

Assessment of Water Quality Index of River Teesta in East District, Sikkim, India

Mahesh Giri¹

¹M.Tech Graduate, Assam Downtown University, Junior Engineer, Government of Sikkim

Abstract - The objective of this study was to calculate the Water Quality Index of Teesta River which flow through Sikkim, India. In this study water quality parameters (physico-chemical parameters) was analyzed for the month of June and October 2018 at the laboratory of State pollution Control Board, Sikkim. The different parameters analyzed are pH, Turbidity, DO, BOD, Electrical Conductivity, Hardness, Alkalinity TDS, Chloride and Calcium. The laboratory analysis was done according to the procedures as given by American Public Health Association (APHA). The water samples for this study were taken from nine sampling station along the River Teesta in East District of Sikkim. The calculation of the Water Quality Index (WQI) was done using Weighted Arithmetic Index Method. As per the results of the calculation of Water Quality Index the WQI value for the month of June and October 2018 respectively. The station where WQI was recorded highest falls in densely populated region and also falls in the industrial belt in East Sikkim. Hence, the river needs proper management and treatment to conserve the Water Quality and to control pollution.

Key Words: East Sikkim, River Teesta, Physico-chemical parameters, Water Quality Index, Weighted Arithmetic Index Method.

1. INTRODUCTION

Water is the most vital fluid which all organisms on the Earth are dependent on. It may be noted that man's early habitation and civilization sprang up along the banks of rivers. Although the surface of our planet is nearly 71% water, only 3% of it is fresh. Of these 3% about 75% is tied up in glaciers and polar icebergs, 24% in groundwater and 1% is available in the form of fresh water in rivers, lakes and ponds suitable for human consumption (Dugan, 1972). Now increasing population and exploded growth of industrialization has been leading to degradation of Water Quality. With these reasons said the rate of water pollution has been increasing and is becoming a threat to the environment. The Water Quality Indices (WQI) has been the easiest way to communicate on the quality of water. Water pollution is one of a threat to mankind that can lead to serious health issues and also destroy the agri-fields as the same water in the river is used for irrigation purposes in different parts of India and also the world. It is an established fact that water quality is closely related to the surrounding environment and prevalent land use (APHA, 1992). In order to keep the environment safe the physico-chemical parameters must be kept monitored and controlled. A Water Quality Index summarizes a large amount of data into simple terms. Water Quality Index in fact is a single number that reveals the overall quality of water. WQI can be used as a tool in comparing the water quality of different sources and it gives the public a general idea of the possible problems with water in a particular region.

River Test originates from Pahunri Glacier which feeds Tso Lhamu Lake located in North district of Sikkim at an altitude of 5330 m (17,490ft). The river Teesta flows to the Indian states of Sikkim, West Bengal and the country of Bangladesh finally emptying into Bay of Bengal. In Sikkim it covers a length of 309 km with Rangpo being its last point after that it enters West Bengal meeting Rangit River. The river then travels southwards flowing into West Bengal. The river after travelling through the gorges and rocks finally meets the plain when it reaches Sevoke, 22km before Siliguri. In Sevoke the river is spanned by Coronation Bridge which links Sikkim and North-Bengal to the Northeastern States of India. The river than merges up with River Brahmaputra after it bifurcates in the city of Jalpaiguri in North Bengal. The River Test then flows through the town of Cooch Behar and moves to Fulchori in Bangladesh and meets Jamuna River and finally drains into Bay of Bengal.

Based on the importance of fresh water to the surrounding livelihood, agriculture, fisheries, irrigation, etc. Water Quality assessment of River Teesta is very much in need. The Water Quality Assessment of River Teesta is very important due to the rise in the anthropogenic activities that has been leading to the degradation of water quality. This research will also be helpful in planning various water management programs for saving the River Teesta.

1.1 MATERIALS AND METHODS

The present work is divided in three categories:

i) Firstly, the initial survey in order to find the sampling stations for collecting the water samples.

- ii) Secondly, the water sample collection has been done from the sampling stations.
- iii) Lastly, the collected Samples were analyzed in the laboratory of State Pollution Control Board, Sikkim.

