
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
p-ISSN: 2395-0072 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 2168

APPROXIMATE UNSIGNED MULTIPLIER WITH VARIED ERROR RATE

S.MEHATHAB1, O.HOMA KESAV2

1PG Student, Dept. of ECE, Annamacharya Institute of Technology and Sciences Kadapa, Andhra Pradesh, India
2Assistant Professor, Dept. of ECE, Annamacharya Institute of Technology and Sciences Kadapa,

Andhra Pradesh, India
---***--

ABSTRACT- In many of today’s applications like digital
signal processing, image processing etc, multipliers,
address play significant role especially approximate
circuits. As these circuits improve performance and are
energy efficient with loss of some accuracy. In this paper, an
approximate multiplier is proposed for high-performance
DSP application with improved delay and area. This
approximate multiplier limits the carry propagation for
fast partial product accumulation, and this can be done
with two techniques namely OR gate and proposed
approximate adder in configurable error recovery circuit.
Compared to Wallace multiplier. These two multipliers
achieve better accuracy and 62% reduction delay and 39%
reduction in area. This can also be used in a 16*16 design
with concept of truncation, applied for two techniques
reduced to half of the least significant partial products.
Compared with Wallace multiplier these can save 50% to
60% of energy. Compared with existing approximate
multipliers, proposed one’s show significant advantages in
accuracy and low area delay products. Image processing
applications, including image sharpening and smoothing,
are considered to show the quality of approximate
multipliers in error-tolerant applications.

Index terms: Approximate circuits, adder, multiplier,
error recovery, image processing.

1. INTRODUCTION:

Approximate Computing (AC) is a wide spectrum of
techniques that relax the accuracy of computation in
order to improve performance, energy, and/or another
metric of merit. AC exploits the fact that several
important applications, like machine learning and
multimedia processing, do not require precise results to
be useful. For instance, we can use a lower resolution
image encoder in applications where high-quality images
are not necessary. In a data centre, this may lead to large
savings in the amount of required processing, storage and
communication band width.

Nowadays, the majority of our computations are being
done either on mobile devices or in large data centres
(think of cloud computing). Both platforms are sensitive
to power consumption. That is, it would be nice if we can

extend the operation time of smartphones and other
battery powered devices before the next recharge. We
know that applying any lossy compression algorithm
(JPEG for example) to a raw image will result in an
approximate image. Such compression often comes (by
design) with little human perceptible loss in image
quality. Also, image encoders usually have tuneable
algorithmic knobs, like compression level, to trade off
image size with its quality. Therefore, strict exactness
may not be required and an inaccurate result may be
sufficient due to the limitation of human perception. As
one of the key components in arithmetic circuits, adders
are studied for approximate implementation. As the carry
propagation chain is usually shorter than the width of an
adder, the hypothetical adders use a reduced number of
less significant input bits to calculate the sum bits. In [15],
approximate 4 × 4 and 8 × 8 bit Wallace multipliers are
designed by using a carry-in prediction method. Then,
they are used in the design of approximate 16 × 16
Wallace multipliers, referred to as AWTM. The AWTM is
configured into four different modes by using a different
number of approximate 4 × 4 and 8 × 8 multipliers. These
approximate multipliers are designed for unsigned
operation. Signed multiplication is usually implemented
by using a Booth algorithm. Approximate designs have
been proposed for fixed width Booth multipliers.

The proposed multiplier can be configured into two
designs by using OR gates and the proposed approximate
adders for error reduction, which can be referred as
approximate multipliers M1 and M2 respectively.
Different levels of error recovery can also be achieved by
using a different number of MSBs for error recovery in
both multipliers. As per the analysis, the proposed
multipliers have significantly shorter critical paths and
lower power dissipation than the traditional Wallace
multiplier. Functional and circuit simulations are
performed to evaluate the performance of the multipliers.
Image sharpening and smoothing are considered as
approximate multiplication-based DSP applications.
Experimental results indicate that the proposed
approximate multipliers perform well in these error-
tolerant applications. The proposed designs can be used

http://www.irjet.net/

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
p-ISSN: 2395-0072 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified

as effective library cells for the synthesis of approximate
circuits.

