
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 1034

Optimizing Neural Networks for Embedded Systems

Ranjith M S1, Dr. S Parameshwara2

1Student, Dept. of ECE, National Institute of Engineering, Mysuru, India
2Associate Professor, Dept. of ECE, National Institute of Engineering, Mysuru, India

---***---
Abstract - Deep learning has dramatically increased the state
of the art in Speech, Vision and many other areas. In fact, it is
being applied in most of the fields from bio-medical to
robotics. And all these deep learning models to perform
inference needs lot of resources like large computation power
since the device has to perform capturing data pre-process it
then feed to neural network which has to perform large
number of floating point operations varying from 3000
floating point operations to billions of floating point
operations depending on the complexity of the neural network.
Deploying such a system with deep neural network in cloud is
highly limited as more latency is introduced since there is a
round trip to server, privacy risks as the data needs to leave
the device, connectivity as the data need to be sent to server,
power consumption as network connections are power
hungry. All these problems could be overcome by deploying the
deep learning model in the edge devices like microcontroller,
mobile devices. We achieve this by quantizing the trained
neural network which reduces the size as well as increase the
speed at the same time, the performance is not compensated.

Key Words: Deep learning, Quantization, Microcontroller,
Neural Networks, TensorFlow Lite, Embedded System, ARM
Processor, Artificial Intelligence.

1. INTRODUCTION

Currently, a variety of embedded system are deployed but
the usage of neural networks is limited when it comes to
embedded systems like microcontrollers. Household devices
like Refrigerators, washing machines uses set of logic, rules
for their automatic operations. By optimizing the network
trained on a dataset traditional way of controlling can be
replaced by intelligently monitoring the systems with the
power of AI and neural networks.

Deep learning is not only limited to Image data and Sequence
predictions like in case of speech recognition. The deep
learning technique is less explored on tabular data, but these
ideas can be applied on tabular data. Artificial Neural
Networks Applied to Taxi Destination Prediction paper
propose to use DNN on tabular data “we used an almost fully
automated approach based on neural networks and we ranked
first out of 381 teams” [1]. Since we are using only dense
networks we use He initialization [2] as compared with Xavier
Initialization [3] for initializing the weights while training the
network.

“"overfitting" is greatly reduced by randomly omitting half of
the feature detectors on each training case. This prevents

complex co-adaptations in which a feature detector is only
helpful in the context of several other specific feature
detectors. Instead, each neuron learns to detect a feature that
is generally helpful for producing the correct answer given the
combinatorially large variety of internal contexts in which it
must operate. Random "dropout" gives big improvements on
many benchmark tasks” [4].

The optimizers such as Adam [5], rms [6], LARS [7] leads for the
faster convergence. “One of the key elements of super-
convergence is training with one learning rate cycle and a
large maximum learning rate” [8]. To speed up training we use
Batch Normalization [9].

We train the neural network to identify the gestures based
on sensor inputs, combination of accelerometer and
gyroscope found to work well for training as well as gives
good accuracy at test time. The trained network is then
optimized by reducing the redundant computations which
do not contribute much to the model accuracy also the
pruning is done to reduce the floating-point precision. All
these redundant computation and reduction in floating point
precision is done based on the representative dataset which
is similar to that of data given to the model at the test time so
that the desired accuracy is maintained even after
optimization.

This optimized trained neural network is converted into Flat
buffer and this Flat buffer is converted into C array which
can be integrated as header file and can be used to perform
the classification task on the data collected from the sensor
on to the board.

2. EXPERIMENTAL SETUP

We deploy the neural network on the edge device itself
hence the data is read from the interfaced sensor using edge
device, in this case we use Arduino UNO to read the data
from MPU6050. MPU6050 is used for both dataset
preparation and during the inference time. MPU6050 IMU
has both 3-Axis accelerometer and 3-Axis gyroscope
integrated on a single chip. It uses MEMS technology and the
Coriolis Effect for measuring.

