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Abstract - Deep learning has dramatically increased the state 
of the art in Speech, Vision and many other areas. In fact, it is 
being applied in most of the fields from bio-medical to 
robotics. And all these deep learning models to perform 
inference needs lot of resources like large computation power 
since the device has to perform capturing data pre-process it 
then feed to neural network which has to perform large 
number of floating point operations varying from 3000 
floating point operations to billions of floating point 
operations depending on the complexity of the neural network. 
Deploying such a system with deep neural network in cloud is 
highly limited as more latency is introduced since there is a 
round trip to server, privacy risks as the data needs to leave 
the device, connectivity as the data need to be sent to server, 
power consumption as network connections are power 
hungry. All these problems could be overcome by deploying the 
deep learning model in the edge devices like microcontroller, 
mobile devices. We achieve this by quantizing the trained 
neural network which reduces the size as well as increase the 
speed at the same time, the performance is not compensated. 

Key Words: Deep learning, Quantization, Microcontroller, 
Neural Networks, TensorFlow Lite, Embedded System, ARM 
Processor, Artificial Intelligence. 

1. INTRODUCTION  

Currently, a variety of embedded system are deployed but 
the usage of neural networks is limited when it comes to 
embedded systems like microcontrollers. Household devices 
like Refrigerators, washing machines uses set of logic, rules 
for their automatic operations. By optimizing the network 
trained on a dataset traditional way of controlling can be 
replaced by intelligently monitoring the systems with the 
power of AI and neural networks. 

Deep learning is not only limited to Image data and Sequence 
predictions like in case of speech recognition. The deep 
learning technique is less explored on tabular data, but these 
ideas can be applied on tabular data. Artificial Neural 
Networks Applied to Taxi Destination Prediction paper 
propose to use DNN on tabular data “we used an almost fully 
automated approach based on neural networks and we ranked 
first out of 381 teams” [1]. Since we are using only dense 
networks we use He initialization [2] as compared with Xavier 
Initialization [3] for initializing the weights while training the 
network.  

“"overfitting" is greatly reduced by randomly omitting half of 
the feature detectors on each training case. This prevents 

complex co-adaptations in which a feature detector is only 
helpful in the context of several other specific feature 
detectors. Instead, each neuron learns to detect a feature that 
is generally helpful for producing the correct answer given the 
combinatorially large variety of internal contexts in which it 
must operate. Random "dropout" gives big improvements on 
many benchmark tasks” [4].  

The optimizers such as Adam [5], rms [6], LARS [7] leads for the 
faster convergence. “One of the key elements of super-
convergence is training with one learning rate cycle and a 
large maximum learning rate” [8]. To speed up training we use 
Batch Normalization [9]. 

We train the neural network to identify the gestures based 
on sensor inputs, combination of accelerometer and 
gyroscope found to work well for training as well as gives 
good accuracy at test time. The trained network is then 
optimized by reducing the redundant computations which 
do not contribute much to the model accuracy also the 
pruning is done to reduce the floating-point precision. All 
these redundant computation and reduction in floating point 
precision is done based on the representative dataset which 
is similar to that of data given to the model at the test time so 
that the desired accuracy is maintained even after 
optimization. 

This optimized trained neural network is converted into Flat 
buffer and this Flat buffer is converted into C array which 
can be integrated as header file and can be used to perform 
the classification task on the data collected from the sensor 
on to the board. 

2. EXPERIMENTAL SETUP 

We deploy the neural network on the edge device itself 
hence the data is read from the interfaced sensor using edge 
device, in this case we use Arduino UNO to read the data 
from MPU6050. MPU6050 is used for both dataset 
preparation and during the inference time. MPU6050 IMU 
has both 3-Axis accelerometer and 3-Axis gyroscope 
integrated on a single chip. It uses MEMS technology and the 
Coriolis Effect for measuring.  

The dataset is trained with neural network on Jupyter 
Notebook IDE in Tesla K80 GPU. TensorFlow is used for 
implementation of neural network. TensorFlow Lite for 
quantizing the network. 
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2.1 Preparation of dataset 

We combine the accelerometer and gyroscope to get very 
accurate information about the sensor orientation. 
Accelerometer and gyroscope values are read from 
MPU6050 using I2C communication protocol in Arduino Uno 
and this read data is sent serially to print on the serial 
monitor. MPU6050 is calibrated properly as it has the inbuilt 
errors.  

We take 30 samples of data to identify each gesture, we set 
some threshold on the measured data to distinguish between 
the performance of gesture and still position. Once the action 
of gesture starts the threshold is met and the values are 
printed with each value separated by comma and each 
sample is printed in new line this helps in conversion of data 
to CSV format which can be used for neural network training. 
Each gesture is performed several times and the printed 
values are copied to CSV file and each gesture are saved in 
different CSV file with gesture name.  

 

fig -1: accelerometer data 

 

fig -2: gyroscope data 

fig-1 represents how the value of acceleration varies in each 
sample while performing a particular gesture similarly fig-2 
represents gyroscope data. 

The CSV files are read as pandas DataFrame in python and 
normalization is done on the input data. The accelerometer 
values vary from -4 to +4 and gyroscope value varies from -
2000 to +2000 we normalize these values to vary between 0 
and 1 in order to make the training faster and to counter the 
problem of overshooting during optimization. Later 
normalized gesture data is saved in the form of array with 

shuffling the order of data and corresponding label’s one hot 
encoding is stored in another array. Shuffling is done in 
order to avoid problems like catastrophic forgetting.  