1.1. The Approximate Adder

The design of a new approximate adder is shown. This
adder operates on a set of pre-processed inputs. The input
pre-processing (IPP) is based on the commutativity of bits
with the same weights in different addends. For example,
consider two sets of inputs to a 4-bit adder: i) A = 1010, B
= 0101 and ii) A = 1111, B = 0000. Clearly, the additions
in i) and ii) produce the same result. In this process, the
two input bits Ai Bi = 01 is equal to Ai Bi = 10 (with i being
the bit index) due to the commutativity of the
corresponding bits in the two operands. The basic rule for
the IPP is to switch Ai and Bi if Ai = 0 and Bi = 1 (for any
i), while keeping the other combinations (i.e., Ai Bi = 00,
10 and 11) unchanged. By doing so, more 1’s are expected
in A and more 0’s are expected in B. If A˙i B˙ i are the ith
bits in the pre-processed inputs, the IPP functions are
given by:

Let A−1 = B−1 = 0 when i is 0, thus, S0 = A0 ⊕ B0 and E0 =
0. Also, Ei = 0 when Ai−1 or Bi−1 is 0. Consider an n-bit
adder, the inputs are given by A = An−1 ··· A1A0 and B = Bn−1

··· B1B0, the exact sum is S = Sn−1 ···S1S0. Then, Si can be
computed as Si + Ei and thus, the exact sum of A and B is
given by

S = S + E. (7)

In (7) ‘+’ means the addition of two binary numbers
rather than the ‘OR’ function. The error E is always non-
negative and the approximate sum is always equal to or
smaller than the accurate sum. This is an important
feature of this adder because an additional adder can be
used to add the error to the approximate sum as a
compensation step. While this is intuitive in an adder
design, it is a particularly useful feature in a multiplier
design as only one additional adder is needed to reduce
the error in the final product.

Ai= Ai + Bi (1)

Bi = Ai Bi (2)

Equations (1) and (2) compute the propagate and
generate signals used in a parallel adder such as the carry
lookahead adder (CLA). The proposed adder can process
data in parallel by reducing the carry propagation chain.
Let A and B denote the two input binary operands of an
adder, S be the sum result, and E represent the error
vector. Ai , Bi , Si and Ei are the ith least significant bits of
A, B, S and E, respectively. A carry propagation chain
starts at the ith bit when B˙i = 1, A˙i+1 = 1, B˙i+1 = 0. In an
accurate adder, Si+1 is 0 and the carry propagates to the
higher bit. In the proposed approximate adder, Si+1 is set
to 1 and an error signal is generated as Ei+1 = 1. This stops
the carry signal from propagating to the higher bits.
Hence, a carry signal is produced only by the generate
signal, i.e., Ci = 1 only when B˙i = 1, and it only propagates
to the next higher bit, i.e., the (i +1)th position.The logical
functions are given by

Si = B˙i−1 + B˙i A˙i, (3)

Ei = B˙i B˙i−1 A˙i . (4)

By replacing A˙i and B˙i using (1) and (2) respectively, the
logic functions with respect to the original inputs are
given by

Si = (Ai ⊕ Bi) + Ai−1Bi−1, (5)

Ei = (Ai ⊕ Bi) Ai−1Bi−1, (6)

where i is the bit index, i.e., i = 0, 1,··· , n for an n-bit adder.

Fig : the approximate adder cell.

1.2. Proposed Approximate Multiplier

An important feature of the proposed approximate

multiplier is the simplicity to use approximate adders in

the partial product accumulation. The resulting design

has a critical path delay that is shorter than a conventional

one-bit full adder, because the new n-bit adder can

process data in parallel. The approximate adder has a

rather high error rate, but the feature of generating both

the sum and error signals at the same time reduces errors

in the final product. An adder tree is utilized for partial

product accumulation; the error signals in the tree are

then used to compensate the error in the output to

generate a product with a better architecture of the

proposed approximate multiplier is shown in Fig. 1. In the

proposed design, the simplification of the partial product

accumulation stage is accomplished by using an adder

tree, in which the number of partial products is reduced

by a factor of 2 at each stage of the tree. This adder tree is

usually not implemented using accurate multi-bit adders

due to the long latency but it is less complex than a

conventional adder and has a much shorter critical path

delay. The Wallace multiplier or exact multiplier includes

full adders, half adders and compressors also, which

reduces the critical path with increase in area. When the

multipliers of different sizes are considered, the

complexity increases so, when compared with proposed

design which is simple for various multiplier sizes.

