
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5632

Microservices and its Intercommunication using Kafka

V Ganesh Tejas1, Dr. Hemavathy R2

1Student, Dept. of Computer Science and Engineering, R V College of Engineering, Bengaluru, India
2Assistant Professor, Dept. of Computer Science and Engineering, R V College of Engineering, Bengaluru, India

---***---
Abstract - Microservices architecture is a software
architecture style where an application is decomposed to a
collection of services which are highly decoupled but are
capable of communicating with each other. The inter-
communication between these decoupled services can be
either synchronous or asynchronous. The asynchronous
communication can be achieved through Apache Kafka
software platform. This paper focuses on the Microservices
architecture and the inter-communication between the
microservices using Kafka.

Key Words: Microservice, Apache Kafka, API (Application
Programming Interface).

1. INTRODUCTION

Microservices architecture is the latest trend in the
service oriented architecture where an application is
modularized into a number of highly decoupled services,
where each service has a distinct functionality and operates
independently [5]. All the services are capable of
communicating with each other with clear boundaries
defined between them. These services work collectively
towards accomplishing the main task of the parent
application. One of the main benefits of this style of
architecture is that each service can be deployed
independently, which means that each of the different
services can be developed using different programming
languages, environments and tools. This makes it possible for
continuous delivery of software products and software
related services as each microservice is developed
independently and is loosely coupled with other
microservices. Modifications to any part of the application
requires modification only to one of the microservices
without disturbing other services. Hence microservices
architecture is a light weight, flexible and agile architecture
style.

Since all the microservices of an application work towards
the common goal, there is a requirement for these services to
communicate with each other. For example, the output of one
service could be the input for another service, in such cases
one service initiates the execution of another service. Such
communications are of mainly two types. First is
synchronous type of communication such as HTTP (Hyper
Text Transfer Protocol) request-response mode of
communication, where generally a REST (Representational
State Transfer) based API is defined. Second is asynchronous
type of communication [4] where we can use software
platform like Apache Kafka which acts as an intermediate

between the communicating services for asynchronous
communication. Kafka creates a pipeline between the
communicating services for communication [9]. We shall
discuss in detail further.

2. RELATED WORKS

Microservices architecture is a trending software
architecture style. Some of the related works follow.

Pooyan Jamshidi has listed out the various benefits of
microservices architecture [1], along with the challenges of
using this architecture style. Also the various approaches to
implement this type of architecture style and the evolution of
microservices based architecture are also discussed by him.

Chris Richardson has listed out the benefits of
microservices architecture by comparing it with the
conventional monolithic style of application development [2].
It is explained that the flexibility which microservices
architecture provides is highly benefitting as compared to the
rigidity of monolithic style of architecture.

There are many challenges of the microservices style of
development which are listed out by Dr. AndreFachatt [3].
One of the main challenges is the complexity in
communications between the services due to the
dependencies between the services. Also some advantages of
this style of design are also discussed.

 The asynchronous communication between
microservices can be achieved using AMQP (Advanced
Message Queuing Protocol) [4]. AMQP is an application layer
protocol mainly used for the purpose of asynchronous
communication. In this paper we are discussing about Apache
Kafka instead.

Microservices based software architecture at the abstract
level is to decompose an application to a number of highly
decoupled services. But there are many approaches how this
can be achieved. The architecture and its various approaches
are described in many related works [5] [6] and [7].

Shifting from traditional monolithic architecture to
microservices based architecture has its own challenges. But
the benefits of using microservices based architecture has an
upper hand over the challenges [8].

 3. INTRODUCTION TO MICROSERVICES ARCHITECTURE

3.1 Architectural Style

 In microservices style of architecture an application is
decomposed into a number of loosely coupled services,
developed and maintained independently [5]. This can be
observed in the Figure 1. These services can be developed in

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5633

different programming languages and deployed differently,
but all of the services work towards the common goal of
accomplishing the parent application task. Microservices of
an application are capable of communicating with each
other, but have clear boundaries defined between them.

3.2 Benefits of microservices architecture

 It is easier and faster to deploy microservices as
each service is developed and deployed
independently.