1.2 SAMPLING STATIONS

The details of the sampling stations along with the geographical coordinates are tabulated in Table 1 below:

Sl.No	Sampling Stations	Latitude	Longitude
1	Burtuk	2735'40''N	8861'58'' E
2	Adampool	2730'69"N	8858'48"E
3	•	2724'93''N	8852'96"E
	Sangkhola		
4	32 number	2726'29''N	8856'59"E
5	Martam	2726'20"N	8855'56"E
6	Singtam	2713'64''N	8839'31"E
7	Bardang	2721'62''N	8843'06"E
8	Majhitar	2718'76"N	8849'97"E
9	Rangpo	2717'61''N	8852'87''E

Table 1: Details of the Sampling Station.

The water samples from the sampling stations were collected during the month of May and October-November of the year 2018. The dates of collection of Samples were 6th June-15th June and 10th October to 5th November, 2018 respectively. Water samples were collected by using plastic bottle from study site of River Teesta. pH of water was measured by pH meter. Turbidity or transparency of water was taken by turbidity meter, total alkalinity, BOD and total hardness were determined by titration method (APHA, 2005). The Dissolved Oxygen determination was done by Wrinkler's method with Azide modification (APHA, 2005). The elements like calcium, magnesium and chloride were analyzed by titration method (ALPHA, 2005).

2. CALCULATION OF WATER QUALITY INDEX:

In this current study, Water Quality Index (WQI) is calculated by using the Weighted Arithmetic Water Quality Index which was originally proposed by Horton (1965) and developed by Brown et al (1972). The weighted arithmetic water quality index (WQI) is in the following form:

$WQI = \Sigma w_i q_i / \Sigma w_i$

Where, w_i= Relative weight

q_i= Water quality rating

The unit weight (w_i) of the various water quality parameters are inversely proportional to the recommended standards for the corresponding parameters. According to Brown et al (1972), the value of q_i is calculated using the following equation:

q_{i} = 100 [(V_i - V_{id}) /(S_i - V_{id})]

Where, V i= Observed value

S_i= Standard permissible value

Vid= Ideal value

All the ideal values (V_{id}) are taken as zero for drinking water expect pH and Dissolved Oxygen (Triphaty and Sahu, 2005).

For pH, the ideal value is 7.0 (for natural/pure water) and a permissible value is 8.5 (for polluted water). Therefore, the quality rating for pH is calculated from the following equation:

 $q_{\rm ph} = 100 \left[(V_{\rm pH} - 7.0 / (8.5 - 7.0)) \right]$

Where, VpH= observed value of pH

For dissolved oxygen, the ideal value is 14.6 mg/L and the standard permissible value for drinking water is 5 mg/L. Therefore, its quality rating is calculated from the following equation:

$q_{D0} = 100 [(V_{D0} - 14.6)/(5.0-14.6)]$

Where, VDO =observed value of dissolved oxygen.

Table 2 below shows a classification of water quality, based on its quality index of Brown et al (1972), Chatterji and Raziuddin (2002) etc.

Table -2: Classification of Water Quality based on weighted arithmetic WQI method:

WQI	STATUS
0-25	Excellent
26-50	Good
51-75	Poor
76-100	Very Poor
Above 100	Unsuitable for Drinking

3. RESULTS AND DISCUSSION

Table -3: Data of parameters for the month of June 2018

Paramete		SITES							
rs									
	S1	S2	S3	S4	S5	S6	S7	S8	S9
рН	8.5	7.5	7	6.2	8	6	6	5.9	7
Turbidity	140	130	160	160	155	170	164	170	160
DO	13	16.2	19.2	21	20	22	22	25	23
BOD	6.5	8.5	12	16	8	14	16	18	15
Conductivi	280	235	240	260.8	220	200	240	260	240
ty									
Hardness	80	85	90	99	82	98	100	110	110
Alkalinity	100	102	106	110	102	105	108	110	110
TDS	120	110	140	170	150	180	120	140	120
Chloride	30	30	35	40	30	32	30	40	38
Calcium	32	32	36	36	36	20	30	35	30