Journal | Page 2169

http://www.irjet.net/

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
p-ISSN: 2395-0072 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified

Fig. 1. An approximate multiplier with partial error recovery using 5 MSBs of the error vector. : a partial product, sum

or an error bit generated at the first stage;: an error bit generated at the second stage;: an error bit generated at the

last stage

2. ERROR REDUCTION

As approximate adder produces sum and error signals. An

error reduction circuit is used to improve accuracy by two

steps (i) error accumulation (ii) error recovery. Two error

accumulation methods are proposed, for approximate

multipliers M1 and M2 . Fig. 2 shows the symbols for an

OR gate, a full adder and half adder cell and an

approximate adder cell used in the error accumulation

tree

(a) (b) (c)

Fig. 2. Symbols for (a) an OR gate, (b) a full adder or
a half adder (c) an approximate adder cell

2.1. Error Accumulation for Approximate
Multiplier M1:

If the obtained error signals are added with exact adders,
it may cause inaccurate results with increased
complexity. Consider the observation that the error
vector of each approximate adder tends to have more 0’s
than 1’s. The probability that the error vectors have an
error bit ‘1’at the same position, is quite small. Hence, an
OR gate can be to approximately compute the sum of the
errors for a single bit. If m error vectors (denoted by E1,
E2, ..., Em) need to be accumulated, then the sum of these
vectors is obtained as
Ei = E 1i OR E 2i OR ... OR Emi . (8)

To reduce errors, an accumulated error vector is added to
the adder tree output using a conventional CPA (e.g. a
carry look- ahead adder) MSBs of the error signals are

used to compensate the outputs to further reduce the
overall complexity. The number of MSBs is selected
according to the extent that errors must be compensated.
In the example of Fig. 1, 5 MSBs (i.e. the (11- 14)th bits,

no error is generated at the 15th bit position) are
considered for error recovery and therefore, 4 error
vectors are considered (i.e., the error vectors E 3, E 4, E 6
and E 7). The error vectors of the other three adders are

less significant than the 11th bit, so they are not
considered. The accumulated error E is obtained using
(8); then, the final result is found by adding E to S using
a fast accurate CPA. The error accumulation scheme is
shown in Fig. 3. As no error is generated at the least
significant two bits of each approximate adder Ai (i 1, 2,
… , 7), the least significant two bits of each error vector

Ei are not accumulated.

Fig. 3:Error accumulation tree for M1

Journal | Page 2170

http://www.irjet.net/

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
p-ISSN: 2395-0072 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified

2.2. Error accumulation for approximate
multiplier M2:

The error accumulation scheme for M2 is shown in Fig. 4.
To introduce the design of M2, an 8X8 multiplier with
two inputs X and Y is considered. For example, consider
the first two partial product vectors X0Y7, X0Y6, ..., X0Y0

and X1Y7, X1Y6, ..., X1Y0 accumulated by the first
approximate adder (A1 in Fig. 1), where Xi and Yi are the

i th least significant bits of X and Y , respectively. Recall
from (6) for the approximate adder, the condition for Ei =
1 is

Ai−1 = Bi−1 = 1 and Ai ≠Bi (9)
For the first approximate adder in the partial product

accumulation tree, its inputs are A = X0Y7, X0Y6, ..., X0Y0

and B = X1Y7, X1Y6, ..., X1Y0. Thus, the i th least significant

bits for A and B are Ai = X0Yi and Bi = X1Yi−1, respectively.

