
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 958

IMPLEMENTATION OF FLOATING POINT FFT PROCESSOR WITH SINGLE
PRECISION FOR REDUCTION IN POWER

R. Balasaraswathi1, D. Divya2, M. Harinikalayani3, I. Vivek Anand M.E4, and
Dr. T.S. Arun Samuel5

1,2,3Student, Department of ECE, National Engineering College, Kovilpatti, India
4,5Department of ECE, National Engineering College, Kovilpatti, India

---***--
Abstract - The advance technology of VLSI has been the
enhancing special feature in the appearance of VLSI circuits
that can handle floating point (FP) arithmetic. Depending on
the various processor applications requirements also differ, i.e.
some processors have a high repertoire of functions but results
in low performance, while some processors aim at achieving
the highest throughput that leads to use more operations such
as multiply and add and that can produces more latency. For
real-time processing requirements, performing a large amount
of FP operations are considered as a major bottleneck due to
the excessively long run time required. In many cases FP
arithmetic requires additional operations such as alignment,
normalization and rounding, giving rise to some significant
increase in terms of area, power consumption and
computational latency .Such a problem might be mitigated by
employing the fused FP add-subtract and dot-product units
specially designed to perform those tedious tasks.

For achieving high performance with minimizing hardware
complexities, existing rounding algorithms like mantissa,
exponent and sign are used to generate two consecutive values
in parallel, and compute the rounded product by using these
values. This research work focuses on reducing computation
time, area and the power compared to many existing floating
point adder consumption by developing a new floating-point
architecture. Fourier analysis converts a signal from its
original domain (often time or space) to a representation in
the frequency domain representation and vice versa. The FFT
processor architecture exploits the superior area utilization
efficiency existing with the single-path delay feedback (SDF) in
memory and the single-path delay commutate (SDC) in adder.
The circuits are designed by Encounter RTL (digital design)
using Cadence and the simulation results will be observed
using cadence tool.

Key Words: Floating-point, ALU, Pipelining, Precision

1. INTRODUCTION

In domain of digital signal processing the number
representation in the form of fixed-point or floating-
point[1].The contribution deals with a binary representation
of real-numbers. The advantage of floating-point
representation over fixed-point representation that can
support much a wider range of values in integer
representation. The representation of real numbers in
Floating Point Unit (FPU) typically used binary floating-
point format numbers [2] which is used to increase the speed

and efficiency compared to fixed-point representation. For
achieving accuracy and efficiency in digital and radar
imaging and to reduce the complexities during the
processing, floating-point representation played a major
role.

Floating-point unit designed for applications such as space
craft, launching rockets and big data. Since integer
arithmetic lacks the range and precision for the accuracy,
VLSI technology making it to be possible. There are many
processors with fixed or floating-point representation and
there are also several blocks used for arithmetical
operations. In high resolution radar imaging applications for
performing the task of pulse compression, Floating-Point
(FP) Fast Fourier Transform (FFT) processors are often
used.

2. FLOATING POINT

A system which describes the representing numbers that
would be too large or too small as integers is called as floating
point number. Compared to fixed point representation,
floating point representation is able to retain its resolution
and accuracy[3]. The sign, mantissa and exponent can make a
floating-point number which shown in Fig 1.S is the Sign bit
(0 is positive and 1 is negative).The sign bit is represented
either as sign or magnitude. E is the exponent bit, very large
numbers have large positive exponent and Very small close-
to-zero numbers have negative exponents. The range of
values is increased in exponent field. M is the Fraction bit or
Mantissa (fraction after binary point). The precision of FP
numbers can be improve by having More bits in fraction field.

Fig. 1. Representation of Floating Point

In 1985, Institute of Electrical and Electronics Engineers
(IEEE) established a technical standard for floating point
arithmetic (IEEE standard 754) [4]. The IEEE 754 standard
addressed many problems found in the diverse floating- point
implementations that made them difficult to use reliably and
portably. Many hardware floating-point units use the
standard.

In accordance with IEEE standard 754, Conversion of decimal
to the floating point consists of three steps such as

SIGN EXPONENT MANTISSA

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 959

Mantissa(23) Exponent(8
)

Sign (1)

conversion of the decimal to binary then second step, is the
converted binary is represented in scientific notation.
Scientific representation is done by shifting the point towards
left in converted binary number and multiplied by exponent
i.e., multiplied by 2n (where n is number of shifts) Then the
third step is to convert scientific notation to floating point
according to standard 754. The sum of exponent bias and n
can make the exponent bits. The exponent bias is constant
which were denoted as 127 for single precision and 1023 for
double precision.

The smallest change that occurred in floating point
representation is known as precision. The meaning of
precision implies ‘closeness’ or ‘accuracy’. There are two
types of precision; they are single precision and double
precision [5].

The standard representation of Single precision floating point
consists of 32 bits, which may be represented as numbered
from 0 to 31, left to right as shown in Figure 2.

Fig. 2. Representation of Single Precision

The standard representation double precision floating point
requires a 64 bits, which may be represented as numbered
from 0 to 63, left to right as shown in figure3.