 It is easy to maintain microservices based
applications as any issue would be related to any
one of the services, we can fix the issue without
disturbing other services.

 There is an opportunity to use different
programming languages and software platforms to
develop different microservices.

 Microservices based architecture gives more
flexibility in terms of software release as we can
release the services independently.

 Since the application is modularized scaling
becomes very easy.

3.3 Challenges of microservices architecture

 The complexity in communication between the
services becomes high as the dependencies between
the services increase.

 Since each service acts as an independent
application, the requirement for resources like
storage and band-width is high.

 Testing of microservices based application is
difficult due to the disparities between the services.

 Cyclic dependencies arise easily causing problems
such as deadlocks.

Application

Service
A

Service
B

Service
D

Service
 C

DBDB DB DB

Fig-1: General overview of microservices architecture

4. ASYNCHRONOUS COMMUNICATION

In conventional synchronous mode of communication, we
have the request-response type of communication where
one service sends a request to another service, which replies
by sending the response. Example of such communication is
REST (Representational State Transfer) based APIs where
request and response are sent through HTTP (Hyper Text
Transfer Protocol). Here once the requesting service has sent
a request, it has to wait until the response has arrived. This
causes blocking of the execution of the requesting service.

To overcome this issue we can use asynchronous mode of
communication between the microservices [4]. In
asynchronous mode, a service can send another request
while awaiting for the response to a previous request. Hence
there is no blocking of the execution of the requesting
service. Asynchronous communications are mainly triggered
by ‘events’. So whenever an event is generated, the event
triggers the request or response. Hence, there is no blocking
of execution of services. Asynchronous communication
between services in a microservices based architecture can
be achieved using many tools, among which Apache Kafka is
one. It acts as an intermediate for communication between
services.

5. APACHE KAFKA

5.1 Introduction to Apache Kafka

Apache Kafka is an open source software platform which
was designed and developed by LinkedIn. It is now managed
by the Apache foundation [9]. It is a stream processing
platform which is a type of messaging platform which can
handle huge amounts of messages. It is a distributed platform
and works based on the ‘publish and subscribe’ model. In this
model there are two main entities, producer and consumer.
Producer is the one which produces the message or data and
consumer is the one which consumes the message or data. In
this model the producer publishes the messages to a data
stream, whereas the consumer is subscribed to the data
stream. Whenever the producer publishes messages to the
data stream, the consumer which is subscribed to the data
stream, processes the message or data. This data stream acts
as a broker between the producer and consumer for data
exchange.

There is no direct connection between the producer and
consumer, the message or data exchange between the
producer and consumer happens through the broker. When
the producer publishes message to the stream, this causes an
event that triggers the consumer to consume the data. Hence
we can conclude that this is an asynchronous mode of
communication as there is no blocking of execution here due
to the communication.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5634

5.2 Features of Apache Kafka

 Kafka can handle large amounts of messaging
streams easily.

 Kafka is a highly reliable software platform as it can
handle failures appropriately.

 Kafka is capable of giving a very high throughput
even for large amounts of messages.

 It is a highly durable software platform as it ensures
availability always with zero down time.

 Using Kafka we can make transformations to the
data coming from the producer by defining new
data streams.

6. INTER-SERVICE ASYNCHRONOUS
COMMUNICATION USING KAFKA

Intercommunication between the services in a
microservices architecture in asynchronous mode can be
achieved through Apache Kafka software platform.

In microservices architecture for asynchronous
communication between two services, we have the
requesting service as our consumer and the service which is
requested as the producer. This is mainly because the
message from the producer is consumed by the consumer.
Now there is no direct interaction between the two services,
instead there is a broker in between the two services for
message handling, which is Kafka. This can be observed in
Figure 2. Whenever two services need to interact, the service
which has to send the message pushes the message to the
Kafka broker which is called as ‘publishing’. The service
which needs to receive the message pulls it from the Kafka
broker. For this the service has to be subscribed to the Kafka
broker. As and when any message is published to the Kafka
broker, all the services subscribed to that Kafka broker gets
notified. Then services can pull the message from the Kafka
broker.

