memory. One method isolates transactional data as well as
regular data, presenting a well-defined memory scheme for

transactional objects. Another method permits data to hold
its regular form inside memory, and STM applies a distinct
data structure for managing its own metadata. The examples
of very first kind of STM designs are DSTM [5],Adaptive
STM(ASTM)[6],Object-based STM(OSTM)[7]. In the group of
developed STM, DSTM [5] WSTM [8], ASTM [6] and
unessential SXM[9] are obstruction]free.DSTM[11] given by
Herlihy is a feasible obstruction free STM. For isolating the
problems of progress and correctness for given data
structure DSTM depends on contention manager unit. ASTM
[6] like DSTM applies the same contention management
junction. WSTM [8] and unessential McRT-STM [10] are
termed as “word-based” or more commonly may be termed
as “block based”: they find conflicts and imposes consistency
on a stable chunk of memory free of data semantics of high
level. Tiny STM [11] is another word based STM approach
which applies locks to prevent shared memory area. Tiny
STM applies word-based version of LSA algorithm [12] that
like TL2 algorithm [13]. Tiny STM shares various feature
with the alternative word-based STM.
 Tiny STM applies encounter time locking. Like TL2 and LSA,
Tiny STM is a time based approach that assures that
transaction will read the consistent state of memory.
Memory access is permitted by word-based STM at word
granularity and may be applied to the not controlled
environment. McRT-STM uses two-phase strict locking [14]
for its implementation. McRT-STM consists of blocking
commit and abort sequences which makes effective
implementation, and further permits McRT-STM to develop
various design alternatives. RSTM [15] for accessing data
objects applies a single level of indirection. RSTM stay away
from dynamic allocation or group of each object or each
transaction metadata. It also averts determine or reference
totaling garbage collection entirely. RSTM supports various
choices for conflict observation and management of
contention. RSTM is based on C++, permitting its API to
apply inheritance and template.

3. STM IMPLEMENTATIONS TILL NOW

Shavit and Touitou [3] in 1997 introduced STM (Software
Transactional Memory) as a model that provides peliable
transactional programming for concurrent operations in
software.Prior to [1] many related construct[20,21,22,23,24]
were suggested. Maurice Herlihy and Victor Lunchango [5]
in 2003 given the very first dynamic STM that permits
transaction and its object to be built in dynamically. In
DSTM, transaction can discover the order of object to
approach on the basis of value examined in objects
approached previously in the same transaction. Earlier STM
model needed predetermined space & fixed transaction. In
2005 Tim Harris & Simon Marlow [17] re-expressed the
concept of transactional memory in the context of
concurrent Haskell which provides significantly powerful
assurance than the traditional system. Two new functions
were also presented known as retry and or Else. The retry
function is capable of occurring anywhere inside the

Memory

 Ownership

status.................

version...............

.

desc....................

size.................

...

OldValues

status.................

version...............

.

desc....................

size.................

...

OldValues

........

........

....

status.................

version...............

.

desc....................

size.................

...

OldValues

..........

..........

.....

