

Design and Analysis of a G+4 Commercial Building by Using STAAD PRO

Kumar Gourav Shakya¹, Dipti Shakya²

¹Lecturer & I/C Head, Department Of Civil Engineering ,G.T Govt. Polytechnic College Jaora Ratlam, MP India ²Guest Lecturer, Department Of Civil Engineering, Govt. Polytechnic College Bhind, MP India

Abstract - The main objective of this project is to design a G+4 commercial building with verandah by using STAAD PRO V8i. The design includes load calculation and analysis of structure by using STAAD Pro software and input generated AUTO CAD based file. In this project we had analysis G+4 commercial building in "L" shape and find out shear force, bending moment, deflection, maximum absolute and reinforcement details of different component of the structure. The load applied on structure are Dead Load, Live Load and total height of the building is 15 m and area of each floor is approximate 381.52 m².

Key Words: STAAD PRO, Design and analysis, AUTO CAD planning, Dead Load, Live load, Shear force, Bending Moment and Max. Absolute on plate.

1. INTRODUCTION

STAAD-PRO is a structural analysis design software, it includes a state of the art user interface, visualization tools and international design codes. It is used 3D models generation, analysis and multi material design, the commercial version of STAAD PRO supports several steel, concrete and timber design codes, it is the software application created to help structural engineer to automate their task and remove the tedious and long procedure of the manual calculation for designing method. In this project there is a commercial building G+4 in "L" shape having 8 rooms in one direction and 6 rooms in other direction of size 3.8×4.35 m with verandah on both direction.

2. OBJECTIVE

- Creating layout plan of building on AUTO-CAD software and model of structure on STAAD-PRO.
- To carry out various load cases (DL, LL) applied on structure.

Fig-1 Plan of commercial building

3. METHODOLOGY

3.1 Modeling :

Preparing model of structure by using STAAD PRO software.

Fig-2 3D modeling with fixed support from STAAD PRO

Fig-3 3D rendering from STAAD PRO

3.2 Calculation of load :

Dead Load calculation includes self-weight factor 1 KN/m, member load i.e. wall load 5 KN/m in GY direction and

member load i.e. parapet wall load 1.5 KN/m in GY direction.

Live load includes floor load in global Y direction range min 0 max 15 is 1.5 $KN/m^{2.}$

3.3 Analysis and design :

Analysis of bending moment, shear force, deflection and maximum absolute of beam, column and slab.

1	Type of building	L shape Multi story commercial building					
2	Number of stories	G+4 (5 storey's)					
3	Floor height	3.0m					
4	Material	Concrete (M25) and Steel (Fe 500)					
5	Size of column	0.40m×0.50m					
6	Size of beam	0.40m×0.40m					
7	Dead load	SW 1KN/m Wall load 5 KN/m in GY direction Parapet wall load 1.5 KN/m in GY direction					
8	Live load	Floor load 1.5 KN/m ² in GY direction min 0 m to max 15 m					
9	Size of wall	20 cm thick					
10	Plates thickness	130 mm					

Table-1: Building Data

Step – 1 Creation of nodal point based on the column positioning of plan we entered the node points into the STAAD file.

Step – 2 Representation of beam and column, by using add beam command to draw the beam and column between the corresponding node points.

Step – 3 Now go to 3D view of structure for it we have used the transitional repeat command in global direction Y to get the 3D view of structure.

Step – 4 From STAAD pro modes in modeling menu select general go to support and property assigning after the creation of structure the support at the base of structure are specified at fixed. Also the material were specified and cross section of beam and column members was assigned.

Step – 5 3D rendering view. After assigning the property the 3D rendering view of the structure can be shown.

Step-6Assigning of dead loads. Dead load are calculated as per IS875 PART 1 for external walls, internal walls, parapet wall including self-weight of the structure.

Step-7 Assigning live loads. Live load are for every floor 1.5 KN/m² based on IS 875 PART 2.

