"ANALYSIS AND DESIGN OF MULTISTORED BUILDING IN HILLY AREAS USING STADD PRO"

Nikhil Ghuge ${ }^{1}$, Neha Shahare ${ }^{2}$, Mohini Tupsunder ${ }^{3}$, Shivram Totewad ${ }^{4}$,
Nikhil Gaydhani ${ }^{5}$, Kushal Yadav ${ }^{6}$
1-6Department of Civil Engineering, Wainganga College of Engineering And Management Wardha Road, Dongargaon, Nagpur, Maharashtra-44114

Abstract

- India is the most populated country in the world. The on Hill is differ from other building. The Hilly Region is pulling construction industry towards it because most of the plain land is occupied for the purpose of urbanization and industrialization. To fulfill the need of housing for population it becomes to construct multistoried building in hilly region because plain land is scarcely available in urban areas. 3D Analytical model of $G+5$ is multistoried residential building have been generated and analyzed by using analysis tool "STADD-pro". The drafting and detailing work is done by using drafting software AUTO-cad. This paper is properly planed Analysis and design the D+5 Residential RCC Building Constructed in hilly region using with IS code 456-2000.

Key Words: housing in hilly areas,
STADD-pro, multi storied, AUTO-cad.

1. INTRODUCTION:

Due to increasing in population now a days in hilly region we have to construct multistoried building in hilly areas.

This project is Analysis and Design of hilly area multistoried residential building [$\mathrm{G}+5$] using very popular analytical and designing software STADD-pro. Reason of choosing this software is it gives accuracy of solution, versatile nature of solving of problems, confirmation of IS codes.

Building in hilly area subjected to the lateral earth pressure at various levels in addition to other normal loads as specified on building on level ground. The soil profile is not uniform and the result into total collapse of the building.

The bearing capacity, cohesion, angle of internal friction etc. this project is drafted in drafting software AUTO-cad and after the plan is import in STADD-pro.

1.1 Literature Review

Shaikh imran, P.Rajesh (January 2017): Earth quake Analysis of RCC Building in Hilly:

The performance of irregular plan shaped building with vertical irregularity could prove more vulnerable than the regular plan shaped building with vertical irregularity. On plan ground, setback building attract less action forces as comparing with other configurations on sloping ground which make it more stable and it would not suffer more damages due to the lateral load action. On sloping ground set-step back building attract less action forces as comparing with step back building but if the cutting cost of sloping ground is with acceptable limits then setback building may be preferred. In step back building, the development of storey shear and moment and torsion were more than other configuration which found to be more vulnerable.

Mr. Tamboli Nikhil Vinod, et.al (2017): Stud Of Seismic Behavior Of Multi- Storied RCC Building Resting On Sloping Ground And Bracing System:

The height and length of building in a particular pattern are in multiple of blocks (in vertical and horizontal direction), the size of block is being maintained at $7 \mathrm{~m} \times 5$ $\mathrm{m} \times 3.5 \mathrm{~m}$. The height of all floors is 3.5 m The depth of footing below ground level is taken as 1.8 m where, the hard stratum is available. The slope of ground is 27 degree with horizontal, which is neither too steep or nor too flat. Basically model consists of two bays with four groups of building configurations. The dynamic analysis is carried out using response spectrum method to the step back and step back and step back building frames. Three dimensional space frame analysis is carried out for four different configurations of buildings ranging from eight, ten and twelve storey resting on sloping ground under the action of seismic load by using E-tabs software. In these way to analysis of these system.

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056

Rahul Manojsingh Pawar (June 2017) : Analysis Of Set Back Step Back Building Resting On Sloping Ground:

Buildings resting on sloping ground have less base shear compared to buildings on Plain ground. Base shear increases as slope of ground increase Buildings resting on sloping ground have more lateral displacement compared to buildings on Plain ground. Buildings with set back step back is showing less displacement than step back model. Building is showing high value of displacement in z - direction than in x direction. The critical axial force in columns is more on plain ground than on sloping ground. The shear force and moment in columns is more on sloping ground than on plain ground. The shear force and bending moment value in beams is high in plain ground model than on sloping ground model. The performance of set- step back building during seismic excitation could prove more vulnerable than other configurations of Buildings. The development of moments in set - step back buildings is higher than that in the set-back building. Hence, Set back building are found to be less vulnerable building against seismic ground motion. Step back Set back buildings, overall economic cost involved in leveling the sloping ground and other related issues needs to be studied in detail.