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4594

transaction, preventing it till we get another execution path.
Apart from this orElse permits transactions to be composed
as alternatives which help transaction module to run the
second part if first retries. This capability permits threads to
wait for various things at same time. They rely on the
concept of using the retry and orElse that can absolutely be
applied to other languages. This paper also showed an
interesting difference between languages like C# or Java and
Haskell in the context of “Atomic Block”. In Haskell, codes
inside an atomic block contain STM type thus it can only run
by atomic execution. But in other conventional languages,
atomicity is taken care by callee instead of caller thus it can
be supported defensively at different stages in the call chain.
After this effort, various other work conducted using STM
Haskell. One such work was performed by Christian Perfumo
[25] in 2007 where he used series of transactional Haskell
application such as Block world, GCD, Prime, LL etc and
drawn the outcomes from the data obtained by examining
these applications. For this, he altered the Haskell Runtime
System(RTS) with the help adding monitoring metrics which
helped to gather transactional data like commit and abort
rate along with their runtime overheads on mentioned
application in the paper. On the basis of gather transactional
data, new parameters like wasted time & useful work were
obtained. Also, application suit used in the paper can serve
as a benchmark for several research communities.
Nehir Sonmen et al [26] in 2007 proposed an extended
Haskell STM for performance. His work was encouraged by
the fact that although STM with Haskell supports lock free
idea for concurrent programming by the use atomic
operation on transactional variable still when it comes to
linked structure atomicity might need more care than what
is required. This may lead to a decrease in the whole
performance. To stop above situation a completely new
mechanism termed “unreadTVar” was coined for increasing
the performance of specific application like a linked list. The
use of unreadTVar provides two major benefits in the
execution of transactional linked list. One is that they
provide smaller dataset to transactions for work that
considerably lessen the chances of having rollbacks. Second,
the commit happens fastly as the number of TVars which
have to be examined for consistency prior to commit is
small. Besides the benefits there is two most essential
demerit of employing unreadTvar, one is it needs more
supervision by the programmer. As it is applied for
performance increment. Another demerit is can’t be applied
to all kinds of operation which may be performed with
linked structure.STM application programs feature called
rollback rate will be helpful in deciding the transactional
flexibility of the programs. Commit phase overhead is also
one of the metrics that the authors proposed to assess the
performance of STM.In brief, however supporting the
programs with atomic security and extra cores seems to be
beneficial but the overhead attached with transactional
management also becomes high. It was stated in the paper
that running the Altix 4700 ccNUMA machine on their
benchmark for many of the application and Haskell STM

system caused several scalability issues. The barrier can be
discovered by doing a thorough examination of each
application transactional performance i.e., abort rate,
commit phase overhead and analysis about access made by
transaction and hardware behavioral counters arranged in
the paper. The authors also suggested some future work
such as for application that does not execute for much time
within transactions, their commit overhead seems to be high.
For this, they advised to do further analysis of course grain
and fine grain STM. Furthermore, more work required to
deal with problems whether the recent system along with
STM obey to the needs of transactional management or not.
Christian Perumo, Oswal Unsal Nehir Sonmenz in [27]
together presented work on dissecting STM Haskell on the
many-core environment. In their work they have shown
Haskell STM application suit to be employed as a benchmark
by various research centers as done in [25] but Haskell
runtime system here is arranged with PAPI library as well as
physically placed counters to gather data on the transaction
part of every application like read/writesets, commit rate,
abort rate, runtime overheads, wasted time, useful work as
well as cache accesses for each transaction access made are
determined. For finding the constraints of STM the
transactional performance was noticed and examined on till
120 core implementation upon the ccNUMA machine. Along
with this hardware behavior of STM was also examined for
viewing the barrier present in STM.Mainly cache efficiency
as well as halts were examined for stating essential
scalability issues. This fact will be useful to researchers for
analyzing the efficiency of their STM schemes.
Mertin Sulzamann[28] in 2009 introduced overall six
algorithms extremely concurrent single linked list such as
compare & swap applying either IORef or STM, STM,
dissected STM, hand over hand applying either MVar or
STM.They carried out comprehensive experiments to assess
the comparative tradeoffs in every execution and
additionally extract a comparison with linear execution.
They also showed insertion of single primitive which
enhances the execution of one STM algorithm with a factor of
seven. The authors concluded that compare & swap
algorithm with IORef is better than any other algorithm in
terms order of magnitude. If we neglect the other interest,
then an extremely concurrent data structure can use this
mechanism. Nevertheless, it is also said that if readTVarIO is
inserted then it is feasible to obtain similar performance of
IORef with the use of STM as in some situation it maintains
the capability for the use transaction in difficult modification
of the data structure: in situation where use of compare &
swap is going to be extremely difficult. In the case where
composability is needed then pure STM algorithm is the only
option. Here, one clear cut outcome is that, hand over hand
locking is definitely not a good option as it scales badly.
Along with that, it can’t be composed and execution they
showed here does not add the exception safety which will be
required if they wanted to give as a library.
In 2012 Andre Rubre Dubois in [29] performed work on STM
Haskell. His paper focuses on developing a new STM totally

