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ABSTRACT- In many of today’s applications like digital 
signal processing, image processing etc, multipliers, 
address play significant role especially approximate 
circuits. As these circuits improve performance and are 
energy efficient with loss of some accuracy. In this paper, an 
approximate multiplier is proposed for high-performance 
DSP application with improved delay and area. This 
approximate multiplier limits the carry propagation for 
fast partial product accumulation, and this can be done 
with two techniques namely OR gate and proposed 
approximate adder in configurable error recovery circuit. 
Compared to Wallace multiplier. These two multipliers 
achieve better accuracy and 62% reduction delay and 39% 
reduction in area. This can also be used in a 16*16 design 
with concept of truncation, applied for two techniques 
reduced to half of the least significant partial products. 
Compared with Wallace multiplier these can save 50% to 
60% of energy. Compared with existing approximate 
multipliers, proposed one’s show significant advantages in 
accuracy and low area delay products. Image processing 
applications, including image sharpening and smoothing, 
are considered to show the quality of approximate 
multipliers in error-tolerant applications. 

Index terms: Approximate circuits, adder, multiplier, 
error recovery, image processing. 

1. INTRODUCTION: 

Approximate Computing (AC) is a wide spectrum of 
techniques that relax the accuracy of computation in 
order to improve performance, energy, and/or another 
metric of merit. AC exploits the fact that several 
important applications, like machine learning and 
multimedia processing, do not require precise results to 
be useful. For instance, we can use a lower resolution 
image encoder in applications where high-quality images 
are not necessary. In a data centre, this may lead to large 
savings in the amount of required processing, storage and 
communication band width. 
 
Nowadays, the majority of our computations are being 
done either on mobile devices or in large data centres 
(think of cloud computing). Both platforms are sensitive 
to power consumption. That is, it would be nice if we can 

extend the operation time of smartphones and other 
battery powered devices before the next recharge. We 
know that applying any lossy compression algorithm 
(JPEG for example) to a raw image will result in an 
approximate image. Such compression often comes (by 
design) with little human perceptible loss in image 
quality. Also, image encoders usually have tuneable 
algorithmic knobs, like compression level, to trade off 
image size with its quality. Therefore, strict exactness 
may not be required and an inaccurate result may be 
sufficient due to the limitation of human perception. As 
one of the key components in arithmetic circuits, adders 
are studied for approximate implementation. As the carry 
propagation chain is usually shorter than the width of an 
adder, the hypothetical adders use a reduced number of 
less significant input bits to calculate the sum bits. In [15], 
approximate 4 × 4 and 8 × 8 bit Wallace multipliers are 
designed by using a carry-in prediction method. Then, 
they are used in the design of approximate 16 × 16 
Wallace multipliers, referred to as AWTM. The AWTM is 
configured into four different modes by using a different 
number of approximate 4 × 4 and 8 × 8 multipliers. These 
approximate multipliers are designed for unsigned 
operation. Signed multiplication is usually implemented 
by using a Booth algorithm. Approximate designs have 
been proposed for fixed width Booth multipliers. 

The proposed multiplier can be configured into two 
designs by using OR gates and the proposed approximate 
adders for error reduction, which can be referred as 
approximate multipliers M1 and M2 respectively. 
Different levels of error recovery can also be achieved by 
using a different number of MSBs for error recovery in 
both multipliers. As per the analysis, the proposed 
multipliers have significantly shorter critical paths and 
lower power dissipation than the traditional Wallace 
multiplier. Functional and circuit simulations are 
performed to evaluate the performance of the multipliers. 
Image sharpening and smoothing are considered as 
approximate multiplication-based DSP applications. 
Experimental results indicate that the proposed 
approximate multipliers perform well in these error- 
tolerant applications. The proposed designs can be used 
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as effective library cells for the synthesis of approximate 
circuits. 