Table -4: Data of parameters for the month of October 2018

Paramete rs	SITES								
15	S1	S2	S3	S4	S5	S6	S7	S8	S9
рН	7.5	7.2	72	6.5	8.5	6.28	6.8	6	6.2
Turbidity	100	120	155	140	105	142	135	150	160
DO	15	18	23	21	15	26	20	25	23
BOD	10	12	15	12	9	18	14	18	19
Conductiv ity	300	250	249	230	300	200	200	210	260
Hardness	80	87	89	82	60	100	100	120	110
Alkalinity	70	95	80	80	50	110	100	120	130
TDS	145	140	170	130	180	123	130	100	140
Chloride	30	26.4	30	60	40	25.5	35	30	35
Calcium	35	34	32	32	32	17.2	36	40	32

Parameters Value(Vi) Value(Si) Weight(wi) Rating(qi) value (wi*qi) pH \$1 8.5 0.1176 33.333 3.92 S3 7 8.5 0.1176 33.333 3.92 S3 7 8.5 0.1176 53.333 6.272 S4 6.2 8.5 0.1176 66.667 7.84 S6 6 8.5 0.1176 66.667 7.84 S7 6 8.5 0.1176 66.667 7.84 S8 5.9 8.5 0.1176 66.667 7.84 S1 140 25 0.04 500 22.6 Turbidity S2 130 25 0.04 640 25.6 S5 155 25 0.04 640 25.6 S4 160 25 0.04 680 27.2 S7 164 25 0.04 680 27.2 S9 160		Sites	Observed	Standard	Unit	Quality	Weighted
pH S1 8.5 8.5 0.1176 100 11.76 S2 7.5 8.5 0.1176 33.333 3.92 S3 7 8.5 0.1176 53.333 6.272 S5 8 8.5 0.1176 66.6667 7.84 S6 6 8.5 0.1176 66.6667 7.84 S7 6 8.5 0.1176 66.6667 7.84 S9 7 8.5 0.1176 7.333 8.624 S9 7 8.5 0.1176 7.06.667 7.84 S1 140 25 0.04 520 20.8 S3 160 25 0.04 640 25.6 S3 160 25 0.04 680 27.2 S7 164 25 0.04 680 27.2 S7 164 25 0.2 106.67 21.333 S2 16.2 5 0.2			Value(Vi)	Value(Si)	Weight(wi)		value
S2 7.5 8.5 0.1176 33.333 3.92 S3 7 8.5 0.1176 0 0 S4 6.2 8.5 0.1176 66.667 7.84 S5 8 8.5 0.1176 66.667 7.84 S7 6 8.5 0.1176 66.667 7.84 S8 5.9 8.5 0.1176 73.333 8.624 S9 7 8.5 0.1176 73.333 8.624 S9 7 8.5 0.1176 0 0 Turbidity S1 140 25 0.04 540 25.6 S4 160 25 0.04 640 25.6 S5 155 25 0.04 680 27.2 S7 164 25 0.04 680 27.2 S9 160 25 0.2 106.67 21.333 S2 16.2 5 0.2 1	Parameters						3
S3 7 8.5 0.1176 0 0 S4 6.2 8.5 0.1176 53.333 6.272 S5 8 8.5 0.1176 66.667 7.84 S6 6 8.5 0.1176 66.667 7.84 S7 6 8.5 0.1176 66.667 7.84 S8 5.9 8.5 0.1176 0 0 Turbidity S2 130 25 0.04 520 22.4 S3 160 25 0.04 640 25.6 S4 160 25 0.04 640 25.6 S4 160 25 0.04 680 27.2 S7 164 25 0.04 680 27.2 S7 164 25 0.04 680 27.2 S9 160 25 0.2 106.67 21.333 S2 16.2 5 0.2 106.67	рН						
S4 6.2 8.5 0.1176 53.333 6.272 S5 8 8.5 0.1176 66.667 7.84 S7 6 8.5 0.1176 66.667 7.84 S8 5.9 8.5 0.1176 66.667 7.84 S8 5.9 8.5 0.1176 0 0 Turbidity S1 140 25 0.04 560 22.4 S2 130 25 0.04 640 25.6 S4 160 25 0.04 640 25.6 S5 155 25 0.04 680 27.2 S7 164 25 0.04 680 27.2 S7 164 25 0.04 680 27.2 S7 164 25 0.04 680 27.2 S9 160 25 0.2 106.67 21.333 S2 16.2 5 0.2 106.67			7.5		0.1176	33.333	3.92