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4595

written down in Haskell. The difference between the
implementation before and this one is it applies early
write/write conflict detection whereas in earlier
implementations conflict detection happens at commit time
only (which is used by almost all STM Haskell).The
implementation used Swiss TM[30] algorithm after
extending it, so that it provides retry and orElse
transactional function support. The work contrast the
swissTM of STM Haskell with remaining two implements
(STM with TL2) with the use of Haskell STM benchmark
suit[27,31].For many benchmarks the developed Swiss TM
gives much superior performance then earlier developed
STM on TL2.TL2 provides fine results up to 3 threads in the
SI benchmark.(SI benchmark is a synthetic benchmark that
pushes clash between access made to a single integer).Here
for a benchmark like BT(Binary Tree), the Swiss TM in the
absence of unreadTVar[26] provide optimization speedup to
1.18 with 8 threads. Although with just 6 threads
unoptimized Swiss TM gives fine results. In the case of LL
(Linked List) benchmark, STM Haskell has similar results as
the optimized version of Swiss TM whose speed belongs in
the range of 1.27 to 3.7 in contrast to the unoptimized
version of SwissTM.SwissTM with the unreadTVar gives
39% slower performance than STM Haskell. In the case of HT
(Hyper-Threading) benchmark, Swiss TM with 8 threads
performs 4.5 times faster than STM Haskell with 6 threads.
David Sabel et al. [32] in 2014 also presented an STM Haskell
implementation with conflict detection. In contrast to the
implementation present in GHC, his approach can detect
conflict as soon as possible. Pointer equality is not used to
investigate conflict and is written down in Haskell, so it is
not associated with the runtime system. They used the CSHF
model for STM implementation in Haskell. Also, the
semantics of CSHF was explained and its implementation as
a library for STM Haskell was presented. The most important
dissimilarity CSHF and STM Haskell in GHC are that in CSHF
method the conflict detection might happens before in the
GHC.CSHF does not depend on TVar content comparison.
Furthermore, with respect to STM Haskell semantics GHC
implements required to examine the transaction log on short
term basis opposed to the state of global storage but in CSHF
you need to do so. A demerit of CSHF is that in case of
Haskell CSHE need to eliminate all the entries in the notify
list made by thread whereas in GHC you just to have to
eliminate the transaction log. A rough conclusion was given
in the context of efficiency that STM implementation in GHC
gives better results. Also, it was stated that STM
implementation should be careful in terms of ceasing non-
terminating transaction if there is chance of conflict. This is
not the situation for every implementation of STM Haskell.
In 2016 Mathew Le [33] in his paper “Revisiting STM in
Haskell” showed the redesigned STM in GHC which is similar
to TL2 implementation that provides retry and orElse
function even the absence of nested transactions. The
authors also tested the orElse and retry performance. They
used orElse and retry function to develop the work stealing
scheduler based on STM.For using this scheduler they