2.2 Training the Neural Network 

TensorFlow keras is used for implementation and training of 
the neural network. Since 30 samples are captured for each 
gesture performed we have 180 values for each gesture as 
one sample contains 6 values where gyroscope measures 
rate of change of the angular position over time, along the X, 
Y and Z axis and accelerometer measures gravitational 
acceleration along the 3 axes. All these 180 inputs are fed 
into dense neural network with first hidden layer having 50 
hidden units and ReLU as the activation function and the 
second layer has 15 hidden units and ReLU as activation the 
final output layer has hidden units based on number of 
unique gestures. 

 

fig -3: Neural network architecture 

Table -1: Network structure 

Model structure and parameters 

Layer  Output shape NO. of parameters 

Dense_1 (None, 1, 50) 9050 

Dense_2 (None, 1, 15) 765 

Output  (None, 1, 2) 32 

Total params: 9,847 
Trainable params: 9,847 
Non-trainable params: 0 
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The model was trained using ‘rmsprop’ optimizer for 600 
epochs by which the validation loss was saturated to very 
low value. Categorical cross entropy is used as a loss 
function and the network is optimized based on that 
categorical cross entropy is SoftMax activation plus a cross 
entropy loss.  

SoftMax function is given by, 

 

Where C represents total number of class and sj are the score 
inferred by the neural network for each class in C. 

Hence categorical cross entropy is given by, 

  

 

fig -4: Variation of loss during training 

fig-4 shows how the loss varied with epochs during training 
and we observe that both training and validation loss reach 
saturation by 200 epochs. 

 

fig -5: Variation of accuracy during training 

fig-5 shows how accuracy varied during training and we 
observe that the accuracy reaches its saturation by 100 
epochs. 

Table -2: Network results after training 

Final loss and accuracy 

 accuracy loss 

Training 1.0000 0.0000e+00 

validation 0.9167 0.3393 

 
From table-2 we see that the neural network has very low 
validation loss and high training and validation accuracy 
implying that the network has learnt to perform the task 
well.  

The model was trained on Tesla K80 GPU which can do up to 
8.73 Teraflops single-precision and up to 2.91 Teraflops 
double-precision performance with NVIDIA GPU Boost. This 
network gives a validation accuracy of 91.67 %. 

3. QUANTIZATION 

The trained model requires very high memory and 
computation power. This is quantized in order to reduce 
memory and computation power using TensorFlow lite.  

The trained model is of 113 kilo bytes which is very hard to 
fit into microcontrollers as ARM cortex M3 generally have 64 
Kilo bytes of RAM. So, this model is quantized by reducing 
the floating-point precision of all the weights of the neural 
network from 64 bits to 16/32 bits. 

Pruning of parameters is done properly using the 
representative dataset during the model optimization i.e., 
reduce parameter count by structured pruning.  

TensorFlow lite converts model to Flat buffer format(.tflite), 
the flat buffer is converted into C byte array in the form of 
simple C file. The converted “.h” format file could be used in 
embedded c program. “.tflite” model can be deployed on 
Raspberry pi as well. This model can use the additional 
computational resources like Neural compute stick if present 
in Raspberry pi. 
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fig -6: Reduction in size 

After Quantization the model size reduced to 14008 bytes 
which is approximately 13% of the initial size. Comparison 
of sizes is shown in fig-6. The size could be still reduced if the 
floating-point weights are converted to integer, but the 
accuracy of the model becomes less in that case. 

 

fig -7: avg. Categorical cross entropy loss 

In rare cases, certain models may gain some accuracy as a 
result of the optimization process” [19]. In the network we 
have built the overall accuracy i.e., on both training and 
validation set remains same as that of main model but the 
average loss (categorical cross entropy) of optimized model 
decreases slightly. The main model has an average loss of 

0.23845186 and the average loss of optimized model 
reduced to 0.23622063 (fig-7). 

4. DEPLOYMENT 

The normal microcontroller like atmega328 which is present 
in Arduino UNO cannot use TensorFlow library since it could 
not fulfil the dependencies required and due to limited 
oscillator frequency, RISC architecture. Hence the model is 
deployed on advanced microcontrollers like ARM cortex M3 
and the board must be supported by TensorFlow. 

We ran the quantized model in the emulated environment to 
analyze its performance. We used Jupyter notebook 
configured with python 3.6 background. Serial 
communication between Jupyter notebook and the Arduino 
UNO is established using the Pyserial library in python.  

The data from the MPU6050 is received using Arduino UNO 
and it is transmitted serially to python environment where 
the model is running. After receiving the specified number of 
samples new line character is sent which indicates the end of 
samples required for classification. This data is fed to 
quantized neural network which performs classification in 
emulated environment and displays the output. 

5. CONCLUSION AND DISCUSSION 

The optimized model deployed was able to do the 
classification of gesture with the desired accuracy and speed 
there by reducing the latency and size. 

The problem of size could be overcome by optimizing the 
neural network still the highly complicated networks with 
more size could not be optimized to deploy on edge devices 
like microcontroller and during the implementation of the 
network only subset of operations should be used as every 
operation cannot be optimized. 
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