The dataset is trained with neural network on Jupyter
Notebook IDE in Tesla K80 GPU. TensorFlow is used for
implementation of neural network. TensorFlow Lite for
quantizing the network.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 1035

2.1 Preparation of dataset

We combine the accelerometer and gyroscope to get very
accurate information about the sensor orientation.
Accelerometer and gyroscope values are read from
MPU6050 using I2C communication protocol in Arduino Uno
and this read data is sent serially to print on the serial
monitor. MPU6050 is calibrated properly as it has the inbuilt
errors.

We take 30 samples of data to identify each gesture, we set
some threshold on the measured data to distinguish between
the performance of gesture and still position. Once the action
of gesture starts the threshold is met and the values are
printed with each value separated by comma and each
sample is printed in new line this helps in conversion of data
to CSV format which can be used for neural network training.
Each gesture is performed several times and the printed
values are copied to CSV file and each gesture are saved in
different CSV file with gesture name.

fig -1: accelerometer data

fig -2: gyroscope data

fig-1 represents how the value of acceleration varies in each
sample while performing a particular gesture similarly fig-2
represents gyroscope data.

The CSV files are read as pandas DataFrame in python and
normalization is done on the input data. The accelerometer
values vary from -4 to +4 and gyroscope value varies from -
2000 to +2000 we normalize these values to vary between 0
and 1 in order to make the training faster and to counter the
problem of overshooting during optimization. Later
normalized gesture data is saved in the form of array with

shuffling the order of data and corresponding label’s one hot
encoding is stored in another array. Shuffling is done in
order to avoid problems like catastrophic forgetting.

2.2 Training the Neural Network

TensorFlow keras is used for implementation and training of
the neural network. Since 30 samples are captured for each
gesture performed we have 180 values for each gesture as
one sample contains 6 values where gyroscope measures
rate of change of the angular position over time, along the X,
Y and Z axis and accelerometer measures gravitational
acceleration along the 3 axes. All these 180 inputs are fed
into dense neural network with first hidden layer having 50
hidden units and ReLU as the activation function and the
second layer has 15 hidden units and ReLU as activation the
final output layer has hidden units based on number of
unique gestures.

fig -3: Neural network architecture

Table -1: Network structure

Model structure and parameters

Layer Output shape NO. of parameters

Dense_1 (None, 1, 50) 9050

Dense_2 (None, 1, 15) 765

Output (None, 1, 2) 32

Total params: 9,847
Trainable params: 9,847
Non-trainable params: 0

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 1036

The model was trained using ‘rmsprop’ optimizer for 600
epochs by which the validation loss was saturated to very
low value. Categorical cross entropy is used as a loss
function and the network is optimized based on that
categorical cross entropy is SoftMax activation plus a cross
entropy loss.

SoftMax function is given by,

Where C represents total number of class and sj are the score
inferred by the neural network for each class in C.

Hence categorical cross entropy is given by,

fig -4: Variation of loss during training

fig-4 shows how the loss varied with epochs during training
and we observe that both training and validation loss reach
saturation by 200 epochs.

fig -5: Variation of accuracy during training

fig-5 shows how accuracy varied during training and we
observe that the accuracy reaches its saturation by 100
epochs.

Table -2: Network results after training

Final loss and accuracy

 accuracy loss

Training 1.0000 0.0000e+00

validation 0.9167 0.3393

From table-2 we see that the neural network has very low
validation loss and high training and validation accuracy
implying that the network has learnt to perform the task
well.

The model was trained on Tesla K80 GPU which can do up to
8.73 Teraflops single-precision and up to 2.91 Teraflops
double-precision performance with NVIDIA GPU Boost. This
network gives a validation accuracy of 91.67 %.

3. QUANTIZATION

The trained model requires very high memory and
computation power. This is quantized in order to reduce
memory and computation power using TensorFlow lite.