altered the Par monad which help them to prove that
stealing scheduler is simpler and performs fine as the
present schedular. Using the TL2 algorithm and using
Haskell’s retry and orElse blocking characteristics gives an
easier implementation which helped to neglect trusted
transaction plus log constructs.
Ammalan Ghosh and Rituparna Ghosh in [34] presented
implementation of STM applying STM Haskell with the help
of three distinct approaches namely TVars of STM Haskell
and two TMVars approach: the two TMVars approaches used
two different execution policy i.e., SJF(Shortest Job first) and
FIFO(First In Out First).Transaction of varying length was
considered. Also, they share common resource and executed
concurrently. Each set of the transaction was made up by
five write transaction. The implementation here provided a
better result with SJF policy in the single threaded
environment as we know SJF has minimum waiting time
which in turn gives a lower turnaround time for processes
whereas in the multithreaded environment all the parallel
activities are managed by Haskell compiler. Here STM
implementation with TVar is more efficient than other said
approaches. This approach performs best in multithreaded
environment where execution length is greater. In the third
case, where transaction executes on FIFO pattern, average
waiting time was higher which led to high Turn around Time
(TAT) and lower throughput.
In 2018 Rodrigo Medeiros Duarte[35] showed the
comparison of various implementation of concurrent hash
table with the following algorithm mentioned in bracket i.e,
Block MVar(using Lock Striping technique), Fine-grain
applying STM(fine-grain lock implementation applying STM)
Fine-grain applying MVar(fine-grain lock algorithm), CAS
using STM(also lock-free but substituting IORefs by TVArs),
CAS(lock-free hash applying IORef), Sequential(a linear
variant of hash tables).For evaluating the various algorithm
performance mentioned along with hast table techniques
two different settings were arranged namely a Uniform
Memory Access(UMA) architecture with Core i7 Intel
processor and 4 physical cores plus Hyper threading(8
logical cores) and 8GB RAM. The second setting is Non-
Uniform Memory Access (NUMA) accompanying 4 physical
cores. Hyper threading (16 logical cores), 12GB RAM as well
as two Intel Xeon. Here, BlockMVar, Fine-grain using STM,
Fine-grain using MVar, CAS gave the finest result in case of
UMA up to 8 threads in GHC 7.6.3.BlockMVar execution
recompenses the performance barrier of a small number of
locks preserving tables by its lesser complication for table
duplication. Furthermore, fine-grain using MVar execution
with a larger number of locks go through the effect of
duplicating tables, and thus outcomes were identical to
BlockMVar.CAS execution gives larger synchronization cost
with performance poor than BlockMVar. NUMA machine
performance was very akin to the UMA machine in case of
fine-grain applying STM. Memory Contention, in general, is a
critical problem as the amount of threads rises in NUMA
machine.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4596

An experiment conducted here also showed that Haskell
Runtime System, adding its garbage collector was
implemented primarily for UMA machine, besides no
optimization in case of NUMA machine. In the evaluation
environment mentioned in this work, fine grain using STM
gives the finest performance till 8 threads and it is simpler to
implement than other possible choices mentioned in the
work. Among all implementation, CAS implementation has
given best scalability.

4. ISSUES OF STM

4.1 Atomicity & code communication:

In Hardware Transactional Memory (HTM) model, usual
memory accesses communicate fairly with transactions. Just
committed state is seen by non-transactional reads and
conflicts are determined across non-transactional
modification and concurrent transactions accessing common
data. Although, in the case of STM it is false as concurrency
control process must be clearly presented. [2]

4.2 Burdens in STM:

In contrast to HTM or other shared memory programming
STM gives greater linear overheads because of the software
extension of loads and store on shared mutable areas within
transactions to many of extra instructions that form the STM
implementation. Based on the transactional feature of a
workload, the burdens can become a greater obstacle for
STM to obtain performance.[36]

4.3 Meanings:

To avoid incurring greater STM burdens, non-transactional
accesses (like loads and stores happening outside
transactions) are generally not extended. This led to the
weakening and thus, confusing the descriptions of
transactions, which may need the programmer to be extra
cautious than in the case where strong transactional
descriptions are supported. There are few of the weakened
guarantees that are typically attached with such STMs:

 Conflict across transaction and not transactional
accesses cannot be determined generally by STM
runtime libraries.

 Few STM models prevent the absolute privatization
of memory locations. For a few STM models, once a
location is approached transactionally, it must
uncease to be approached transactionally.

 Few STM models do not allow recapture memory
locations approached transactionally for random
reuse, like applying malloc and free [36].

4.4 Bequest Binaries:
STM requires examining every memory actions of the
transactional area to confirm atomicity plus isolation. STMs
which obtain above examination by code in code
instrumentation usually cannot provide transaction asking
legacy code which is not instrumented restricting
concurrency like serializing transactions [36].

5. CONCLUSIONS

In this review paper, we primarily discussed various
implementations using STM Haskell including the various
elements involved in the mentioned implementations. The
information about these STM Haskell implementation is
necessary to work on new development through STM
Haskell and draw some interesting characteristics of STM for
future development

REFERENCES

[1] Marathe, Virendra J., Michael F. Spear, Christopher
Heriot, Athul Acharya, David Eisen-stat, William N.
Scherer III, and Michael L. Scott. "Lowering the
overhead of nonblocking software transactional
memory." In Workshop on Languages, Compilers,
and Hardware Support for Transactional Computing
(TRANSACT). 2006.