1.1. The Approximate Adder 

The design of a new approximate adder is shown. This 
adder operates on a set of pre-processed inputs. The input 
pre-processing (IPP) is based on the commutativity of bits 
with the same weights in different addends. For example, 
consider two sets of inputs to a 4-bit adder: i) A = 1010, B 
= 0101 and ii) A = 1111, B = 0000. Clearly, the additions 
in i) and ii) produce the same result. In this process, the 
two input bits Ai Bi = 01 is equal to Ai Bi = 10 (with i being 
the bit index) due to the commutativity of the 
corresponding bits in the two operands. The basic rule for 
the IPP is to switch Ai and Bi if Ai = 0 and Bi = 1 (for any 
i), while keeping the other combinations (i.e., Ai Bi = 00, 
10 and 11) unchanged. By doing so, more 1’s are expected 
in A and more 0’s are expected in B. If A˙i B˙ i are the ith 
bits in the pre-processed inputs, the IPP functions are 
given by: 

Let A−1 = B−1 = 0 when i is 0, thus, S0  = A0  ⊕ B0  and E0 = 
0. Also, Ei = 0 when Ai−1 or Bi−1 is 0. Consider an n-bit 
adder, the inputs are given by A = An−1 ··· A1A0 and B = Bn−1 

··· B1B0, the exact sum is S = Sn−1 ···S1S0. Then, Si can be 
computed as Si + Ei and thus, the exact sum of A and B is 
given by 

S = S + E. (7) 

In (7) ‘+’ means the addition of two binary numbers 
rather than the ‘OR’ function. The error E is always non- 
negative and the approximate sum is always equal to or 
smaller than the accurate sum. This is an important 
feature of this adder because an additional adder can be 
used to add the error to the approximate sum as a 
compensation step. While this is intuitive in an adder 
design, it is a particularly useful feature in a multiplier 
design as only one additional adder is needed to reduce 
the error in the final product. 

Ai= Ai + Bi (1) 

Bi  = Ai Bi (2) 

Equations (1) and (2) compute the propagate and 
generate signals used in a parallel adder such as the carry 
lookahead adder (CLA). The proposed adder can process 
data in parallel by reducing the carry propagation chain. 
Let A and B denote the two input binary operands of an 
adder, S be the sum result, and E represent the error 
vector. Ai , Bi , Si and Ei are the ith least significant bits of 
A, B, S and E, respectively. A carry propagation chain 
starts at the ith bit when B˙i = 1, A˙i+1 = 1, B˙i+1 = 0. In an 
accurate adder, Si+1 is 0 and the carry propagates to the 
higher bit. In the proposed approximate adder, Si+1 is set 
to 1 and an error signal is generated as Ei+1 = 1. This stops 
the carry signal from propagating to the higher bits. 
Hence, a carry signal is produced only by the generate 
signal, i.e., Ci = 1 only when B˙i = 1, and it only propagates 
to the next higher bit, i.e., the (i +1)th position.The logical 
functions are given by 

Si  = B˙i−1 + B˙i A˙i, (3) 

Ei = B˙i B˙i−1 A˙i . (4) 

By replacing A˙i and B˙i using (1) and (2) respectively, the 
logic functions with respect to the original inputs are 
given by 

Si = (Ai ⊕ Bi) + Ai−1Bi−1, (5) 

Ei  = (Ai ⊕ Bi) Ai−1Bi−1,  (6) 

where i is the bit index, i.e., i = 0, 1,··· , n for an n-bit adder. 

 
 
 
 

Fig : the approximate adder cell. 