Inguva Sai surya prakash, et.al (2018): A Study On Comparative Analysis Of RCC Building Resting On Plain And Hilly Terrain.

Although, the buildings on plain ground attract less action forces as compared to buildings on sloping ground, overall economic cost involved in levelling the sloping ground. In buildings on sloping ground, it is observed that extreme left column at ground level, which are short, are the worst affected. Special attention should be given to these columns in design and detailing. The graph shows that there is significant reduction in bending moments of columns in Z Direction from R.C.C Structure on Plain Ground and Sloping Terrain. Base shear of R.C.C Structure on sloping terrain is very less compared to R.C.C structure plain ground. The storey drift in R.C.C Structure on Plain Ground and Sloping Terrain is nearly equal. This is because; steel structure is more flexible as compared to RCC structure. Bending moment is seem to be reduced due to step up columns in R.C.C Structure on sloping terrain. The bending moment in column is increase at base of frame due to the long column and short column effect in R.C.C Structure on sloping ground. From the study, it is observed that the building which are resting on sloping are subjected to short column effect, attract more forces and are worst affected during seismic excitation. Hence form design point of view, special attention should be given to the size, orientation, and ductility demand of short column

1.2 METHODOLOGY

2.0 PROGRESS WORK

2.1 DATA OF THE BUILDING

Type of building: residential building
Type of structure: multi storey R.C.C
No. of storey: $6(\mathrm{G}+5)$
Floor to floor height: 3 m .
External wall: 230 mm .
Internal wall: 150 mm .
Height of the Plinth: 0.6 m .
Depth of the footing; 2.3 m .
2.2 PLAN OF RESIDENTIAL BUILDING: (AUTO-cad PLAN):

2.3 DESIGN OF BUILDING COMPONANTS:

Slab design:

$L_{x}=3.288 m \quad L_{y}=3.87 m$
$\mathrm{L}_{\mathrm{y}} / \mathrm{L}_{\mathrm{x}}=1.177<2$.
hence it is two-way slab.
live load $=2 \mathrm{KN} / \mathrm{M}^{2}$
modification factor $=1.4$
basic value $=20$
$\mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{b}($ width $)=1000 \mathrm{~mm}$
Step2. Estimations of slab thickness
As $l_{x}>3.5$, and steel is Fe 415
$\mathrm{L} / \mathrm{d}=20 \times$ M.F. $=117.43 \mathrm{~mm}$
say $\mathrm{d}=150 \mathrm{~mm}$
Assuming covers $=15 \mathrm{~mm}$
and $10 \mathrm{~mm} \phi$ main

$$
\mathrm{D}=\mathrm{d}+\text { cover }+\Phi / 2=170 \mathrm{~mm}
$$

Step3. Effective span:

$l_{\text {ex }}=3.438 \mathrm{~m}$

$$
l_{\mathrm{ey}}=4.020 \mathrm{~m}
$$

Step4. loads calculation

self-weight of slab $=1 \times 0.170 \times 25=4.25 \mathrm{KN} / \mathrm{M}$
floor finish $=1 \mathrm{kN} / \mathrm{M}$
live load $=2 \mathrm{KN} / \mathrm{M}$
total load(w) $=9.25 \mathrm{KN} / \mathrm{M}$
factor load $\left(w_{d}\right)=1.5 \times 9.25=13.875 \mathrm{KN} / \mathrm{m}$

Step5. Factors of bending moments

for X-direction
$\mathrm{Mx}=\alpha_{\mathrm{x}} \mathrm{x} w d \mathrm{x} l_{e x}{ }^{2}$
$\mathrm{l}_{\mathrm{y}} / \mathrm{l}_{\mathrm{x}}=1.1963$
interpolation method
$\begin{array}{rl}\mathrm{l}_{\mathrm{y}} / \mathrm{l}_{\mathrm{x}} & \alpha_{x} \\ 1.1 & 0.075\end{array}$
1.196
1.2