[2] Harris, Tim, Adrián Cristal, Osman S. Unsal, Eduard
Ayguade, Fabrizio Gagliardi, Burton Smith, and
Mateo Valero. "Transactional memory: An
overview." IEEE micro 27, no. 3 (2007): 8-29.

[3] Shavit, Nir, and Dan Touitou. "Software
transactional memory." Distributed Compu-ting 10,
no. 2 (1997): 99-116.

[4] Damron, Peter, Alexandra Fedorova, Yossi Lev,
Victor Luchangco, Mark Moir, and Daniel Nussbaum.
"Hybrid transactional memory." In ACM Sigplan
Notices, vol. 41, no. 11, pp. 336-346. ACM, 2006.

[5] M. Herlihy, "Software Transactional Memory for
Dynamic-Sized Data Structures", Proc. 22nd Ann.
Symp. Principles of Distributed Computing (PODC
03), pp. 92-101, 2003.

[6] V.J. Marathe, W.N. Scherer, M.L. Scott, "Adaptive
Software Transactional Memory", Proc. 19th Int'l
Symp. Distributed Computing (DISC 05) LNCS 3724,
pp. 354-368, 2005.

[7] K. Fraser, Practical Lock-Freedom doctoral
dissertation UCAMCL-TR579, 2004.

[8] T. Harris and K. Fraser. Language Support for
Lightweight Transactions. In OOPSLA 2003
Conference Proceedings, Anaheim, CA, October
2003.

[9] R. Guerraoui, M. Herlihy, and B. Pochon.
Polymorphic Contention Management in SXM.
InProceedings of the Nineteenth International
Symposium on Distributed Computing, Cra-cow,
Poland, September 2005.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4597

[10] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh,
and B. Hertzberg. McRT-STM: A High-Performance
Software Transactional Memory System for a Multi-
Core Runtime. In Proceedings of the Eleventh ACM
Symposium on Principles and Practice of Parallel
Programming, New York, NY, March 2006.

[11] Felber, Pascal, Christof Fetzer, and Torvald Riegel.
"Dynamic performance tuning of word-based
software transactional memory." In Proceedings of
the 13th ACM SIGPLAN Symposium on Principles
and practice of parallel programming, pp. 237-246.
ACM, 2008.

[12] Torvald Riegel, Pascal Felber, and Christof Fetzer. A
Lazy SnapshotAlgorithm with Eager Validation. In
Proceedings of the 20thInternational Symposium on
Distributed Compu-ting (DISC), pages 284–298,
September 2006.

[13] David Dice, Ori Shalev, and Nir Shavit. Transactional
Locking II. In Proceedings of the 20th International
Symposium on Distributed Computing (DISC), pages
194–208, September 2006.

[14] Gray, J. and Reuter A. Transaction processing:
concepts and techniques.

[15] Marathe, Virendra J., Michael F. Spear, Christopher
Heriot, Athul Acharya, David Eisenstat, William N.
Scherer III, and Michael L. Scott. "Lowering the
overhead of nonblock-ing software transactional
memory." In Workshop on Languages, Compilers,
and Hardware Support for Transactional Computing
(TRANSACT). 2006.

[16] S. Peyton-Jones, A. Gordon, and S. Finne,
“Concurrent Haskell”, ACM SIGPLAN-SIGACT
Symposium on Principles of Programming
Languages (PoPL), 1996.

[17] T. Harris, S. Marlow, S. Peyton-Jones and M. Herlihy,
“Composable Memory Transactions”, in Proceedings
of the Tenth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming,
Chicago, IL, USA, June 15-17, 2005.

[18] M. Herlihy and E. Moss, “Transactional Memory:
Architectural Support for Lock-Free Data
Structures”, in 20th Annual International
Symposium on Computer Architecture, May 1993.

[19] Blundell, Colin and Lewis, E Christopher and Martin,
Milo M. K., “Subtleties of Transactional Memory
Atomicity Semantics”, Computer Architecture
Letters, Vol 5, Number 2, November 2006.

[20] Afek, Yehuda, Dalia Dauber, and Dan Touitou. "Wait-
free made fast." In STOC, vol. 95, pp. 538-547. 1995.