If X0 or X1 is 0, there will be no error in this approximate

adder because either A or B is zero. Therefore, no error

occurs unless X0 X1 = 11. When X0 X1 = 11, Ai and Bi are

simplified to Yi and Yi−1, respectively. Then to calculate

Ei ,Ai−1, Bi−1, Ai and Bi are replaced by Yi−1, Yi−2, Yi and Yi−1,

respectively. For Ei to be 1, Yi Yi-1Yi-2 011 according

to (9). Therefore, an error only occurs when the input

has “011” as a bit sequence. Based on this observation,

the “distance” between two errors in an approximate

multiplier is at least 3 bits. Thus, two adjacent

approximate adders in the first stage of the partial

product tree cannot have errors at the same column,

because the errors in a lower approximate adder are

those in the upper adder shifted by 2 bits when both

errors exist. The errors in two adjacent

approximate adders can then be accurately

accumulated by OR gates, e.g., an OR gate can be used to

accumulate the two bits in the error vectors E 1 and E 2

in Fig. 1. After applying the OR gates to accumulate

E1 and E2 as well as E3 and E4, the four error

vectors are compressed into two. For E5, E 6 and E 7,

they are generated from the approximate sum of the

partial products rather than the partial products.

Another interesting feature of the proposed

approximate adder is as follows. Assume Ei =1 in (6),

then Ai−1=Bi−1=1 and Ai≠Bi . Since Ai−1=Bi−1=1, i.e., Ai−1

Bi−1 0, it is easy to show that Ei−1= 0.Moreover, as Ai ≠Bi

,i.e., Ai Bi = 0, then Ei+1=0. Thus, once there is an error in

one bit, its neighbouring bits are error free, i.e., there are

no consecutive error bits in one row. Therefore, there is

no carry propagation path longer than two bits when

two error vectors are accumulated, and the error

vectors are accurately accumulated by the proposed

approximate adder.

Fig4: Error accumulation tree for M2

Based on the above analysis, E 5 and E 6 can be

accumulated by one approximate adder in the first stage

. After the first stage of error accumulation, three vectors

are generated, and another two approximate adders are

used to accumulate these three vectors as well.

Hereafter, the proposed nxn approximate multiplier

with k-MSB OR-gate based error reduction is referred

to as an n/k M1, while an nxn approximate multiplier

with k-MSB approximate adder based error reduction is

referred to as an n/k M2. The structures of M1 and M2

are shown in Fig. 5.

Fig5:Block diagram of approximate multipliers

2.3. 16x16 Approximate Multipliers
In both M1 and M2, all the error vectors are compressed
to one vector which is then added back to the
approximate output of the partial product. Compared to
8x8 designs, 16x16 multipliers have more error vectors
and too much data would be wasted if same strategy is
used. In the modified design the error vector generated
by approximate adders are compressed to two final error

Journal | Page2171

http://www.irjet.net/

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
p-ISSN: 2395-0072 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified

vectors in a 16x16 multiplier to compress the 8 error
vectors and the remaining error vector to another error
vector. Truncation can also be applied to the proposed
deign if large input operands are used therefore, 16 LSBs
of the partial product are truncated in 16x16 M1 and M2
resulting in truncated M1 (TM1) and truncated M2 (TM2).

3. ACCURACY EVALUATION:

To reduce circuit complexity and delay the arithmetic
accuracy is sacrificed. The error distance (ED) and mean
error distance (MED) are proposed to evaluate the
performance of approximate arithmetic circuits. For
multipliers, ED is defined to be the arithmetic
difference between the accurate product (M) and the

approximate product (M J), i.e.,

E D = |M J − M | (10)

MED is the average of EDs for a set of outputs (obtained
by applying a set of inputs). A metric applicable for
comparing multipliers of different sizes is the
normalized MED (NMED), i.e.,

NMED=MED/Mmax, (11)
Where Mmax is the maximum magnitude of the output of

an exact multiplier i.e, (2n-1)2 for an nxn multiplier. The
relative error distance (RED) is defined as

RED=| M’-M / M|=ED / |M| (12)
The error rate (ER) is defined as the percentage of
erroneous outputs among all outputs. For evaluating
worst case output, maximum error (ME) is defined as the
maximum error distance normalized by the maximum
output of the exact multiplier.
Accuracy evaluation of the 8x8 multiplier:

