
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5615

Framework for Automation Testing to Audit System Performance in

Windows Operating System

Mayank Agrawal1, Chethana R Murthy2

1Dept. of Information Science and Engineering, RV College of Engineering, Bangalore
2Dept. of Information Science and Engineering, R.V. College of Engineering, Bangalore, India

---***---

Abstract - Increasing application demands on processors
can result in high operating temperatures, a risk of CPU
throttling and poor performance. Balancing operating speed
with battery life is essential to delivering the optimal
experience users demand today. To optimize overall
performance of a system, an efficient strategy to measure
system performance is required. This paper presents a novel
method to develop a framework which describes and
implements a way to monitor system performance remotely
and autonomously. The application will provide autonomous
control to the user to control the target system to initiate
actions related with measurements. This tool will allow the
user to launch test cases to ensure that the application meets
its specification and performs the intended functions via GUI
automation, which are necessary to monitor the system.
Although due to inherent automation limitations experiment
results show that, with automation testing reduces almost four
times manual effort.

Key Words: Software development, Automation, WPA,
PyWinAuto, Tkinter, Software metrics.

1. INTRODUCTION

Technology is growing at a rapid rate with constantly being
built and improved upon. More and more new features are
added to serve user satisfaction. Today a semiconductor chip
device can support multiple features ranging from low
power consumption services such as messaging, phone,
appointment, alarm, entertainment, Email messaging to high
power consumption services such as gaming, high speed
internet surfing, etc. Models are released to the market on a
daily basis with improved or brand-new features. Most of
these features are largely implemented using software
development [1], [2]. These applications rely heavily on
underlying hardware components to harness extreme
processor functionality. Every feature of each new model
must be tested prior to its release. But due to rapid feature
changes and development most of the developer oversee the
underlying hardware. They often miscalculate the small
power leakage which can eventually affect the system
performance [1]. The interaction of features with the
hardware sensors must be checked, so as to ensure their
proper integration. User-level functional tests are crucial to
both developers and testers to reduce consumer
dissatisfaction and technical assistance cost.

Functionality testing uses many use-case scenarios. These
use cases are mostly user centric and tend to imitate an

average user frequent action. Each test case (TC) is a
sequence of steps that performs a specific task or a group of
tasks. TC also specifies the expected results. Users normally
manually perform TCs. To estimate the correct
measurements a TC may be repeated several times over the
successive life cycle of software development. As most of
these test case executions are repeated tasks, manual testing
becomes both time consuming and error prone. An
automated test case can automatically produce the steps that
would be performed manually by the users.

This paper presents a novel object-oriented framework
tailored to support Automated Test case execution for user-
level functional testing of windows-based systems. The test
automation framework allows automation of functional TCs
necessary to measure system performance. The framework
aims to produce a product family to achieve productivity
gain to both the system users and their dependents. Once a
TC is automated, it can be executed as many times as needed,
through all the different build versions of the system and
thus reducing the time to analyse correct performance
measurement of the system. The main contribution of this
paper consists in the analysis of system performance via
various windows systems by automating the appropriate
TCs remotely and autonomously.

The remainder of this paper is organized as follows: Section
2 reviews related work; the structure of the automation
framework is described in Section 3; Section 4 summarizes
implementation details; Section 5 analyses results; Section 6
describes limitations and feature enhancements and finally
our conclusions are drawn in Section 7.

2. RELATED WORK

2.1 Common Practices

While manual execution of Test Case execution is still
current practice, adaptation of test automation for unit and
regression testing is featured. Although many automation
tools are already available in market, full automation is still a
dream. For e.g., more than 40 per cent of TCs cannot be
designed for automation in traditional user-level test suites.
While the strategies vary from one user to the other, test
automation has been incrementally introduced at the user-
levels, resulting in the effort required to carry out tests. The
main approaches employ either inhouse developed test
suites, such as PTF [3], or third-party test case systems, such
as TestQuest Pro (R) [4]. We have devised a novel test case
automation infrastructure based on average user activities on

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5616

the system. These test case infrastructures are the key stone
of the framework developed.

2.1 Related research topics

Related approaches on test automation address two basic
goals: test case execution and test case analysis.