[21] Barnes, Greg. "A method for implementing lock-free
shared data structures." (1994)

[22] Israeli, Amos, and Lihu Rappoport. "Disjoint-access-
parallel implementations of strong shared memory
primitives." In Proceedings of the thirteenth annual
ACM symposium on Principles of distributed
computing, pp. 151-160. ACM, 1994.

[23] Moir, Mark. "Transparent support for wait-free
transactions." In International Workshop on
Distributed Algorithms, pp. 305-319. Springer,
Berlin, Heidelberg, 1997.

[24] Turek, John, Dennis Shasha, and Sundeep Prakash.
"Locking without blocking: making lock based
concurrent data structure algorithms nonblocking."
In Proceedings of the eleventh ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems,
pp. 212-222. ACM, 1992.

[25] Perfumo, Cristian, Nehir Sonmez, Adrian
Cristal,Osman Unsal, Mateo Valero, and Tim Harris.
"Dissecting transactional executions in Haskell." In
TRANSACT’07: Second ACM SIGPLAN Workshop on
Transactional Computing. 2007.

[26] Sönmez, Nehir, Cristian Perfumo, Srdjan Stipic,
Adrian Cristal, Osman S. Unsal, and Mateo Valero.
"unreadTVar: Extending Haskell Software
Transactional Memory for Performance." Trends in
Functional Programming 8 (2007): 89-114.

[27] Perfumo, Cristian, Nehir Sönmez, Srdjan Stipic,
Osman Unsal, Adrián Cristal, Tim Harris, and Mateo
Valero. "The limits of software transactional
memory (STM): Dissecting Haskell STM applications
on a many-core environment." In Proceedings of the
5th conference on Computing frontiers, pp. 67-78.
ACM, 2008.

[28] Sulzmann, Martin, Edmund SL Lam, and Simon
Marlow. "Comparing the performance of concurrent
linked-list implementations in Haskell." ACM
Sigplan Notices 44, no. 5 (2009): 11-20.

[29] Du Bois, André Rauber, Maurício Lima Pilla, and
Rodrigo Medeiros Duarte. "A High-Level
implementation of STM Haskell with Write/Write
conflict detection." In 2012 Third Workshop on
Applications for Multi-Core Architecture, pp. 24-29.
IEEE, 2012.

[30] A. Dragojevi´c, R. Guerraoui, and M. Kapalka.
Stretching transactional memory. In Proceedings of
the 2009 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’09,
pages 155–165, New York, NY,USA, 2009. ACM.

[31] The Haskell STM Benchmark. WWW page,
http://www.bscmsrc.eu/software/haskell-stm
benchmark,October 2010.

[32] Sabel, David. "A Haskell-Implementation of STM
Haskell with Early Conflict Detection." In Software
Engineering (Workshops), pp. 171-190. 2014.

[33] Le, Matthew, Ryan Yates, and Matthew Fluet.
"Revisiting software transactional memory in
Haskell." In ACM SIGPLAN Notices, vol. 51, no. 12, pp.
105-113. ACM, 2016.

[34] Ghosh, Ammlan, and Rituparna Chaki.
"Implementing Software Transactional Memory
Using STM Haskell." In Advanced Computing and
Systems for Security, pp. 235-248. Springer, New
Delhi, 2016.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 06 Issue: 05 | May 2019 www.irjet.net p-ISSN: 2395-0072

© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4598

[35] Duarte, Rodrigo Medeiros, André Rauber Du Bois,
Maurício Lima Pilla, Gerson Geraldo H. Cavalheiro,
and Renata Hax Sander Reiser. "Comparing the
performance of concurrent hash tables
implemented in Haskell." Science of Computer
Programming (2018).

[36] Cascaval, Calin, Colin Blundell, Maged Michael,
Harold W. Cain, Peng Wu, Stefanie Chiras, and
Siddhartha Chatterjee. "Software transactional
memory: Why is it only a research toy?." Queue 6,
no. 5 (2008): 40

[37] Website-1: https://slideplayer.com/slide/6257180
(as accessed on 15 May 2019)