The functions if the proposed multipliers are realized
using Matlab and an exhaustive simulation is
performed for an 8x8 approximate multiplier.
Approximate multipliers with both the OR gate and the
approximate adder based error reduction, as well as the
accurate adder based error reduction, are evaluated.
Fig. 6 shows the four metrics (NMED, MRED, ER and
ME) in logarithm when using different numbers of MSBs
for error reduction. . Let k denote the number of MSBs
used for error reduction. The values of NMED and
MRED of M1 and M2 drop drastically as k is increased
from 4 to 8 and continues to drop as k increases, even
though at a slower rate. In terms of ER, the values for
the proposed multipliers decrease slowly with an
increasing k from 4 to 8 and then follow a sharper
decline. The MEs for M1 and M2 do not decrease as
much as the multiplier with an accurate error
accumulation when k increases. This occurs because
some errors at the higher bit positions are not
accurately accumulated by using the OR gates or the

proposed approximate adders. The values of NMED,
MRED, ER and ME finally drop to zero for the accurate
error accumulation when 14 MSBs are used for error
reduction. For the same k, M2 has a better performance
than AM1 in terms of NMED, MRED and ER. For
example, if 8 MSBs are used for error reduction, the
NMED of M2 is 0.17% while it is 0.30% for M1.
Moreover, if 14 MSBs are used for error reduction, M1
has an error rate of 17.6%, while the error rate of M2
can be as low as 5.8%.

These four figures also indicate that the proposed
approximate multiplier has a rather high error rate,
but the errors are usually very small compared to
both the accurate and the largest possible output of
the approximate multiplier.

Fig 6: Accuracy comparison of the approximate 8x8
multipliers using approximate and exact error
accumulation vs different number of bits for error
reduction (a)NMED (b)MRED (c) ER (d) ME

4. DELAY, AREA AND POWER EVALUATION
4.1:Delay estimate
Based on the linear model of the delays of a full adder
(Fig. 7(a)) and the approximate adder cell (Fig. 7(b)) are
approximately 4τg and 3τg, respectively, where τg is an
approximate “gate delay”. The delay of an XOR (or
XNOR) gate is 2τg due to its higher complexity
compared to an NAND (or NOR gate). For an n × n
approximate multiplier (n is the power of 2), there are
m = log2 n stages in the partial product accumulation

tree. The first stage with 2m rows of partial products are

compressed to 2m−1 rows of partial products in the

second stage and 2m−1 error vectors. These error

Journal | Page 2172

http://www.irjet.net/

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
p-ISSN: 2395-0072 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified

Fig 7: (a) An exact full adder and (b) the approximate

adder cell.

vectors are then compressed (i.e., accumulated) using OR
gates or approximate adders in a similar tree structure.
Since the numbers of rows in the second partial product
accumulation stage and the errors generated by the first
stage are the same, it takes m- 1 stages for both stages
to be compressed to 1

n 8 16 32 64 2l

DM1(Tg) 12 16 24 26 3l+log2l

DM2(Tg) 18 22 28 30 3l+3log2l

DW(Tg) 20 26 34 42 =6.5l

Table 2: Estimated delay of the proposed and
conventional multipliers

when an n-row partial product tree is compressed to 1
row, errors from the log2 n stages are also compressed

to log2 n error vectors, provided that the delays for

compressing two partial products and accumulating two
error vectors are the same. As the delay of an OR gate is
shorter than that of the approximate adder, fewer error
vectors remain after log2 n stages in M1.The numbers of

the remaining error vectors after log2 n stages in both

M1 and M2 are considered to be approximately log2 n.

Then it takes log2 log2 n stages to finally compress these

log2 n error vectors.

DMi = (log2n) x3Tg +[log2 log2n]xti (13)
Where ti = tg (the delay of an OR gate for M1) for i=1 and
ti = 3tg (the delay of an approximate adder for M2) for i=2
There are 4 compression stages I an 8x8 wallace tree is
approximately given by

DW = 4 [log1.5n]tg (14)

Table 2 shows the delay of the partial product
accumulation tree in both the proposed and Wallace
multipliers. For a 16×16 multiplier, the delay of an exact
multiplier tree is nearly 1.5 as large as the delay of the
proposed multiplier tree. As the size of the multiplier
increases, this factor is approximately 2. As a result, the
proposed partial product accumulation design is 29%
faster than the optimized Wallace multiplier. In
summary, the proposed multiplier can significantly
reduce the delay of the partial product accumulation tree,
which scales with the size of the multiplier.