Step-8 Adding of load combination. After assigning all the loads, the load combination are given with suitable factor of safety as per IS 875 PART 5.

Step-9 Analysis after the completion of all the above steps we have performed the analysis and cheeked for error and warning.

Step-10 Design finally concrete design is performed as per IS 456:2000 by defining suitable design commands for different structural components. After the assigning of commands again we performed analysis for any error and warning.

Step-11 Finally from the STAAD tool bar go to STAAD output print the whole structure analysis report.

Fig-4 When dead load is applied

Fig-5 When live load is applied

Fig-6 Displacement of structure

Fig-7 Max absolute on plate

 ${\bf Fig-8}$ Bending moment in Z and Shear force in Y direction

4. RESULT

	Beam	LC	Note	fi I	fy M	fz 18	Ha kilm	My kim	Wz kim
Wex Fx	- 21	101	- 41 -	1576738	-1773	1.965	-2016	-1.754	475
lin Fx	23	10.	24	-1229	11,118	409	-0.159	8219	153
liter Fy	64	101	215	-1.455	\$1.534	-4.235	-4.577	124	展開
lin Fy	67	101	ZŠ	4273	-37.610	-0.122	0.568	-\$137	4952
Wax Fz	519	101	215	\$1691	1649	12.528	-0.038	-16.401	-464
life F2	54	101	ZŚ	64,610	-3250	-15.394	-0.107	20.265	-563
list lite	587	101	254	-1 323	9.953	0.436	2,457	-1.726	10.08
能散	56	101	271	3258	0.386	-135	-2428	2017	-1228
liz: Ily	519	101	253	79.554	1649	12 629	-0.038	21,485	-255
lit by	54	101	273	51.473	-3250	-15.334	-4.107	-8.62	415
Nex No.	-64	101	215	-1.455	61.634	-4.215	-4.577	0.284	66.11
節妝	64	101	25	-1.455	38,765	-425	-4577	-4.305	-8.1

Fig-9 Geometry of Beam

Fig-10 Reinforcement design of Beam

 International Research Journal of Engineering and Technology (IRJET)

 Volume: 07 Issue: 04 | Apr 2020

 www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Fig-11 Reinforcement design of Column

5. CONCLUSION

- The structure is completely analyzed using STAAD PRO v8i.
- Proposed sizes of the elements can be used in the structure.
- The structural components of the building are safe in shear and flexure.
- Also check the deflection of various member under the given loading combination.
- Very less space is required for the storage of the data.
- It is simple to change the value at the place where error occurred and the obtained result are generated in the data.
- Structure model can viewing in both 2D & 3D situation.

6. REFERENCES

- [1] Analysis and design of Multistorey building by using STAAD PRO INTERNATIONAL RESERCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET), volume 03, issue 06 June 2016 page 887 to 891.
- [2] Design and analysis of High-Rise building using STAAD PRO SSRG INTERNATIONAL JOURNAL OF CIVIL ENGINEERING (SSRG-IJCE) volume 6 issue 6 June 2019 page 7 to 14.
- [3] Analysis and designing of a high rise building (G+10) BY STAAD PRO INTERNATIONAL JOPURNAL OF CIVIL ENGINEERING AND TECHNOLOGY (IJCIET) volume 8,issue 4 April 2017 PP 654-658.
- [4] Planning analysis and design of multi storied building by STAAD PRO V8i INTERNATIONAL JOURNAL OF SCEINTIFIC & ENGINEERING RESERCH volume 7, issue 4 April 2016.
- [5] IS CODE 456-2000, IS 875-PART1, IS 875- PART 2
- [6] Civil Engineering Hand Book By P,N KHANNA

7. BIOGRAPHIES

KUMAR GOURAV SHAKYA Lecturer & i/c Head Department of civil engineering Govt. G.T Polytechnic college Jaora Ratlam (MP) India.

DIPTI SHAKYA Guest Lecturer Department of civil engineering Govt. Polytechnic college Bhind (MP) India.