$$
\mathrm{x}=\alpha_{x}
$$

0.084
$\mathrm{x}=0.080$
$M \mathrm{X}=13.185 \mathrm{KN}-\mathrm{M} \ldots . . .1$ st equation
for Y-direction
$\mathrm{My}=\alpha_{y} \mathrm{x} w d \mathrm{x}$
$l_{e x}^{2} l_{y} / l_{x}=1.196$
interpolation
method
$l_{y} / l_{x} \quad \alpha_{y}$
$1.1 \quad 0.061$
$1.196 \quad y=\alpha_{y}$
1.20 .059
$y=0.0598$
My $=9.80 \mathrm{kN}-\mathrm{M}2$ nd equation
Step6. Effective depth of slab
$\mathrm{M}_{\mathrm{xd}}=$ Mulimit
$\mathrm{d}_{\text {required }}=69.11 . \mathrm{mm}$
drequired < davailable,
hence OK
Step7. Area and Spacing of Steel
At X-Direction
$A_{s t}=0.5 \frac{f_{c k}}{f_{y}}\left(1-\sqrt{1-\frac{4.6 M_{u}}{f_{c k} B d^{2}}}\right) B d$

Ast $_{\mathrm{x}}=252.40 \mathrm{~mm}$
Ast $_{\text {min }}=0.12 \% \times \mathrm{x} \mathrm{x} \mathrm{D}$
$=204 \mathrm{~mm}$
Ast $_{\mathrm{x}}>$ Ast $_{\text {min }}$,
hence provided Ast $_{x}$.
spacing of $10 \mathrm{~mm} \phi$ bar
spacing $=\frac{{ }^{\text {ast } x b}}{\text { Ast }}=311.20 \mathrm{~mm}$
say as spacing $=240 \mathrm{~mm}1 \mathrm{st}$
equation
$S=3 \mathrm{~d}=450 \mathrm{~mm}$ \qquad 2nd equation
$\mathrm{S}=300 \mathrm{~mm}$ \qquad 3 rd equation
provide minimum value.
At Y-Direction d' $=\mathrm{d}-\phi=140 \mathrm{~mm}$
$A_{s t}=0.5 \frac{f_{c k}}{f_{y}}\left(1-\sqrt{1-\frac{4.6 M_{u}}{f_{c k} B d^{2}}}\right) B d$
Ast $_{y}=200.053 \mathrm{~mm}$
Ast $_{\mathrm{y}}<$ Ast $_{\text {min }}$,
hence provided Ast $_{\text {min }}$
spacing of $8 \phi \mathrm{~mm}$
spacing $=\frac{\text { ast } x b}{\text { Astmin }}=246.431 \mathrm{~mm}$
say spacing $=225 \mathrm{~mm}$
$\mathrm{S}=3 \mathrm{~d}^{\prime}=420 \mathrm{~mm}$
$\mathrm{S}=300 \mathrm{~mm}$
provided minimum value

Step8. check for Shear

maximum shear force in either direction.

1. $\mathrm{Vu}=\frac{w d x \text { lex }}{2}=23.851 \mathrm{KN}$
2. $\tau_{v}=\frac{V u}{b x d}=0.159 \mathrm{~N} / \mathrm{mm} 2$
3. $\tau_{\text {cmax }}=2.8 \mathrm{~N} / \mathrm{mm} 2$
$\tau_{\mathrm{v}}<\tau_{\text {cmax }}$.
4. $\mathrm{Ast}_{\mathrm{p}}={ }_{\frac{a s t x b}{}}=327.291667 \mathrm{~mm}^{2}$
5. $\mathrm{pt}_{\mathrm{p}}=\frac{\text { Astp }}{\text { bxd }} \quad x 100=0.21819 \%$
interpolation method.

pt	τ_{c}
0.15	0.28

$0.21 \mathrm{x}=\tau_{\mathrm{c}}$
$0.25 \quad 0.36$
$\mathrm{X}=0.328 \mathrm{~N} / \mathrm{mm}^{2}$
Design shear strength in slab
$\tau_{\mathrm{c}}{ }^{\prime}=\mathrm{k} \mathrm{x} \tau_{\mathrm{c}}=0.41$
Thus, $\tau_{v}<\tau_{c}{ }^{\prime}$
Hence OK