1.2. Proposed Approximate Multiplier 

An important feature of the proposed approximate 

multiplier is the simplicity to use approximate adders in 

the partial product accumulation. The resulting design 

has a critical path delay that is shorter than a conventional 

one-bit full adder, because the new n-bit adder can 

process data in parallel. The approximate adder has a 

rather high error rate, but the feature of generating both 

the sum and error signals at the same time reduces errors 

in the final product. An adder tree is utilized for partial 

product accumulation; the error signals in the tree are 

then used to compensate the error in the output to 

generate a product with a better architecture of the 

proposed approximate multiplier is shown in Fig. 1. In the 

proposed design, the simplification of the partial product 

accumulation stage is accomplished by using an adder 

tree, in which the number of partial products is reduced 

by a factor of 2 at each stage of the tree. This adder tree is 

usually not implemented using accurate multi-bit adders 

due to the long latency but it is less complex than a 

conventional adder and has a much shorter critical path 

delay. The Wallace multiplier or exact multiplier includes 

full adders, half adders and compressors also, which 

reduces the critical path with increase in area. When the 

multipliers of different sizes are considered, the 

complexity increases so, when compared with proposed 

design which is simple for various multiplier sizes. 
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Fig. 1. An approximate multiplier with partial error recovery using 5 MSBs of the error vector. : a partial product, sum 

or an error bit generated at the   first stage;: an error bit generated at the second stage;: an error bit generated at the 

last stage 

2. ERROR REDUCTION 

As approximate adder produces sum and error signals. An 

error reduction circuit is used to improve accuracy by two 

steps (i) error accumulation (ii) error recovery. Two error 

accumulation methods are proposed, for approximate 

multipliers M1 and M2 . Fig. 2 shows the symbols for an 

OR gate, a full adder and half adder cell and an 

approximate adder cell used in the error accumulation 

tree 

(a) (b) (c)  

Fig. 2. Symbols for (a) an OR gate, (b) a full adder or 
a half adder (c) an approximate adder cell 

 
2.1. Error Accumulation for Approximate 
Multiplier M1: 

If the obtained error signals are added with exact adders, 
it may cause inaccurate results with increased 
complexity. Consider the observation that the error 
vector of each approximate adder tends to have more 0’s 
than 1’s. The probability that the error vectors have an 
error bit ‘1’at the same position, is quite small. Hence, an 
OR gate can be to approximately compute the sum of the 
errors for a single bit. If m error vectors (denoted by E1, 
E2, ..., Em) need to be accumulated, then the sum of these 
vectors is obtained as 
Ei = E 1i OR E 2i OR ... OR Emi . (8) 

To reduce errors, an accumulated error vector is added to 
the adder tree output using a conventional CPA (e.g. a 
carry look- ahead adder) MSBs of the error signals are 

used to compensate the outputs to further reduce the 
overall complexity. The number of MSBs is selected 
according to the extent that errors must be compensated. 
In the example of Fig. 1, 5 MSBs (i.e. the (11- 14)th bits, 

no error is generated at the 15th bit position) are 
considered for error recovery and therefore, 4 error 
vectors are considered (i.e., the error vectors E 3, E 4, E 6 
and E 7). The error vectors of the other three adders are 

less significant than the 11th bit, so they are not 
considered. The accumulated error E is obtained using 
(8); then, the final result is found by adding E to S using 
a fast accurate CPA. The error accumulation scheme is 
shown in Fig. 3. As no error is generated at the least 
significant two bits of each approximate adder Ai (i  1, 2, 
… , 7), the least significant two bits of each error vector 

Ei are not accumulated. 

 

Fig. 3:Error accumulation tree for M1 
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2.2. Error accumulation for approximate 
multiplier M2: 

The error accumulation scheme for M2 is shown in Fig. 4. 
To introduce the design of M2, an 8X8 multiplier with 
two inputs X and Y is considered. For example, consider 
the first two partial product vectors X0Y7, X0Y6, ..., X0Y0 

and X1Y7, X1Y6, ..., X1Y0 accumulated by the first 
approximate adder (A1 in Fig. 1), where Xi and Yi are the 

i th least significant bits of X and Y , respectively. Recall 
from (6) for the approximate adder, the condition for Ei = 
1 is 

Ai−1 = Bi−1 = 1 and Ai ≠Bi (9) 
For the first approximate adder in the partial product 

accumulation tree, its inputs are A = X0Y7, X0Y6, ..., X0Y0 

and B = X1Y7, X1Y6, ..., X1Y0. Thus, the i th least significant 

bits for A and B are Ai = X0Yi and Bi = X1Yi−1, respectively. 