4.2: Area estimate: Let the area of a basic gate be αg ,
and the area for an XOR (or XNOR) gate be 2αg .Then,
the area of a full adder cell is 7αg, and the area of the
approximate adder cell is 5αg. If the error signal Ei is not
required, the circuit area for generating a sum Si is 4αg ,
i.e., an NOR gate is not needed.
As the number of partial product rows is reduced by 1
by using an (n-1)-bit approximate adder, (n-1)(n-1) bit
approximate adders are required to compress the n
partial product rows to one row. Also, (n-1) error
vectors are generated, because each approximate adder
produces an error vector. The number of OR gates (or
approximate adders) used for error accumulation is
determined by the number of MSBs used for error
reduction (i.e., k). Thus, the area of the proposed partial
product accumulation scheme is estimated to be

AMi = (n − 1)2 × 4αg + αi, (15)
Where, αi is the area of the error generation and
accumulation circuit in Mi (i=1 or 2).In an nxn
Wallace multiplier a full adder compresses 3
partial products to 2 i.e, one bit is reduced by using
a full adder. Thus (n-2) rows of full adders are
used to compress the n partial product rows to
two, each row consist of approximately (n-1) full
adders. The area of Wallace tree is given by

AW = 7(n-2)(n-1)αg (16)

K 4 6 8 14
AM1(αg) 210 227 250 288
AM2(αg) 218 272 308 389
AW(αg) 302 302 302 302

Table 3: estimated area of the proposed and

conventional 8x8 multipliers.

Table 3 shows the estimated areas of the Wallace tree and
the partial product accumulation tree of the proposed
multipliers using different numbers of MSBs for error
reduction

4.3. Power estimate : The power consumption of a

CMOS circuit consists of short-circuit power, leakage
power and dynamic power [26]. Compared to the
dynamic power, the short-circuit and leakage powers
are relatively small and vary with device fabrication.
Dynamic power is dissipated for charging or discharging
the load capacitance when the output of a CMOS circuit
switches. By using a probabilistic power analysis, the
average dynamic power of a circuit is given by

N
Pavg=fclk.V2dd ∑ CL(xi).α0-1 (xi) (17)

I=1

Journal | Page 2173

http://www.irjet.net/

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
p-ISSN: 2395-0072 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified

where fclk is the operating clock frequency of the circuit,
Vdd is the supply voltage, N is the number of nodes
in the circuit, CL (xi) is the load capacitance at node xi ,
and α0→1(xi) is the probability of the logic transition from
0 to 1 at node xi . α0→1(xi) is computed by

α0→1(xi) = Ps(xi)Ps(x¯i), (18)
here Ps (xi) is the signal probability at node xi ; it is defined
as the probability of a high signal value occurring at xi .
As the basic components of the Wallace and the proposed
multipliers, the full adder and the proposed approximate
adder are analyzed using (17). In (17), fclk and Vdd are the
same for the two components, CL (xi) depends on the
fabrication. Thus, the difference in dynamic power
dissipation between these two components is mainly
caused by α0 1(xi).
As Ps (Si) < Ps (S) and Ps (Ei) < Ps (Cout), the dynamic
power dissipated at the two outputs of the proposed
approximate adder is lower than a full adder. As for the
internal nodes, the full adder has one more node than the
proposed approximate adder. Thus, the proposed
approximate adder consumes lower dynamic power than
a full adder. Moreover, the dynamic power consumed by
the error vector accumulation circuit is very low due to
the low switching activity at Ei . Consequently, the
proposed approximate multiplier is more power-efficient
than a Wallace multiplier.

