
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 1492

Design of a Round Robin Bus Arbiter using System Verilog

Ansuman Mishra

M.Tech, ECE Dept., Manipal Institute of Technology, Manipal, India
---***--
Abstract – In SoC’s (System on Chip), the number of buses and
their interconnection with different subsystems and functional
blocks for communication have risen exponentially in the
present generation designs. Bus arbiters are highly efficient in
handling master bus requests and slave bus responses. The bus
arbiter is usually coded according to an algorithm which
dictates its operation and efficiency. A Round robin arbiter
scheme is based upon the concept of fixed slot per requestor.
The most common way of behavioral modelling a round robin
arbiter is by using “nested-case” statement in Verilog.
However, this coding style is not at all efficient and is lengthy,
when the number of requestors are high. This paper describes
how to code the arbiter efficiently and in a compact manner
using System Verilog language.

Key Words: Round Robin Arbiter, Bus arbitration, System
Verilog.

1. INTRODUCTION

Modern generation SoC (System on Chip) design increases
the complexity of on-chip bus-based communication
architecture. Communication architecture generally deals
with interaction of control and data signals amongst the
various functional blocks[1]. Bus based architectures are
usually preferred in SoC designs as they are power efficient
and provide the framework for complex interconnections.
An arbiter is a crucial component in shared bus
architecture[2].

Most of the arbiters are modelled based on an algorithm
which governs its overall operation and performance. Some
of the most commonly used algorithms are:

1. Fixed Priority Algorithm.

2. Round Robin Algorithm.

The Round Robin Algorithm allows each requestor to be
served and once served, the requestor is moved to the end of
the queue. i.e. lowest priority is assigned to it the maximum
wait period time interval a requestor has to wait before the
re-service of its request is dependent on the total number of
requestors in the queue[3].

Round Robin Bus Arbiter is widely used for shared bus
arbitration, queueing & work load balancing[4].

1.1 Round Robin Algorithm

Round Robin is a CPU scheduling algorithm. A fixed time slot
is assigned to each process in the queue. It is quite simple in
implementation and avoids process starvation. The short

coming of Fixed Priority Algorithm is that the time interval
before the grant is provided to the lowest priority process has
no limit [5]. In Round Robin Algorithm, every process request
is allowed a grant in a cyclic order. Here, a pointer is
designated, and it shifts to next process request. Hence, the
maximum wait period before a request is re-serviced again is
dependent on the number of requestors in the queue.

2. DESIGN METHODOLOGY

The Round Robin Arbiter can be modelled in system Verilog
using nested case statements. However, this style of coding
being simple, and primitive is highly inefficient when the
number of requestors is more. The style of coding also affects
the synthesis output. The proposed way of coding involves
the request process which is pointed by a pointer is assigned
the top most priority and remaining all other requests are
rotated behind it. This rotated request vector is then sent
through a simple priority arbiter. The grant vector from the
priority arbiter is then “unrotated” to come up with the
Round-Robin Arbiter’s final grant signal. The Fig.1 depicts the
operation.

Fig -1: Operation methodology for Round Robin Arbiter.

For this paper, a 4-bus round robin arbiter is considered.
The block diagram of the Round Robin Arbiter modelled
using System Verilog HDL is shown in Fig 2.

Fig -2: Top Level block diagram for Round Robin Arbiter.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 1493

The case statement used for Round Robin arbitration is as
follows:

case (rotate_ptr[1:0])

2'b00: shift_request[3:0] = request[3:0];

2'b01: shift_request[3:0] = {request[0],request[3:1]};

2'b10: shift_request[3:0] = {request[1:0],request[3:2]};

 2'b11: shift_request[3:0] = {request[2:0],request[3]};

endcase

The Round Robin Arbitration request and grant methodology
is depicted in the Fig-3.1-3.5

Fig-3.1: Request 0 is asserted

Fig-3.2: Request 1 is asserted, Grant 0 asserted.

Fig-3.3: Request 2 is asserted, Grant 1 asserted.

Fig-3.4: Request 3 is asserted, Grant 1 asserted.

Fig-3.5: Request 0 is asserted, Grant 3 asserted.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 1494

3. RESULTS

The main design and testbench are written using System
Verilog HDL and compiled using Synopsys Verdi. The
waveform viewer is used to display the output. Fig-4 shows
the output case when requests are synchronized. Fig-5 shows
the case when request 0 is set first priority and it is kept high
for rest of the cycles.

Fig-4: Output when the requests are synchronized.

Fig-5: Output when the request 0 is set high priority and
again set high for rest of the cycles

4. CONCLUSION

The Round Robin Arbiter is modelled correctly using System
Verilog HDL and compiled. The operation is found to be
correct as in Fig-5 where request 0 once serviced is assigned
lowest priority and it is re-serviced again at the end of grant
3. The use of vector arrays and concatenation operator
significantly reduces the code density and helps in better
RTL synthesis.

REFERENCES

[1] Z. Fu and X. Ling, “The design and implementation of
arbiters for Network-on-chips,” in 2010 2nd
International Conference on Industrial and Information
Systems, vol. 1, July 2010, pp. 292–295.

[2] E. S. Shin, V. J. Mooney, and G. F. Riley, “Round-robin
Arbiter Design and Generation,” in 15th International
Symposium on System Synthesis, 2002., Oct 2002, pp.
243–248.

[3] M. Oveis-Gharan and G. N. Khan, “Index-Based Round-
Robin Arbiter for NoC Routers,” in 2015 IEEE Computer
Society Annual Symposium on VLSI, July 2015, pp. 62–
67.

[4] M. Oveis-Gharan and G. N. Khan, “Index-Based Round-
Robin Arbiter for NoC Routers,” in 2015 IEEE Computer
Society Annual Symposium on VLSI, July 2015, pp. 62–
67.

[5] S. Q. Zheng and M. Yang, “Algorithm-Hardware Codesign
of Fast Parallel Round Robin Arbiters,” IEEE
Transactions on Parallel and Distributed Systems, vol.
18, no. 1, pp. 84–95, Jan 2007.