S5 8 8.5 0.1176 66.667 7.84 S7 6 8.5 0.1176 66.667 7.84 S8 5.9 8.5 0.1176 66.667 7.84 S9 7 8.5 0.1176 0 0 Turbidity S1 140 25 0.04 560 22.4 S2 130 25 0.04 640 25.6 S4 160 25 0.04 640 25.6 S5 155 25 0.04 680 27.2 S7 164 25 0.04 680 27.2 S7 164 25 0.04 640 25.6 S2 16.0 25 0.04 640 25.6 S2 16.2 5 0.2 106.67 21.333 S2 16.2 5 0.2 36.67 73.33 S3 19.2 5 0.2 36.67					0.1176		-
S6 6 8.5 0.1176 66.667 7.84 S8 5.9 8.5 0.1176 66.667 7.84 S9 7 8.5 0.1176 73.333 8.624 S9 7 8.5 0.1176 0 0 Turbidity S1 140 25 0.04 560 22.4 S1 140 25 0.04 640 25.6 S4 160 25 0.04 640 25.6 S4 160 25 0.04 680 27.2 S7 164 25 0.04 680 27.2 S7 164 25 0.04 680 27.2 S9 160 25 0.04 680 27.2 S1 13 5 0.2 106.67 21.333 S2 16.2 5 0.2 106.67 21.333 S4 21 5 0.2 360					0.1176	53.333	6.272
S7 6 8.5 0.1176 7.333 8.624 S9 7 8.5 0.1176 73.333 8.624 S9 7 8.5 0.1176 73.333 8.624 S9 7 8.5 0.1176 73.333 8.624 S9 7 8.5 0.1176 0 0 Turbidity S1 140 25 0.04 560 22.4 S3 160 25 0.04 640 25.6 55 S4 160 25 0.04 640 25.6 S5 155 25 0.04 680 27.2 S7 164 25 0.04 680 27.2 S9 160 25 0.2 106.67 21.333 S2 16.2 5 0.2 106.67 21.333 S2 16.2 5 0.2 106.667 83.333 S4 21 5 0.2<		S5	8		0.1176	66.666	7.84
S8 5.9 7 8.5 0.1176 7.3.333 8.624 S9 7 8.5 0.1176 0 0 0 Turbidity S1 140 25 0.04 560 22.4 S2 130 25 0.04 640 25.6 S4 160 25 0.04 640 25.6 S4 160 25 0.04 680 27.2 S7 164 25 0.04 680 27.2 S7 164 25 0.04 680 27.2 S8 170 25 0.04 680 27.2 S7 160 25 0.04 680 27.2 S9 160 25 0.2 106.67 21.333 S2 16.2 5 0.2 306.667 61.3333 S3 19.2 5 0.2 493.333 98.6667 S7 22 5		S6	6		0.1176	66.667	7.84
S9 7 8.5 0.1176 0 0 Turbidity S1 140 25 0.04 560 22.4 Turbidity S2 130 25 0.04 520 20.8 S3 160 25 0.04 640 25.6 S4 160 25 0.04 640 25.6 S5 155 25 0.04 680 27.2 S7 164 25 0.04 680 27.2 S7 164 25 0.04 680 27.2 S8 170 25 0.04 680 27.2 S9 160 25 0.04 640 25.6 S2 16.2 5 0.2 106.67 21.333 S2 16.2 5 0.2 306.67 85.3333 S4 21 5 0.2 493.333 98.667 S7 22 5 0.2			6	8.5	0.1176	66.667	7.84
S1 140 25 0.04 560 22.4 Turbidity S1 140 25 0.04 520 20.8 S3 160 25 0.04 640 25.6 S4 160 25 0.04 640 25.6 S4 160 25 0.04 640 25.6 S5 155 25 0.04 680 27.2 S7 164 25 0.04 680 27.2 S9 160 25 0.04 640 25.6 D0 S1 13 5 0.2 106.67 -21.333 S2 16.2 5 0.2 106.67 21.333 S3 19.2 5 0.2 306.667 61.3333 S4 21 5 0.2 360 72 S6 22 5 0.2 493.333 98.6667 S8 25 5 0.2 <td< td=""><td></td><td>S8</td><td></td><td>8.5</td><td>0.1176</td><td>73.333</td><td>8.624</td></td<>		S8		8.5	0.1176	73.333	8.624