Beam Design :

$$
\operatorname{Span}(\mathrm{le})=1.190 \mathrm{~m}
$$

Effective Depth (d) $=450 \mathrm{~mm}$
Depth (D) $=500 \mathrm{~mm}$
Width (b) $=230 \mathrm{~mm}$
Flange thickness (Df) $=170 \mathrm{~mm}$
Thickness of Support $(\mathrm{t})=230 \mathrm{~mm}$
$\mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}$
Equivalent udl
Step1. Total Service Load
$\left(\mathrm{W}_{\mathrm{d}}\right)=24.20 \mathrm{KN} / \mathrm{M}$

Step2. Moment of Resistance

$\mathrm{Md}=\frac{W x l^{2}}{2}=17.137 \mathrm{KN}-\mathrm{M}$

Step3. Limiting Moment of Resistance

$\operatorname{Md} 1=0.138 \mathrm{f}_{\mathrm{ck}} \mathrm{bd}^{2}=128.54 \mathrm{KN} / \mathrm{M}$
Step4. Comparison of Md and Md1
Md < Md1
Hence Singly Reinforced
Step5. Main Steel

$$
A_{s t}=0.5 \frac{f_{\alpha}}{f_{y}}\left(1-\sqrt{1-\frac{4.6 M_{u}}{f_{c k} B d^{2}}}\right) B d
$$

Z
Ast $=107.84 \mathrm{~mm}^{2}$
Diameter $8 \mathrm{~mm} \phi$
bar Area of bars =
$50.240 \mathrm{~mm}^{2}$
Number of bars
$=2.840$
Bars Provided = 3 NOS
Ast Provided $=150.720 \mathrm{~mm}^{2}$
Step6. Design of Shear
a) Shear Force, $\mathrm{Vu}=\mathrm{W} \mathrm{x}$ le $=28.798 \mathrm{KN}$
b) Nominal Shear Stress
$\tau_{v}=\frac{V u}{b \times d}=0.278$
c) $\tau_{\text {cmax }}=2.8 \mathrm{~N} / \mathrm{mm} 2$
$\tau_{\mathrm{v}}<\tau_{\mathrm{cmax}}$, OK
d) Shear strength of concrete, τ_{c}

$0.150 \quad 0.280$
$0.250 \quad 0.360$
$\tau_{c}=0.276 \mathrm{~N} / \mathrm{mm}^{2}$
e) As $\tau_{v}>\tau_{c}$

Shear Reinforcement is Required.
f) Shear Force

Vus= vu-($\left.\tau_{\mathrm{c}} . \mathrm{bd}\right)=180.40 \mathrm{KN}$
Vusv=Vus
Provided $6 \mathrm{~mm} \phi$ two legged M.S. Vertical Stirrups
g) Spacing
$S v=\frac{0.87 f y . A s t . d}{\text { Vusv }}=30664.60 \mathrm{~mm}$
Check,

1) Minimum Spacing
$\mathrm{Sv} \leq \frac{0.87 \mathrm{fy} . \mathrm{Ast}}{0.4 b}=133.621 \mathrm{~mm}$
2) Maximum Spacing
0.75 d or 300 mm

Provided Spacing 300 mm
Step8. Check for Development length
$\operatorname{Ld}_{\text {required }}=\frac{{ }^{0.87 f y \Phi}}{4 \tau b d}=169.922 \mathrm{~mm}$
$\operatorname{Ld}_{\text {available }}=\mathrm{t}+\left(8 \phi-\mathrm{d}^{\prime}\right)=253 \mathrm{~mm}$

Step9. Check for Serviceability

Pt required $=0.146$
Modification factor $=1.38$
Basic $\mathrm{L} / \mathrm{d}(\mathrm{rb})=7.0$
Allowable L/d (ra) = 9.660
Required d=L/d (ra) = 123.188

Design of column

Step1. Axial Load = 2036.12 KN
Step2. Size of column
$\mathrm{L}=3000 \mathrm{~mm} \quad \mathrm{~b}=230 \mathrm{~mm}$
Step3. Percentage of steel (Asc)
$\mathrm{Pt}>0.8 \% \mathrm{Pt}<6 \%$
Assuming percentage (\%) $=2.0$
$\mathrm{Asc}=2 \% \mathrm{Ag}=0.02$
$\mathrm{Ac}=0.02 \mathrm{Ag}=0.98$