The trained model is of 113 kilo bytes which is very hard to
fit into microcontrollers as ARM cortex M3 generally have 64
Kilo bytes of RAM. So, this model is quantized by reducing
the floating-point precision of all the weights of the neural
network from 64 bits to 16/32 bits.

Pruning of parameters is done properly using the
representative dataset during the model optimization i.e.,
reduce parameter count by structured pruning.

TensorFlow lite converts model to Flat buffer format(.tflite),
the flat buffer is converted into C byte array in the form of
simple C file. The converted “.h” format file could be used in
embedded c program. “.tflite” model can be deployed on
Raspberry pi as well. This model can use the additional
computational resources like Neural compute stick if present
in Raspberry pi.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 1037

fig -6: Reduction in size

After Quantization the model size reduced to 14008 bytes
which is approximately 13% of the initial size. Comparison
of sizes is shown in fig-6. The size could be still reduced if the
floating-point weights are converted to integer, but the
accuracy of the model becomes less in that case.

fig -7: avg. Categorical cross entropy loss

In rare cases, certain models may gain some accuracy as a
result of the optimization process” [19]. In the network we
have built the overall accuracy i.e., on both training and
validation set remains same as that of main model but the
average loss (categorical cross entropy) of optimized model
decreases slightly. The main model has an average loss of

0.23845186 and the average loss of optimized model
reduced to 0.23622063 (fig-7).

4. DEPLOYMENT

The normal microcontroller like atmega328 which is present
in Arduino UNO cannot use TensorFlow library since it could
not fulfil the dependencies required and due to limited
oscillator frequency, RISC architecture. Hence the model is
deployed on advanced microcontrollers like ARM cortex M3
and the board must be supported by TensorFlow.

We ran the quantized model in the emulated environment to
analyze its performance. We used Jupyter notebook
configured with python 3.6 background. Serial
communication between Jupyter notebook and the Arduino
UNO is established using the Pyserial library in python.

The data from the MPU6050 is received using Arduino UNO
and it is transmitted serially to python environment where
the model is running. After receiving the specified number of
samples new line character is sent which indicates the end of
samples required for classification. This data is fed to
quantized neural network which performs classification in
emulated environment and displays the output.

5. CONCLUSION AND DISCUSSION

The optimized model deployed was able to do the
classification of gesture with the desired accuracy and speed
there by reducing the latency and size.

The problem of size could be overcome by optimizing the
neural network still the highly complicated networks with
more size could not be optimized to deploy on edge devices
like microcontroller and during the implementation of the
network only subset of operations should be used as every
operation cannot be optimized.

REFERENCES

[1] Alexandre de Brébisson, Étienne Simon, Alex
Auvolat, Pascal Vincent, Yoshua Bengio. Artificial
Neural Networks Applied to Taxi Destination
Prediction. arXiv:1508.00021v2 [cs.LG]

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
Delving Deep into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification

[3] Bengio, Yoshua and Glorot, Xavier. Understanding
thedifficulty of training deep feedforward neural
networks.InProceedings of AISTATS 2010, volume
9, pp. 249–256, May 2010.

[4] Geoffrey E. Hinton, Nitish Srivastava, Alex
Krizhevsky, Ilya Sutskever, Ruslan R. Salakhutdinov
Improving neural networks by preventing co-
adaptation of feature detectors arXiv:1207.0580v1
[cs.NE]

https://arxiv.org/search/cs?searchtype=author&query=de+Br%C3%A9bisson%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Simon%2C+%C3%89
https://arxiv.org/search/cs?searchtype=author&query=Auvolat%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Auvolat%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Vincent%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Bengio%2C+Y
https://arxiv.org/abs/1508.00021v2
https://arxiv.org/search/cs?searchtype=author&query=He%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Zhang%2C+X
https://arxiv.org/search/cs?searchtype=author&query=Ren%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Sun%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Hinton%2C+G+E
https://arxiv.org/search/cs?searchtype=author&query=Srivastava%2C+N
https://arxiv.org/search/cs?searchtype=author&query=Krizhevsky%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Krizhevsky%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Sutskever%2C+I
https://arxiv.org/search/cs?searchtype=author&query=Salakhutdinov%2C+R+R
https://arxiv.org/abs/1207.0580v1