If X0 or X1 is 0, there will be no error in this approximate 

adder because either A or B is zero. Therefore, no error 

occurs unless X0 X1 = 11. When X0 X1 = 11, Ai and Bi are 

simplified to Yi and Yi−1, respectively. Then to calculate 

Ei ,Ai−1, Bi−1, Ai and Bi are replaced by Yi−1, Yi−2, Yi and Yi−1, 

respectively. For Ei   to be 1, Yi Yi-1Yi-2    011 according    

to (9). Therefore, an error only occurs when the input 

has “011” as a bit sequence. Based on this observation, 

the “distance” between two errors in an approximate 

multiplier is at least 3 bits. Thus, two adjacent 

approximate adders in the first stage of the partial 

product tree cannot have errors at the same column, 

because the errors in a lower approximate adder are 

those in the upper adder shifted by 2 bits when both 

errors  exist.  The  errors  in  two  adjacent  

approximate adders can then be accurately 

accumulated by OR gates, e.g., an OR gate can be used to 

accumulate the two bits in the error vectors E 1 and E 2 

in Fig. 1. After applying the  OR gates to accumulate 

E1 and  E2 as well as E3 and E4, the four error 

vectors are compressed into two. For E5, E 6 and E 7, 

they are generated from the approximate sum of the 

partial products rather than the partial products. 

Another interesting feature of the proposed 

approximate adder is as follows. Assume Ei =1 in (6), 

then Ai−1=Bi−1=1 and Ai≠Bi . Since  Ai−1=Bi−1=1, i.e., Ai−1 

Bi−1 0, it is easy to show that Ei−1= 0.Moreover, as Ai ≠Bi 

,i.e., Ai Bi = 0, then Ei+1=0. Thus, once there is an error in 

one bit, its neighbouring bits are error free, i.e., there are 

no consecutive error bits in one row. Therefore, there is 

no carry propagation path longer than two bits when 

two error vectors are accumulated, and the error 

vectors are accurately accumulated by the proposed 

approximate adder. 

 

Fig4: Error accumulation tree for M2 

 
Based on the above analysis, E 5 and E 6 can be 

accumulated by one approximate adder in the first stage 

. After the first stage of error accumulation, three vectors 

are generated, and another two approximate adders are 

used to accumulate these three vectors as well. 

Hereafter, the proposed nxn approximate multiplier 

with k-MSB OR-gate based error reduction is referred 

to as an n/k M1, while an nxn approximate multiplier 

with k-MSB approximate adder based error reduction is 

referred to as an n/k M2. The structures of M1 and M2 

are shown in Fig. 5. 
 

Fig5:Block diagram of approximate multipliers 

2.3. 16x16 Approximate Multipliers 
In both M1 and M2, all the error vectors are compressed 
to one vector which is then added back to the 
approximate output of the partial product. Compared to 
8x8 designs, 16x16 multipliers have more error vectors 
and too much data would be wasted if same strategy is 
used. In the modified design the error vector generated 
by approximate adders are compressed to two final error 
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vectors in a 16x16 multiplier to compress the 8 error 
vectors and the remaining error vector to another error 
vector. Truncation can also be applied to the proposed 
deign if large input operands are used therefore, 16 LSBs 
of the partial product are truncated in 16x16 M1 and M2 
resulting in truncated M1 (TM1) and truncated M2 (TM2). 

 
3. ACCURACY EVALUATION: 

To reduce circuit complexity and delay the arithmetic 
accuracy is sacrificed. The error distance (ED) and mean 
error distance (MED) are proposed to evaluate the 
performance of approximate arithmetic circuits. For 
multipliers, ED is defined to be the arithmetic 
difference between the accurate product (M) and the 

approximate product (M J), i.e., 

E D = |M J − M | (10) 

MED is the average of EDs for a set of outputs (obtained 
by applying a set of inputs). A metric applicable for 
comparing multipliers of different sizes is the 
normalized MED (NMED), i.e., 

NMED=MED/Mmax, (11) 
Where Mmax is the maximum magnitude of the output of 

an exact multiplier i.e, (2n-1)2 for an nxn multiplier. The 
relative error distance (RED) is defined as 