Sign (1) Exponent (11) Mantissa (52)

Fig. 3 Representation of Double Precision

ADDITION OF FLOATING POINT NUMBER

Fig. 4. Architecture of floating point addition

The architecture of floating point addition shown in Figure
4,Which consists blocks such comparator ,sign control, bit
inverter, adder, LZA logic which replaces the carry look
ahead adder and used to speed up the process ,counter ,left
shifter ,right shifter, exponent incrementer, Exponent
subtract, incrementer , rounding control, exception data
format and multiplexer which replaces the encoder for
better results. These all blocks help to achieve increase in
efficiency and reduce to the power consumption, area
consumption and minimum power delay.

Normalization of floating point is desirable, i.e., there will be
only one significant digit (binary can only be 1) which is to
the left of the radix point of mantissa m. The addition of
floating-point numbers involved in normalization of floating-
point addition, and achieved a normalized sum S. M1 and M2
are designated as the mantissas of two floating- point
numbers respectively, and E1and E2 are the designated as
exponents [6] .

In alternative floating-point formats to IEEE 754, mantissas
M1 and M2 can be represented in 2's complement format to
perform addition or subtraction, in a single simple structure.
There are three general steps for Summing addends A and B
.They are: 1) de- normalization of the addends, 2) addition of
mantissa, and 3) normalization of the Sum. If exponents E1
and E2 are not equal during de-normalization of the
addends, then the addends must be de-normalized until E1
and E2 match. In typical method addends should be de-
normalized to increase the smallest exponent, by X which is
equal to the largest exponent E, and by shifting the binary
point of mantissa M bits of the addend with the smallest
exponent X places to the left which leads to achieve the de-
B), the above method described that it would increase
powers, by 6 So that powers, equals E, (in this case, E, or 10).
If mantissa sum Ms., is not in normalized form, then it is
normalized to yield normalized sum S. In other words, if
required, the binary point of mantissa sum., is shifted left or
right until there is only one significant digit to the left of the
binary point to achieve normalized mantissa sum. The
normalized sum S can be achieved by adjusting Elargest to
yield the exponent Es.

A floating-point operation yields a result which is not be
represented in the floating-point numbering system used
and then an exception occurs[7].There are three types of
exceptions, they are Overflow, Underflow, and Zero. After the
addition of floating point numbers there would be a chance
of occurring overflow or underflow i.e., the absolute value of
the result would be either too small(underflow) or too
large(overflow) .In accordance with IEEE 754 32-bit single-
precision format, which is not capable of representing a
positive number greater than ranges from 20x2127 to 2-

23x2127(positive overflow) or less than 2-126 (positive
underflow), or a negative number the absolute value of
which is greater than from 20x2127 to 2-23x2127 (negative
overflow), or less than 2- 126(negative underflow). According
to IEEE 754, which implied that leading digit of 1 so that it is
incapable of naturally representing 0 (zero exception).

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 960

DESIGN OF FLOATING POINT ADDITION

In Accordance to the architecture of floating point addition
may have many blocks which can be individually designed
using Modelsim simulator tool and get correlated to form the
overall architecture. This architecture can be build by step
by step Pipelining process, following steps are:

The first step is that the exponents of two floating point
numbers got compared and the absolute value of difference
between the two exponents can be calculated. Then larger
exponent was considered as the tentative exponent of the
result[8].

Then the second step is to make the adjustments in exponent
part i.e., to shift the significant of the number with the
smaller exponent to right through a number of bit positions
that is equal to the exponent difference. The guard (G) and
Round (R) bits are two of the shifted out bits of the aligned
significant [9].

Thus the effective width of aligned significant must be p + 2
bits for p significant bits. Then the third bit is to be appended
which named as sticky bit (S), at the right end of the aligned
significant. The sticky bit is the logical OR operation of all
shifted bits.

The third step is to add the mantissa part. Let the result of
this is SUM.

The fourth step is, during addition of mantissa part, check
SUM for carry out (Cout) from the MSB position. If a carry out
is detected then SUM was shifted right by one bit position
and increment the final exponent by 1[10].

Then the final step is that the exception conditions were
evaluated, if any. If the logical condition R”(M0 + S’’) is true
then the result get rounded, where M0 represents pth and R’’
represents (p + 1)st bits from the left end of the normalized
significant. S’’ represents the new sticky bit which occurred
by doing the logical OR operation of all bits towards the right
of the R’’ bit. If the rounding condition is true, a 1 is added at
the pth bit (from the left side) of the normalized significant.
Rounding can be generated a carry-out, as the step 4 has to
be performed again when p MSBs of the normalized
significant are 1’s.

RESULT AND DISSCUSION COMPARATOR

Fig. 5 Simulation result of 4-Bit comparator for a>b
condition

As shown Figure 5, a0,a1,a2,a3 and b0,b1,b2,b3 are the
inputs. Then a=15 in terms binary a0 a1 a2 a3=1111 and b=7
in terms of binary b0 b1 b2 b3=0111. The result is g1=1.