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 1038

[5] Diederik P. Kingma, Jimmy Ba. Adam: A Method for
Stochastic Optimization. arXiv:1412.6980v9 [cs.LG]

[6] Geoffrey Hinton. 2012. Neural Networks for
MachineLearning - Lecture 6a - Overview of mini-
batch gradi-ent descent.

[7] Yang You, Igor Gitman, Boris Ginsburg. Large Batch
Training of Convolutional Networks.
arXiv:1708.03888v3 [cs.CV]

[8] Leslie N. Smith, Nicholay Topin. Super-Convergence:
Very Fast Training of Neural Networks Using Large
Learning Rates. arXiv:1708.07120v3 [cs.LG]

[9] Sergey Ioffe, Christian Szegedy. Batch
Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift.
arXiv:1502.03167v3 [cs.LG]

[10] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A.,
Dean, J., Devin, M., Ghemawat, S.,Irving, G., Isard, M.,
Kudlur, M., Levenberg, J., Monga, R., Moore, S.,
Murray, D. G.,Steiner, B., Tucker, P., Vasudevan, V.,
Warden, P., Wicke, M., Yu, Y., and Zheng, X.
TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems.
arXiv:1603.04467 [cs.DC]

[11] J. D. Hunter, "Matplotlib: A 2D Graphics
Environment", Computing in Science & Engineering,
vol. 9, no. 3, pp. 90-95, 2007.

[12] Plotly Technologies Inc. (2015). Collaborative data
science. Montreal, QC: Plotly Technolo-gies Inc.

[13] Tockn. MPU6050_tockn: Arduino library for easy
communicating with the MPU6050. GitHub
repository. Retrieved from
https://github.com/tockn/MPU6050_tockn+

[14] Arduino. (2019). ArduinoTensorFlowLiteTutorials.
GitHub repository. Retrieved from
https://github.com/arduino/ArduinoTensorFlowLi
teTutorials

[15] TensorFlow Lite inference. Retrieved from
https://www.tensorflow.org/lite/guide/inference

[16] TensorFlow model optimization. Retrieved from
https://www.tensorflow.org/model_optimization/g
uide

[17] TensorFlow Model Optimization Toolkit — float16
quantization halves model size — The TensorFlow
Blog. Retrieved from
https://blog.tensorflow.org/2019/08/tensorflow-
model-optimization-toolkit_5.html

[18] TensorFlow Lite for Microcontrollers. Retrieved
from
https://www.tensorflow.org/lite/microcontrollers

[19] Model optimization | TensorFlow Lite. Retrieved
from
https://www.tensorflow.org/lite/performance/mo
del_optimization

https://arxiv.org/search/cs?searchtype=author&query=Kingma%2C+D+P
https://arxiv.org/search/cs?searchtype=author&query=Ba%2C+J
https://arxiv.org/abs/1412.6980v9
https://arxiv.org/search/cs?searchtype=author&query=You%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Gitman%2C+I
https://arxiv.org/search/cs?searchtype=author&query=Ginsburg%2C+B
https://arxiv.org/abs/1708.03888v3
https://arxiv.org/search/cs?searchtype=author&query=Smith%2C+L+N
https://arxiv.org/search/cs?searchtype=author&query=Topin%2C+N
https://arxiv.org/abs/1708.07120v3
https://arxiv.org/search/cs?searchtype=author&query=Ioffe%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Szegedy%2C+C
https://arxiv.org/abs/1502.03167v3
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://github.com/tockn/MPU6050_tockn
https://www.tensorflow.org/lite/microcontrollers