RED=| M’-M / M|=ED / |M| (12) 
The error rate (ER) is defined as the percentage of 
erroneous outputs among all outputs. For evaluating 
worst case output, maximum error (ME) is defined as the 
maximum error distance normalized by the maximum 
output of the exact multiplier. 
Accuracy evaluation of the 8x8 multiplier: 

The functions if the proposed multipliers are realized 
using Matlab and an exhaustive simulation is 
performed for an 8x8 approximate multiplier. 
Approximate multipliers with both the OR gate and the 
approximate adder based error reduction, as well as the 
accurate adder based error reduction, are evaluated. 
Fig. 6 shows the four metrics (NMED, MRED, ER and 
ME) in logarithm when using different numbers of MSBs 
for error reduction. . Let k denote the number of MSBs 
used for error reduction. The values of NMED and 
MRED of M1 and M2 drop drastically as k is increased 
from 4 to 8 and continues to drop as k increases, even 
though at a slower rate. In terms of ER, the values for 
the proposed multipliers decrease slowly with an 
increasing k from 4 to 8 and then follow a sharper 
decline. The MEs for M1 and M2 do not decrease as 
much as the multiplier with an accurate error 
accumulation when k increases. This occurs because 
some errors at the higher bit positions are not 
accurately accumulated by using the OR gates or the 

proposed approximate adders. The values of NMED, 
MRED, ER and ME finally drop to zero for the accurate 
error accumulation when 14 MSBs are used for error 
reduction. For the same k, M2 has a better performance 
than AM1 in terms of NMED, MRED and ER. For 
example, if 8 MSBs are used for error reduction, the 
NMED of M2 is 0.17% while it is 0.30% for M1. 
Moreover, if 14 MSBs are used for error reduction, M1 
has an error rate of 17.6%, while the error rate of M2 
can be as low as 5.8%. 

These four figures also indicate that the proposed 
approximate multiplier has a rather high error rate, 
but the errors are usually very small compared to 
both the accurate and the largest possible output of 
the approximate multiplier. 

 
 
 
 
 
 
 
 
 

 
 

 

 

Fig 6: Accuracy comparison of the approximate 8x8 
multipliers using approximate and exact error 
accumulation vs different number of bits for error 
reduction (a)NMED (b)MRED (c) ER (d) ME 

4. DELAY, AREA AND POWER EVALUATION 
4.1:Delay estimate 
Based on the linear model of the delays of a full adder 
(Fig. 7(a)) and the approximate adder cell (Fig. 7(b)) are 
approximately 4τg and 3τg, respectively, where τg is an 
approximate “gate delay”. The delay of an XOR (or 
XNOR) gate is 2τg due to its higher complexity 
compared to an NAND (or NOR gate). For an n × n 
approximate multiplier (n is the power of 2), there are 
m = log2 n stages in the partial product accumulation 

tree. The first stage with 2m rows of partial products are 

compressed to 2m−1 rows of partial products in the 

second stage and 2m−1 error vectors. These error 
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Fig 7: (a) An exact full adder and (b) the approximate 

adder cell. 

vectors are then compressed (i.e., accumulated) using OR 
gates or approximate adders in a similar tree structure. 
Since the numbers of rows in the second partial product 
accumulation stage and the errors generated by the first 
stage are the same, it takes m- 1 stages for both stages  
to be compressed to 1 

 
n 8 16 32 64 2l 

DM1(Tg) 12 16 24 26 3l+log2l 

DM2(Tg) 18 22 28 30 3l+3log2l 

DW(Tg) 20 26 34 42 =6.5l 

Table 2: Estimated delay of the proposed and 
conventional multipliers 

 

when an n-row partial product tree is compressed to 1 
row, errors from the log2 n stages are also compressed 

to log2 n error vectors, provided that the delays for 

compressing two partial products and accumulating two 
error vectors are the same. As the delay of an OR gate is 
shorter than that of the approximate adder, fewer error 
vectors remain after log2 n stages in M1.The numbers of 

the remaining error vectors after log2 n stages in both 

M1 and M2 are considered to be approximately log2 n. 