Fig. 6 Simulation result of 4-Bit comparator for a<b
condition

As shown in Figure 6, a0 a1 a2 a3 and b0 b1 b2 b3 are the
two 4 bit inputs.a0 a1 a2 a3=1110, b0 b1 b2 b3 =1111.The
output is g3=1.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 961

Fig. 7 Simulation result of 4-Bit comparator for a=b
condition

As shown +in figure 7, a0 a1 a2 a3 and b0 b1 b2 b3 are the
two 4 bit inputs.a0 a1 a2 a3=1111, b0 b1 b2 b3 =1111.The
output is g2=1.

 SHIFTER

Fig. 8 Simulation result of Right shifter

As shown in figure 8, the inputs are Ia Ib Ic Id Ie If and s0 and
s1 are the select lines. Ia Ib Ic Id Ie If=111111 and then s0=1
and s1=0 then the output is 011111.

Fig. 9 Simulation result of Left shifter

As shown in Fig 9 the inputs are Ia Ib Ic Id Ie If and s0 and s1
are the select lines. Ia Ib Ic Id Ie If=111111 and then s0=0
and s1=1 then the output is 111110.

EXPONENT INCREMENTER

Fig.10 Simulated result of exponent incrementer

As shown in Fig 10, a7 a6 a5 a4 a3 a2 a1 a0 be the input a7
a6 a5 a4 a3 a2 a1 a0=00000100.The result is y=00001000.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 962

EXPONENT DECREMENTER

Fig. 11 Simulation result of Exponent decrementer

As shown in Fig 11, a7 a6 a5 a4 a3 a2 a1 a0 and b7 b6 b5 b4
b3 b2 b1 b0 be the input a7 a6 a5 a4 a3 a2 a1 a0=00001000,
b7 b6 b5 b4 b3 b2 b1 b0=00000100.The result is
y=0000000000010000.

FLOATING POINT ADDITION

Fig.12 Simulation result of floating point addition

As shown Fig 12, the simulation result of floating point
addition with single precision using Modelsim Quartus-2.

The following parameters were measured using cadence
tool.

The following outputs are obtained from the cadence:

Fig.13 RTL View of Floating Point Addition with Single
Precision

Fig.14 Area Report of Floating Point Addition with Single

Precision

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 963

Fig.15. Delay Report of Floating Point Addition with Single
Precision

Table 1: Results obtained for Floating Point Addition
with Single Precision

Parameter Proposed work
Area(m2) 976
Leakage Power(nw) 1824.5
Dynamic Power(nw) 13227.4
Total Power(nw) 15051.905
Fan-out Load(fF) 885
Delay 230

3. CONCLUSION

In design of floating point addition with single precision
several factors are taken into considerations like area, power
and latency. The obtained results are effectively reducing the
power consumption, area and latency with maximum delay
of 327.6ns.The FP arithmetic typically requires additional
operations such as alignment, normalization and rounding,
giving rise to some significant increase in terms of area,
power and computational latency. Reducing the complexities
of FP calculations are carried out using single precision. But
for demanding future applications the double precision and
quadruple precision which will give accurate

REFERENCES

1. Bailey, D. (2013, April). High-precision
computation: applications and challenges. In Proc.
21st IEEE Symp. Computer Arithmetic (ARITH-21),
IEEE Press (p. 3).

2. Demmel, J., & Nguyen, H. D. (2013, April). Fast
reproducible floating-point summation. In 2013
IEEE 21st Symposium on Computer Arithmetic (pp.
163-172). IEEE.

3. Kaivani, A., & Ko, S. (2015). Floating-point butterfly
architecture based on binary signed-digit
representation. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 24(3), 1208-1211

4. Qureshi, F., & Gustafsson, O. (2011, August).
Generation of all radix-2 fast Fourier transform
algorithms using binary trees. In 2011 20th
European Conference on Circuit Theory and Design
(ECCTD) (pp. 677-680). IEEE.

5. Swartzlander, E. E., & Lemonds, C. E. (Eds.). (2015).
Computer Arithmetic: Volume III (Vol. 3). World
Scientific

6. Tan, D., Lemonds, C. E., & Schulte, M. J. (2008). Low-
power multiple-precision iterative floating-point
multiplier with SIMD support. IEEE Transactions on
Computers, 58(2), 175-187.

7. Jaiswal, M. K., & So, H. K. H. (2015, October). Dual-
mode double precision/two-parallel single
precision floating point multiplier architecture. In
2015 IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC) (pp. 213-218).
IEEE.

8. Manolopoulos, K., Reisis, D., & Chouliaras, V. A.
(2016). An efficient multiple precision floating-
point Multiply-Add Fused unit. Microelectronics
Journal, 49, 10-18.

9. Kahan, W. (1996). IEEE standard 754 for binary
floating-point arithmetic. Lecture Notes on the
Status of IEEE, 754(94720- 1776), 11.

10. Cornea-Hasegan, M., & Norin, B. (1999). IA-64
floating- point operations and the IEEE standard for
binary floating-point arithmetic.