S2 130 25 0.04 520 20.8 S3 160 25 0.04 640 25.6 S4 160 25 0.04 640 25.6 S5 155 25 0.04 620 24.8 S6 170 25 0.04 680 27.2 S7 164 25 0.04 680 27.2 S9 160 25 0.02 106.67 21.333 S2 16.2 5 0.2 106.67 21.333 S3 19.2 5 0.2 493.333 98.667 S4 21 5 0.2 493.333 98.6667 S8 25 5 0.2 130 26		S9	7	8.5	0.1176	0	0
S2 130 25 0.04 520 20.8 S3 160 25 0.04 640 25.6 S4 160 25 0.04 640 25.6 S5 155 25 0.04 620 24.8 S6 170 25 0.04 680 27.2 S7 164 25 0.04 680 27.2 S9 160 25 0.02 106.67 21.333 S2 16.2 5 0.2 106.67 21.333 S3 19.2 5 0.2 493.333 98.667 S4 21 5 0.2 493.333 98.6667 S8 25 5 0.2 130 26		C1	140	25	0.04	560	22.4
S3 160 25 0.04 640 25.6 S4 160 25 0.04 640 25.6 S5 155 25 0.04 620 24.8 S6 170 25 0.04 680 27.2 S7 164 25 0.04 680 27.2 S9 160 25 0.04 640 25.6 S9 160 25 0.04 640 25.6 DO S1 13 5 0.2 106.67 -21.333 S2 16.2 5 0.2 106.67 21.333 S4 21 5 0.2 426.667 85.3333 S4 21 5 0.2 493.333 98.6667 S7 22 5 0.2 493.333 98.6667 S8 25 5 0.2 130 26 S9 23 5 0.2 130 26<	Turbidity						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turbluity						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
S8 170 25 0.04 680 27.2 S9 160 25 0.04 640 25.6 DO S1 13 5 0.2 106.67 -21.333 S2 16.2 5 0.2 106.667 21.3333 S3 19.2 5 0.2 306.667 61.3333 S4 21 5 0.2 426.667 85.3333 S5 20 5 0.2 493.333 98.6667 S7 22 5 0.2 493.333 98.6667 S7 22 5 0.2 693.333 138.667 S8 25 5 0.2 130 26 S9 23 5 0.2 130 26 S0 S2 8.5 5 0.2 130 26 S0 12 5 0.2 320 64 S2 8.5 0.2 320 64<		-					
S9 160 25 0.04 640 25.6 D0 S1 13 5 0.2 106.67 -21.333 S2 16.2 5 0.2 106.67 21.3333 S3 19.2 5 0.2 306.667 61.3333 S4 21 5 0.2 360.667 61.3333 S5 20 5 0.2 360.677 61.3333 S5 20 5 0.2 493.333 98.6667 S7 22 5 0.2 493.333 98.6667 S8 25 5 0.2 693.333 138.667 S9 23 5 0.2 130 26 BOD S1 6.5 5 0.2 130 26 S3 12 5 0.2 130 26 BOD S2 8.5 5 0.2 320 64 S4 16 5 0							
DO S1 13 5 0.2 106.67 -21.333 S2 16.2 5 0.2 106.667 21.3333 S3 19.2 5 0.2 306.667 61.3333 S4 21 5 0.2 366.667 61.3333 S5 20 5 0.2 426.667 85.3333 S5 20 5 0.2 493.333 98.6667 S7 22 5 0.2 493.333 98.6667 S7 22 5 0.2 493.333 98.6667 S8 25 5 0.2 693.333 138.667 S9 23 5 0.2 130 26 S0 S2 8.5 5 0.2 170 34 S3 12 5 0.2 140 48 S4 16 5 0.2 300 60 S5 8 5 0.2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		S9	160	25	0.04	640	25.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	DO	<u>\$1</u>	13	5	0.2	106.67	-21 333
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