Then it takes log2 log2 n stages to finally compress these 

log2 n error vectors. 

DMi  = (log2n) x3Tg +[log2 log2n]xti (13) 
Where ti = tg (the delay of an OR gate for M1) for i=1 and 
ti = 3tg (the delay of an approximate adder for M2) for i=2 
There are 4 compression stages I an 8x8 wallace tree is 
approximately given by 

DW = 4 [log1.5n]tg (14) 

Table 2 shows the delay of the partial product 
accumulation tree in both the proposed and Wallace 
multipliers. For a 16×16 multiplier, the delay of an exact 
multiplier tree is nearly 1.5 as large as the delay of the 
proposed multiplier tree. As the size of the multiplier 
increases, this factor is approximately 2. As a result, the 
proposed partial product accumulation design is 29% 
faster than the optimized Wallace multiplier. In 
summary, the proposed multiplier can significantly 
reduce the delay of the partial product accumulation tree, 
which scales with the size of the multiplier. 

4.2: Area estimate: Let the area of a basic gate be αg , 
and the area for an XOR (or XNOR) gate be 2αg .Then, 
the area of a full adder cell is 7αg, and the area of the 
approximate adder cell is 5αg. If the error signal Ei is not 
required, the circuit area for generating a sum Si is 4αg , 
i.e., an NOR gate is not needed. 
As the number of partial product rows is reduced by 1 
by using an (n-1)-bit approximate adder, (n-1)(n-1) bit 
approximate adders are required to compress the n 
partial product rows to one row. Also, (n-1) error 
vectors are generated, because each approximate adder 
produces an error vector. The number of OR gates (or 
approximate adders) used for error accumulation is 
determined by the number of MSBs used for error 
reduction (i.e., k). Thus, the area of the proposed partial 
product accumulation scheme is estimated to be 

AMi = (n − 1)2 × 4αg + αi, (15) 
Where, αi is the area of the error generation and 
accumulation circuit in Mi (i=1 or 2).In an nxn 
Wallace multiplier a full adder compresses 3 
partial products to 2 i.e, one bit is reduced by using 
a full adder. Thus (n-2) rows of full adders  are 
used to compress the n partial product rows  to 
two, each row consist of approximately (n-1) full 
adders. The area of Wallace tree is given by 

AW = 7(n-2)(n-1)αg (16) 

 
K 4 6 8 14 
AM1(αg) 210 227 250 288 
AM2(αg) 218 272 308 389 
AW(αg) 302 302 302 302 

 
Table 3: estimated area of the proposed and 

conventional 8x8 multipliers. 

Table 3 shows the estimated areas of the Wallace tree and 
the partial product accumulation tree of the proposed 
multipliers using different numbers of MSBs for error 
reduction 

4.3. Power estimate : The power consumption of a 

CMOS circuit consists of short-circuit power, leakage 
power and dynamic power [26]. Compared to the 
dynamic power, the short-circuit and leakage powers 
are relatively small and vary with device fabrication. 
Dynamic power is dissipated for charging or discharging 
the load capacitance when the output of a CMOS circuit 
switches. By using a probabilistic power analysis, the 
average dynamic power of a circuit is given by 

N 
Pavg=fclk.V2dd  ∑ CL(xi).α0-1 (xi) (17) 

I=1 
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where fclk is the operating clock frequency of the circuit, 
Vdd is the  supply  voltage,  N  is  the  number  of  nodes  
in the circuit, CL (xi ) is the load capacitance at node xi , 
and α0→1(xi) is the probability of the logic transition from 
0 to 1 at node xi . α0→1(xi ) is computed by 