Since the messages or data can be of different types, we
can have different Kafka brokers for different types of
messages or data. Also within a Kafka broker we can have
partitions for different types of messages. Any service pulls
only messages of type to which they are subscribed. A
service can be subscribed to any number of types of
messages in a Kafka broker. In Kafka this message type is
called as ‘topic’. Each topic refers to a type of message. A
producer service can publish messages or data to more than
one topic and a consumer service can subscribe to more than
one topic based on the requirement.

Kafka
Broker

Kafka
Broker

Kafka
Broker

Consumer
Service

Consumer
Service

Consumer
Service

Producer
Service

Producer
Service

Producer
Service

Consumer
Service

Fig-2: Architecture of microservices with inter-service

communication using Kafka

We have three main components of Apache Kafka which
are required in our case for intercommunication between
services. First we have ‘Producer’ which is offered as an API
that allows a service to publish message or data to one or
more topics of Kafka broker. Second, we have the ‘Consumer’
which is offered as an API that allows the services to
subscribe to one or more topics of Kafka broker. Whenever
any message or data is published to the topics, the services
subscribed to those topics can pull the message or data and
process them. Third, we have ‘Streams’ which is offered as an
API that acts as a message or data processor that accepts data
from one topic, processes it and sends it to another topic of
Kafka broker. This is mainly required for transformation of
data between the topics of Kafka broker.

Some of the challenges in this architecture are, since each
service is an independent application itself, the requirement
for resources like memory, band-width and network is high.
Also with the use of Kafka for inter-service communication
monitoring the whole application is not easy.

7. CONCLUSION

The major conclusion which can be draw after all the
discussions in the previous sections is that, the discussed
asynchronous style for intercommunication between
services has an edge over the conventional synchronous
style. This is because asynchronous style of communication
does not block the execution of services, by avoiding the
process of waiting for a response and allows for sending one
or more requests at a time without having to wait for
response. Also the burden of message handling is now
removed at the microservice end as the Kafka broker now
handles the messages, providing great relief at the
microservice end.

REFERENCES

[1] Pooyan Jamshidi, Claus Pahl, Nabor C. Mendonça, James

Lewis and Stefan Tilkov, “Microservices: The Journey So
Far and Challenges Ahead,” IEEE Software(Volume: 35,
Issue: 3,May/June 2018) May 2018.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5635

[2] Chris Richardson of Eventuate,Inc.(May 2015),
Introduction to Microservices, viewed on 10 April 2020,
<https://www.nginx.com/blog/introduction-to-
microservices>

[3] Dr. Andre Fachatt (January 2019), Challenges and
benefits of the microservice architectural style,Part1,
viewed on 03 April 2020 ,
<https://developer.ibm.com/technologies/microservice
s/articles/challenges-and-benefits-of-the-microservice-
architectural-style-part-1>

[4] Faisal Masood (Sep 06 2018), viewed on 03 April 2020,
<https://dzone.com/articles/asynchronous-
communication-between-microservices-u>

[5] Xabier Larrucea, Izaskun Santamaria, Ricardo Colomo-
Palacios and Christof Ebert, “Microservices”, IEEE
Software (Volume: 35 , Issue: 3 , May/June 2018
),USA,2018,96-100.

[6] Kapil Bakshi, “Microservices-based software
architecture and approaches”,2017 IEEE Aerospace
Conference,Big Sky MT USA,2018.

[7] Paolo Di Francesco, “Architecting Microservices”, 2017
IEEE International Conference on Software Architecture
Workshops (ICSAW),Gothenburg,Sweden, April 2017.

[8] Arne Koschel, Irina Astrova and Jeramias Dötterl,
“Making the move to microservice architecture”, 2017
International Conference on Information Society (i-
Society),Dublin,Ireland, July 2017.

[9] John Hammink (Feb 2019), An Introdcution to Apache
Kafka, viewed on 03 April 2020, <
https://dzone.com/articles/an-introduction-to-apache-
kafka>