The automation of test implementation and outcome
interpretation aims at generating software objects capable of
executing test suites and contrasting the results obtained
with those obtained by running the same using manual
methods [8]. Different works seem to indicate that there is
not so far, a reliable and complete solution for test
automation challenges [9]. On the contrary, distinct
successful approaches are reported [8], [10], [11], [12], [13].
A quantitative trade-off analysis [13] will be done to
determine the economic feasibility of the project automation.
Since high iteration frequency is a requirement for
automating a TC, specific drawbacks should be resisted, such
as misjudging the effort needed for manual implementation
or underestimating the percentage of tasks potentially
tailored for automation [17].

Given that test automation frequently includes creating
software for testing applications, an alternate solution to
obtaining a better trade-off is to facilitate the reuse of
applications while developing test ware. Object-oriented
systems are modular artefacts in software that will help the
creation in test ware [17]. JUnit is a common illustration of a
system extended to the software application domain [14].

Because there is a trade-off between tautology and reuse
efficiency, domain-specific systems (such as JUnit) are
projected to result in a lower reuse rate than application-
specific models. This was the driving force behind the
introduction of a modern application-specific architecture
geared to cell phones. The review needs data to measure the
effect of the program on test automation. That is why this
paper's key objective is to evaluate the quantitative effect of
an application-specific architecture on the implementation of
the state-of-the-art technologies in real life.

3. DESIGN DESCRIPTION

The defined system is an object-oriented architecture
designed to automate practical test case implementation for
windows-based systems at different consumer-level. To
automate a test case, it requires the necessary resources, but
this method designed is ultimately procedural. In other
terms, it deals with the automation of test execution, not
automated test production. The framework exploits the GUI
elements present in the windows system to automate the test
case execution, which works by locating and searching the
required GUI element and issuing commands to launch the
desired actions.

This method has its drawback where the model must rely on
the specific version of the system to find the same set of GUI
elements. Thus, making the framework highly dependent.

The framework works as a higher-level abstraction of similar
user actions.

3.1 Low- Level Implementation Infrastructure

In order to interface with the Windows PC, the framework
uses Python Library. Python’s Tkinter Library is used to
render an application programming interface (API) that
allows the user to simulate desired events remotely on target
system under test [6]. WiFi connections are used to establish
remote connection to target system from the Host device.
PyWinAuto Library is used to automate GUI actions from the
host device to the target [5]. The rich library of PyWinAuto
and use of WiFi to connect host and target device allows
hosts to simulate several events like key pressing, mouse
action, selection/deselection, etc. remotely.

However, complete automation cannot be achieved by
Python Libraries due to inherent limitations posed by the
system. Command Language Interface (CLI) is used to modify
register level entries [7]. CLI provides privileged accesses of
the system to launch scripts to measure and monitor
performance measurements. Python combined with CLI
allows the framework to achieve full automation with
benefits like scheduling scripts, threading process,
terminating process.

3.2 High Level Implementation Infrastructure

The Tool is a system of modules and each module contains
the use cases for the system. The actor at the host side
interacts with the rendered API by creating a port for
connection, selecting Operating System version, selecting
testcase variations, etc.

The port at the host side listens for the incoming connection
from the target system. Once the connection is established
and hello packet is send to ensure handshake protocol, the
command is transferred to target system containing the test
case name, number of iterations for which the test case is to
be run. The command is then parsed at the server side.

A concurrent thread is also created to establish connection to
DAQ. A Data Acquisition System (DAQ) used in this
framework is Windows Performance Analyzer (WPA) tool
provided by Windows Operating System. WPA tool displays
performance of system in form of graphical format. It helps in
monitoring the system performance and allows the user to
generate trace to determine issues related with performance
of system [18].

3.3 Detailed design of Automation Framework

In this section, further details, algorithmic design and an in-
depth explanation of each of the modules is provided. Low-
level components and subcomponents of various parts are
also described.

3.3.1 Client end functionalities and actions

The client works by rendering a GUI for test case execution.
After receiving all the information viz. IP address of target
system, initial check of whether the WPA is in stable state to
collect data or not. The GUI runs a thread to create a target
socket client and waits indefinitely for the connection. At the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5617

same time a second thread is launched which is specific for
the WPA.