5. Simulation Results

8x8 multipliers: M1 has shown advantages in speed
and power consumption compared to a Wallace
multiplier for FPGA implementations. Designs for 8x8
M1 using 4, 5, . . . , 9 MSBs for error reduction, 8 8 AM2
using 4, 5, . . . , 9 MSBs for error reduction, and the 8x8
optimized Wallace multiplier have been implemented
in VHDL and synthesized by using the Synopsys
Design Compiler (DC) with an industrial 28 nm CMOS

process. Simulations are performed at a temperature of

25◦ C and a supply voltage of 1V. The modules for

implementing the multiplier circuits are taken from the
28 nm library as C32_SC_12_CORE_LR_tt28_1.00V_25C

The critical path delays of these multipliers are reported
by the Synopsys DC tool. The power dissipation is

calculated by prime time – PX tool using 10milloin
random input combinations with a clock period of 2 ns.
The delay, area, power and power delay product (PDP) is

shown in fig.8, where the area is optimized to the
smallest value for the result in (8a),(8b),(8c),(8d) and
the critical path delay is constrained to the smallest

value without violation of time in (8e,8f,8g,8h) the
obtained power consumption is the total power i.e,

dynamic and static powers. As M1 uses simple OR gate
based

error reduction technique it has shorter delay than M2.

M1 and M2 with 4 bit error reduction are faster by 65%

and 62% than the Wallace multiplier when optimized for

area and 60%when optimised for delay. For the 8 bit

error reduction these values are 24%(29%) and

17%(4%) respectively. The power and area of the

multipliers show the same values as the delay. For the 8

bit error reduction technique the power savings of M1

and M2 are nearly 20% the area optimized M1 and M2

have small area nearly 23% than the accurate design.

The area of M2 is larger when the number of bits is more

than eight.

Journal | Page2174

http://www.irjet.net/

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
p-ISSN: 2395-0072 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified

Fig. 8. Delay, power and area comparisons of proposed 8x8

approximate and Wallace multipliers. “Wallace” indicates the

accurate 8 x8 Wallace multiplier, and the X-axis is not

applicable for it. (a) Delay (optimized for area). (b) Power

(optimized for area). (c) Area (optimized for area). (d) PDP

(optimized for area). (e) Delay (optimized for delay). (f)

Power (optimized for delay). (g) Area (optimized for delay).

(h) PDP (optimized for delay)

Fig 8d and 8h show the power delay product of M1 and
M2 are smaller than Wallace multiplier by 32 to 78% and
25 to 70% respectively.

6. CONCLUSION

In this paper, we propose a high performance and low area
delay approximate partial product accumulation tree for a
multiplier using newly proposed approximate adder which
cuts the carry propagation and generates sum and error
signal. OR gate and approximate order error reduction
techniques are used which yields to two different approximate
8 bit multiplier designs as M1 and M2. Further modification is
made for 16 bit multiplier designs by truncating 16LSBs of the
partial products. Functional analysis has shown that proposed
multipliers have small error distance which helps in achieving
good accuracy. Simulation results shows that M2 has better
accuracy than M1 with more delay and high power
consumption with delay, the proposed designs achieve
reliable delay and power reductions with better accuracy and
performance.

REFERENCES:

[1] J. Han and M. Orshansky, “Approximate computing:
An emerging paradigm for energy-efficient design,”
in Proc. 18th IEEE Eur. Test Symp., May 2013, pp.1-6.

[2] A. K. Verma, P. Brisk, and P. Ienne, “Variable latency
speculative addition: A new paradigm for
arithmetic circuit design,” in Proc. Design, Automat.
Test Eur., Mar. 2008, pp. 1250–1255.

[3] N. Zhu, W. L. Goh, and K. S. Yeo, “An enhanced low-
power high-speed adder for error-tolerant
application,” in Proc. 12th Int. Symp. Integr. Circuits,

Dec. 2009, pp. 69–72.
[4] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C.

Lucas, “Bio-inspired imprecise computational
blocks for efficient VLSI implementation of soft-
computing applications,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 57, no. 4, pp. 850–862, Apr. 2010.

[5] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan,
and K. Roy, “IMPACT: IMPrecise adders for low-
power approximate computing,” in Proc.
IEEE/ACM Int. Symp. Low Power Electron. Design,
Aug. 2011, pp. 409–414.

[6] A. B. Kahng and S. Kang, “Accuracy-configurable
adder for approxi- mate arithmetic designs,” in
Proc. Design Automat. Conf., Jun. 2012, pp. 820–
825.

[7] K. Du, P. Varman, and K. Mohanram, “High
performance reliable variable latency carry select
addition,” in Proc. Design, Automat. Test Eur. Conf.
Exhib., Mar. 2012, pp. 1257–1262.