Step4. Depth Required

$\mathrm{Pu}=0.4 \mathrm{fckAc}+0.67 \mathrm{fyAsc}$
$\mathrm{Ag}=151960.30 \mathrm{~mm} 2$
$\mathrm{D}=\mathrm{Ag} / \mathrm{b}=660.70 \mathrm{~mm}$
Provided D $=680 \mathrm{~mm}$
Provided $\mathrm{Ag}=156400.00 \mathrm{~mm}^{2}$
Step5.Check for Eccentricity and Slenderness ratio
$\mathrm{Le} / \mathrm{D}=4.41 \quad \mathrm{Le} / \mathrm{D}<12 \mathrm{OK}$
$\mathrm{e}_{\text {min }}=\frac{\mathrm{L}}{50}+\frac{\mathrm{D}}{30}=\underset{\mathrm{mm}}{28.67}$
$\mathrm{e}_{\text {min }}>20 \mathrm{~mm}$
$\mathrm{e}_{\max }=0.05 \mathrm{D}=$
34.00 mm
$e_{\min }<e_{\max } \mathrm{OK}$

Step6. Area of Steel and Percentage Steel

Asc required $=3128 \mathrm{~mm}^{2}$
Bar used $25 \mathrm{~mm} \phi$
Area of bar =
$490.63 \mathrm{~mm}^{2}$
No. of bars Required $=6.38$
No. of bars
Provided=8

Ast Provided $=3925$
mm^{2}
Pt of steel provided $=2.51$
$\mathrm{Pt}>0.8 \% \mathrm{Pt}<6 \% \mathrm{OK}$

Step7. Design of transverse steel

a) Diameter of links $=\frac{1}{4} \times \phi$ and

6 mm Greater is 6.25 mm
Say 8 mm dia. of link
b) Spacing
i)least lateral dimension $=680 \mathrm{~mm}$
ii) $16 \phi=400 \mathrm{~mm}$
iii) 300 mm

Provided Spacing $=300 \mathrm{~mm}$
Reinforcement Details 8 No. 25 mm at $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.

Design of Staircase

Type of slab = Waist slab
Riser $=150 \mathrm{~mm}$ Tread $=270 \mathrm{~mm}$
Height $=3 \mathrm{~m}$
No. of riser $=20$ nos
No. of riser in each flight=10nos
No. of trends in each flights $=9$ nos

Going(G) $=3.115 \mathrm{~m}$
Provided width of landing $=0.9 \mathrm{~m}$
Width of stair $=1.027 \mathrm{~m}$
Live load $=3 \mathrm{KN}$
fck $=20 \mathrm{~N} / \mathrm{mm}^{2}$ fy $=415 \mathrm{~N} / \mathrm{mm} 2$
Effective span
$=$ Going + half of support + half of support
$=3.115+0.9 / 2+0.9 / 2$
$=4.015 \mathrm{~m}$
M.F. $=1.6$

2.0 Load and bending moment

Assume depth of slab $D=170 \mathrm{~mm}$
Assume width of slab $=1000 \mathrm{~mm}$
(a) Load of slab per meter of horizontal span = $4.861 \mathrm{KN} / \mathrm{m}$

(b) Steps:

Load on one step $=1 / 2 * \mathrm{R}^{*} \mathrm{~T}^{*} 25=0.50625 \mathrm{KN}$
Load of step per meter $=0.50625^{*} 1 / 0.27=1.875 \mathrm{KN} / \mathrm{m}$
(c) Live load=3 KN/m
(d) Floor finish= $1 \mathrm{KN} / \mathrm{m}$

Total load $\mathrm{w}=10.7361 \mathrm{KN} / \mathrm{m}$
Factored load wd=16.104KN/m
Factored moment Md $=32.450 \mathrm{KN} / \mathrm{m}$

3.0 Depth of slab:

$0.138^{*} \mathrm{bd}^{\wedge} 2^{*} \mathrm{fck}=\mathrm{Md}$
$\mathrm{d}^{\wedge} 2=11976.27 \mathrm{~mm}$
$\mathrm{d}=109.4 \mathrm{~m}$
Assuming 10 mm dia of bar and 25 mm cover $=139.4 \mathrm{~mm}$ $139.4 \mathrm{~mm}<170 \mathrm{~mm}$ OK
Depth required for deflection $=125.46 \mathrm{~mm}$
$\mathrm{D}=170 \mathrm{~mm}$
$D=140 \mathrm{~mm}$