This thread starts with configuring the WPA and checks if the
WPA is in a stable state to collect data or not. If the WPA is
found in improper state, it is reconfigured. If the WPA is
found in stable state, a start acquisition command is sent to
the WPA.

3.3.2 Target end functionalities and actions

The Target side application waits for the connection from the
host, before connection establishment the system performs
some predefined settings. These predefined settings are
necessary to be performed every time the test case is
executed. These are the settings necessary to set, in order to
collect correct measured values. For example, before
launching any test case it is necessary to switch on airplane
mode. This is necessary because we do not want any
unwanted applications (not associated with test case) to be
active. Similarly, for any test case execution we want only
those applications to be activated which are essential for the
current test case. Any unnecessary application is closed to
avoid any unwanted power leakage.

Once the current test case execution is finished. The
scheduled script is launched automatically, this script first
looks for any open application and tries to close it. Now,
when the system is ready to launch the next test case and for
that purpose it switches off the airplane mode and waits for
the socket server connection. The same steps of execution are
repeated till the list of test cases is exhausted.

4. IMPLEMENTATION DETAILS

The programming language that is chosen to model the tool is
Python. Python is the most essential and required component
of the project. Python is one of the most useful languages
which is currently being widely used because of its extensive
coverage in support tools and structures for fast
development. In addition to the Python programming
language, batch scripting commands are also used.

The Command line language support is necessary because
there are many functionalities which can be done only at root
level. This root level access cannot be done using high level
language like python.

PyWinAuto is used for GUI automation, this library contains
tons of application interfaces to launch windows-based tasks.
The module provides almost every functionality which can
allow GUI based automation with minimal lines of code. At its
simplest it allows the user to send mouse and keyboard
actions to windows dialogs and controls. It emulates user
actions like mouse clicks/movements and keyboard key
presses. Pywinauto provides an important benefit of
accessing the GUI control elements with the help of
attributes. The knowledge of PyWinAuto is necessary to build
the tool.

Python provides the Tkinter framework which is the only
framework that’s built into the Python standard library.
Visual elements are rendered using native operating system
elements (like windows), hence the applications built with
Tkinter look like they belong on the platform where they’re

run. Although Tkinter is considered the de-facto Python GUI
framework, it’s not without criticism.

WPA is used to monitor system performance. WPA provides a
nice GUI to study trace of system performance. It also
projects detailed information about system platform states,
devices states, software activity, CPU utilization, memory
utilization, and other system events.

5. EXPERIMENTAL RESULTS

5.1 Results

The outcome of this tool would be performance measurement
values which shall match with the values obtained from
manual measurement. The outcome of this project could be
achieved by following the methodology and achieving the
objectives in the described order.

The major outcomes of this project would be:

1. All the prerequisite settings are performed before
 launching any test cases.

2. To ensure correct test cases are executed on target
system.

 3. To generate correct performance measurement
values using WPA in a simple and readable manner.

The outcomes and results of the objectives set:

1. A successful build of the Automation Tool on to the
Windows machine is the outcome of the first
objective. The build instructions of the Automation
Tool must be understood in order to execute them
on the machine.

2. Importing a successfully built PywinAuto Library for
further automation and development of the GUI
using Tkinter is the outcome of the second objective.
This objective is time consuming and is achieved by
executing several modules of PywinAuto and
Tkinter.

3. Generating Graphs from the WPA profile to observe
system behavior to identify problems.

Outcome from the project is to build an efficient and reliable
system which can automate the defined tasks effectively. The
results obtained after the analysis should be satisfactory
enough to make the system more reliable.

5.2 Comparative Analysis

The current application which is developed could be
compared to the existing methods of generating the
performance measurements values using the WPA tool.
Existing techniques rely on manual intervention of task
performance and would make the whole process more
tedious and exhausting.

The major existing limitation solved using the current
application are:

1. Requires a lot of manual effort to carry out a small
set of tasks.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5618

2. Enough time was lost in the process of creating and
studying results. Repeated actions were performed
if some actions led to absurd results.