α0→1(xi) = Ps(xi )Ps(x¯i), (18) 
here Ps (xi ) is the signal probability at node xi ; it is defined 
as the probability of a high signal value occurring at xi . 
As the basic components of the Wallace and the proposed 
multipliers, the full adder and the proposed approximate 
adder are analyzed using (17). In (17), fclk and Vdd are the 
same for the two components, CL (xi ) depends on the 
fabrication. Thus, the difference in dynamic power 
dissipation between these two components is mainly 
caused by α0 1(xi). 
As Ps (Si ) < Ps (S) and Ps (Ei ) < Ps (Cout ), the dynamic  
power dissipated at the two outputs of the proposed 
approximate adder is lower than a full adder. As for the 
internal nodes, the full adder has one more node than the 
proposed approximate adder. Thus, the proposed 
approximate adder consumes lower dynamic power than 
a full adder. Moreover, the dynamic power consumed by 
the error vector accumulation circuit is very low due to 
the low switching activity at Ei . Consequently, the 
proposed approximate multiplier is more power-efficient 
than a Wallace multiplier. 

5. Simulation Results 

8x8 multipliers: M1 has shown advantages in speed 
and power consumption compared to a Wallace 
multiplier for FPGA implementations. Designs for 8x8 
M1 using 4, 5, . . .  , 9 MSBs for error reduction, 8 8 AM2 
using 4, 5, . . .  , 9 MSBs for error reduction, and the 8x8 
optimized Wallace multiplier have  been implemented 
in VHDL and synthesized by using the Synopsys 
Design Compiler (DC) with an industrial 28 nm CMOS 

process. Simulations are performed at a temperature of 

25◦ C and a supply voltage of 1V. The modules for 

implementing the multiplier circuits are taken from the 
28 nm library as C32_SC_12_CORE_LR_tt28_1.00V_25C 

The critical path delays of these multipliers are reported 
by the Synopsys DC tool. The power dissipation is 

calculated by prime time – PX tool using 10milloin 
random input combinations with a clock period of 2 ns. 
The delay, area, power and power delay product (PDP) is 

shown in fig.8, where the area is optimized to the 
smallest value for the result in (8a),(8b),(8c),(8d) and 
the critical path delay is constrained to the smallest 

value without violation of time in (8e,8f,8g,8h) the 
obtained power consumption is the total power i.e, 

dynamic and static powers. As M1 uses simple OR gate 
based 

error reduction technique it has shorter delay than M2. 

M1 and M2 with 4 bit error reduction are faster by 65% 

and 62% than the Wallace multiplier when optimized for 

area and 60%when optimised for delay. For the 8 bit 

error reduction these values are 24%(29%) and 

17%(4%) respectively. The power and area of the 

multipliers show the same values as the delay. For the 8 

bit error reduction technique the power savings of M1 

and M2 are nearly 20% the area optimized M1 and M2 

have small area nearly 23% than the accurate design. 

The area of M2 is larger when the number of bits is more 

than eight. 
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Fig. 8. Delay, power and area comparisons of proposed 8x8 

approximate and Wallace multipliers. “Wallace” indicates the 

accurate 8 x8 Wallace multiplier, and the X-axis is not 

applicable for it. (a) Delay (optimized for area). (b) Power 

(optimized for area). (c) Area (optimized for area). (d) PDP 

(optimized for area). (e) Delay (optimized for delay). (f) 

Power (optimized for delay). (g) Area (optimized for delay). 

(h) PDP (optimized for delay) 

Fig 8d and 8h show the power delay product of M1 and 
M2 are smaller than Wallace multiplier by 32 to 78% and 
25 to 70% respectively. 

 

6. CONCLUSION 

In this paper, we propose a high performance and low area 
delay approximate partial product accumulation tree for a 
multiplier using newly proposed approximate adder which 
cuts the carry propagation and generates sum and error 
signal. OR gate and approximate order error reduction 
techniques are used which yields to two different approximate 
8 bit multiplier designs as M1 and M2. Further modification is 
made for 16 bit multiplier designs by truncating 16LSBs of the 
partial products. Functional analysis has shown that proposed 
multipliers have small error distance which helps in achieving 
good accuracy. Simulation results shows that M2 has better 
accuracy than M1 with more delay and high power 
consumption with delay, the proposed designs achieve 
reliable delay and power reductions with better accuracy and 
performance. 
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