4.0 Calculate Main Steel

$A_{s t}=0.5 \frac{f_{c k}}{f_{y}}\left(1-\sqrt{1-\frac{4.6 M_{u}}{f_{c k} B d^{2}}}\right) B d$

Ast $=718.89 \mathrm{~mm}^{2}$
Provide $10 \mathrm{~mm} \phi$ bar
Area of bar $=78.54$
mm^{2}
A ϕ
Spacing $=\ldots x 1000$

International Research Journal of Engineering and Technology (IRJET)

Ast
$=109.25 \mathrm{~mm}$, say $100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

5.0 Area of distribution Steel

Astd $=0.15 \%$ of b.D

$$
=225 \mathrm{~mm}^{2}
$$

Provide $6 \mathrm{~mm} \phi$ bars
Spacing $=\frac{A \phi}{A s t d} \times 1000$
$=110.82 \mathrm{~mm}$ say 110 mm
($<5 \mathrm{~d}$ or 450 mm whichever is less, $<5 * 120$ or $450=4$
STAAD.Pro OUTPUT:

Fig1: 3D rendering model of building plan

Fig2: Displacement on member

Fig3: Shear force on member

I oad 1 : Re

Fig4: Bending moment on member

3. CONCLUSIONS

1. This paper is based on design and analysis multistoried residential building $(\mathrm{G}+5)$ using commercial software STAAD-pro.
2. Plan of the building is drafted with the help of the drafting software with required dimensions.
3. We applied different kind of the loads on the building Earthquake load, live load and the respective load combination. We found the structure is capable to sustain applied loads.
4. It is included that with the help of the using software STAAD-pro etc, there is possibility of having stable and safe construction of the structure with the provided load.
5. By using the STAAD-pro software it is easy to get fast, efficient and accurate platform for analyzing and designing software.

REFERENCES

1. Harish K S, Akash K, Amith A P, Asha S V, Harish R. Olekar, Analysis Of Multistoreyed Building ($\mathrm{G}+4$) In Sloped Ground, International Journal for Research in Applied Science \& Engineering Technology (IJRASET), ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue VIII, July 2017.
2. Tamboli Nikhil Vinod, Dr. Ajay Swarup, Study Of Seismic Behavior Of Multi-storied R.C.C. Buildings Resting On Sloping Ground And Bracing System, IJARIIE, ISSN(0)-2395-4396, Vol-3 Issue-4 2017.
3. Shaik Imran, P. Rajesh, Earthquake Analysis of RCC Buildings on Hilly, IJSART, Volume 3 Issue 1 JANUARY 2017, ISSN: 2395-1052.
4. Achin Jain, Rakesh Patel, Analysis Of Building Constructed On Sloping Ground For Different Types Of Soil, International Journal For Technological Research In Engineering, Volume 4, Issue 12, August-2017, ISSN: 2347-4718.
5. Inguva Sai Surya Prakash, Adireddy Siva Satya Vara Prasad, R Rama Krishna, A Study on Comparative Analysis of RCC Building Resting on Plain and Hilly Terrain, International Journal for Scientific Research \& Development, Vol. 6, Issue 01, 2018 | ISSN (online): 2321-0613
6. Design of Reinforced concrete structure by S . Ramamrutham.
7. IS CODE 456-2000.
8. IS CODE 875-1987 (Part 1,2 and 3).
9. Design of R.C.C. Structures by Nirali Prakashan.

BIOGRAPHIES

Nikhil.B.Ghuge
BE Final year student, Civil Department, Wainganga College of Engineering \& Management Nagpur

Neha.Y.Shahare
BE Final year student, Civil Department, Wainganga College of Engineering \& Management Nagpur

Mohini.B.Tupsunder BE Final year student, Civil Department, Wainganga College of Engineering \&
Management
Nagpur

Shivram Totewad BE Final year student, Civil Department, Wainganga College of Engineering\& Management Nagpur

Nikhil Gaydhani BE Final year student, Civil Department, Wainganga College of Engineering \& Management Nagpur

Kushal Yadav
Assistant Professor
Civil Department,
Wainganga College of
Engineering \& Management
Nagpur