3. Overcoming these limitations was one of the major
concerns for the product and this would enable
users using this tool to:

a. Repeated task execution was automated
saving a lot of user time.

b. Analysis of data generated by WPA was
made easier by launching the event using a
single click.

This tool would pose a great advantage to the users of system
as it saves user’s time to obtain the same set of results. This
would help the users to analyze the system performance by
measuring the real time data while the system apps are
running. Now users can achieve more accurate results within
a short span of time.

6. Conclusion

The tool aims to achieve certain tasks completion by allowing
GUI automation on the target side. It will allow the QA team
to assess the rapid changes in the system by releasing the
system within a short interval of time. The tool allows remote
execution of use-case in target system which makes the
overall system more autonomous and independent. It
provides a single platform to control all the activities needed
to obtain performance measured values. It also allows the
user to monitor the task performance through the interface.
The major aim is to obtain productivity by performing the
repeated actions within a short interval of time. It increases
the quality of results obtained and helps in robustness of the
system.

REFERENCES

[1] Chunlei Shi, Brett Walker, Eric Zeisel, Brian Hu and Gene

McAllister. D.: A Highly Integrated Power Management
IC for Advanced Mobile Applications. In: Proc. In IEEE
Custom Integrated Circuits Conference (CICC), pp 1-3
(2006)

[2] Emmannuel Ofori-Attah, Xiaohang Wang, Michael Opoku
Agyeman. D.: A Survey of System Level Power
Management Schemes in the Dark-Silicon Era for Many-
Core Architectures. In: Proc.: EAI Endorsed
Transactions on Industrial Networks and Intelligent
Systems. pp (2-3)

[3] Esipchuk, I., Validov, D.: PTF-based Test Automation for
JAVA Applications on Mobile Phones. In: Proc. IEEE 10th
International Symposium on Consumer Electronics
(ISCE), pp. 1–3 (2006)

[4] Test Quest, Test Quest Pro (2006) available at
http://www.testquest.com.

[5] PywinAuto, for UI automation. Author notes, available at
https://pywinauto.readthedocs.io/en/latest/getting_sta
rted.html.

[6] Python Tkinter Library, for user interface rendering.
Documentation, available at
https://docs.python.org/3/library/tk.html.

[7] Windows register manual, for modifying register level
entry. Available at, https://help.comodo.com/topic-159-
1-290-3248-.html.

[8] Pretschner, A., et al.: One Evaluation of Model-Based
Testing and its Automation. In: Proc. International
Conference on Software Engineering, pp. 398–401
(2005).

[9] Dalal, S.R., et al.: Model-Based Testing in Practice. In:
Proc. International Conference on Software Engineering,
pp. 1–6 (1999).

[10] Bredereke, J., Schlingloff, B.: An automated, Flexible
Testing Environment for UMTS. In: Proc. 14th IFIP
TC6/WG 6.1 International Conference on Testing of
Communicating Systems, pp. 90–94 (2002).

[11] Heikkil¨a, T., Tenno, P., V¨a¨an¨anen, J.: Testing
Automation with Computer Aided Test Case Generation.
In: Proc. 14th IFIP TC6/WG 6.1 International Conference
on Testing of Communicating Systems, pp. 215–216
(2002).

[12] Chi, C., Hao, R.: Test Generation for Interaction Detection
in Feature-Rich Communication Systems. In: Proc. 17th
IFIP TC6/WG 6.1 International Conference, TestCom, pp.
242–257 (2005).

[13] Gamma, E., Beck, K.: JUnit specification (2006) available
at http://www.junit.org.

[14] Berner, S., et al.: Observations and Lessons Learned
from Automated Testing. In: Proc. International
Conference on Software Engineering, pp. 575–579
(2005).

[15] Xia, S., et al.: Automated Test Generation for Engineering
Applications. In: Proc. International Conference on
Automated Software Engineering, pp. 285–286 (2005).

[16] Ramler, R., Wolfmaier, K.: Economic Perspectives in Test
Automation: Balancing Automated and Manual Testing
with Opportunity Cost. In: Proc. International Workshop
on Automation of Software Test, pp. 88–91 (2006).

[17] Window Performance Analyzer Tool to analyze System
Performance.