[8] J. Liang, J. Han, and F. Lombardi, “New metrics for
the reliability of approximate and probabilistic
adders,” IEEE Trans. Comput., vol. 62, no. 9, pp.
1760–1771, Jun. 2012.

[9] J. Huang, J. Lach, and G. Robins, “A methodology for
energy-quality tradeoff using imprecise hardware,”
in Proc. Design Automat. Conf., Jun. 2012, pp. 504–
509.

[10] J. Miao, K. He, A. Gerstlauer, and M. Orshansky,
“Modeling and synthe- sis of quality-energy optimal
approximate adders,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design, Nov. 2012, pp. 728–735.

[11] R. Venkatesan, A. Agarwal, K. Roy, and A.
Raghunathan, “MACACO: Modeling and analysis of
circuits for approximate computing,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design, Nov.
2011, pp. 667–673.

[12] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han, “A
review, classifi- cation, and comparative evaluation
of approximate arithmetic circuits,” ACM J. Emerg.
Technol. Comput. Syst., vol. 13, no. 4, 2017, Art. no.
60.

[13] P. Kulkarni, P. Gupta, and M. D. Ercegovac, “Trading
accuracy for power in a multiplier architecture,” J.
Low Power Electron., vol. 7, no. 4, pp. 490–501,
2011.

[14] K. Bhardwaj, P. S. Mane, and J. Henkel, “Power- and
area-efficient approximate wallace tree multiplier
for error-resilient systems,” in Proc. 15th Int. Symp.
Qual. Electron. Design, Mar. 2014, pp. 263–269.

[15] K. Y. Kyaw, W. L. Goh, and K. S. Yeo, “Low-power
high-speed mul- tiplier for error-tolerant
application,” in Proc. IEEE Int. Conf. Electron
Devices Solid-State Circuits, Dec. 2010, pp. 1–4.

[16] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T.
Park, and N. S. Kim, “Energy-efficient approximate

Journal | Page 2175

http://www.irjet.net/

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
p-ISSN: 2395-0072 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net

© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified

multiplication for digital signal process- ing and
classification applications,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 23, no. 6, pp. 1180–
1184, Jun. 2015.

[17] Y.-H. Chen and T.-Y. Chang, “A high-accuracy
adaptive conditional- probability estimator for
fixed-width booth multipliers,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 59, no. 3, pp. 594– 603,
Mar. 2012.

[18] B. Shao and P. Li, “Array-based approximate
arithmetic computing: A general model and
applications to multiplier and squarer design,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no.
4, pp. 1081–1090, Apr. 2015.

[19] H. Jiang, J. Han, F. Qiao, and F. Lombardi,
“Approximate radix-8 booth multipliers for low-
power and high-performance operation,” IEEE
Trans. Comput., vol. 65, no. 8, pp. 2638–2644, Aug.
2016.

[20] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, “ABACUS: A
technique for automated behavioral synthesis of
approximate computing circuits,” in Proc. Design,
Automat. Test Eur. Conf. Exhib., Mar. 2014, pp. 1–6.

[21] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A.
Raghunathan, “ASLAN: Synthesis of approximate
sequential circuits,” in Proc. Design, Automat. Test
Eur. Conf. Exhib., Mar. 2014, pp. 1–6.

[22] C. Liu, J. Han, and F. Lombardi, “A low-power, high-
performance approximate multiplier with
configurable partial error recovery,” in Proc.
Design, Automat. Test Eur. Conf. Exhib., Mar. 2014,
pp. 1–4.

[23] B. Parhami, Computer Arithmetic. London, U.K.:
Oxford Univ. Press, 2000.

[24] M. A. Breuer, “Intelligible test techniques to support
error-tolerance,” in Proc. 13th Asian Test Symp.,
Nov. 2004, pp. 386–393.

[25] N. Weste and H. David, CMOS VLSI Design: A Circuits
and Systems Perspective, 3rd ed. London, U.K.:
Pearson, 2005

[26] N. Weste and H. David, CMOS VLSI Design: A Circuits
and Systems Perspective, 3rd ed. London, U.K.:
Pearson, 2005.

Journal | Page 2176

http://www.irjet.net/