S8 25 5 0.2 693.333 138.667 S9 23 5 0.2 560 112 BOD S1 6.5 5 0.2 130 26 BOD S2 8.5 5 0.2 170 34 S3 12 5 0.2 240 48 S4 16 5 0.2 320 64 S5 8 5 0.2 160 32 S6 14 5 0.2 320 64 S8 18 5 0.2 360 72 S9 15 5 0.2 300 60 Conductivity S1 280 250 0.004 112 0.448 S2 235 250 0.004 94 0.376 S3 240 250 0.004 96 0.384 S4 260.8 250 0.004 88							
S9 23 5 0.2 560 112 BOD S1 6.5 5 0.2 130 26 S0D S2 8.5 5 0.2 170 34 S3 12 5 0.2 240 48 S4 16 5 0.2 320 64 S5 8 5 0.2 280 56 S6 14 5 0.2 320 64 S8 18 5 0.2 320 64 S8 18 5 0.2 320 64 S8 18 5 0.2 300 60 Conductivity S1 280 250 0.004 112 0.448 S2 235 250 0.004 94 0.376 S3 240 250 0.004 96 0.384 S4 260.8 250 0.004 80							
Image: style							
BOD S2 8.5 5 0.2 170 34 S3 12 5 0.2 240 48 S4 16 5 0.2 320 64 S5 8 5 0.2 160 32 S6 14 5 0.2 280 56 S7 16 5 0.2 320 64 S8 18 5 0.2 320 64 S8 18 5 0.2 360 72 S9 15 5 0.2 300 60 Conductivity S1 280 250 0.004 112 0.448 S2 235 250 0.004 94 0.376 S3 240 250 0.004 96 0.384 S4 260.8 250 0.004 88 0.352 S6 200 250 0.004 80 0.324 <		0,7		0	0.2		
BOD S2 8.5 5 0.2 170 34 S3 12 5 0.2 240 48 S4 16 5 0.2 320 64 S5 8 5 0.2 160 32 S6 14 5 0.2 280 56 S7 16 5 0.2 320 64 S8 18 5 0.2 320 64 S8 18 5 0.2 360 72 S9 15 5 0.2 300 60 Conductivity S1 280 250 0.004 112 0.448 S2 235 250 0.004 94 0.376 S3 240 250 0.004 96 0.384 S4 260.8 250 0.004 88 0.352 S6 200 250 0.004 80 0.324 <		S1	6.5	5	0.2	130	26
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BOD						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
S9 15 5 0.2 300 60 Conductivity S1 280 250 0.004 112 0.448 S2 235 250 0.004 94 0.376 S3 240 250 0.004 96 0.384 S4 260.8 250 0.004 88 0.352 S6 200 250 0.004 80 0.32 S7 240 250 0.004 96 0.384 S8 260 250 0.004 80 0.322 S7 240 250 0.004 96 0.384 S8 260 250 0.004 96 0.384 S9 240 250 0.004 96 0.384							
Conductivity S1 280 250 0.004 112 0.448 S2 235 250 0.004 94 0.376 S3 240 250 0.004 96 0.384 S4 260.8 250 0.004 104.32 0.41728 S5 220 250 0.004 88 0.352 S6 200 250 0.004 80 0.322 S7 240 250 0.004 96 0.384 S8 260 250 0.004 80 0.322 S7 240 250 0.004 96 0.384 S8 260 250 0.004 96 0.384 S9 240 250 0.004 96 0.384							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			10	5	0.2	500	
S3 240 250 0.004 96 0.384 S4 260.8 250 0.004 104.32 0.41728 S5 220 250 0.004 88 0.352 S6 200 250 0.004 80 0.32 S7 240 250 0.004 96 0.384 S8 260 250 0.004 96 0.384 S9 240 250 0.004 96 0.384	Conductivity	S1	280	250	0.004	112	0.448
S4 260.8 250 0.004 104.32 0.41728 S5 220 250 0.004 88 0.352 S6 200 250 0.004 80 0.32 S7 240 250 0.004 96 0.384 S8 260 250 0.004 96 0.384 S9 240 250 0.004 96 0.384		S2	235	250	0.004	94	0.376
S5 220 250 0.004 88 0.352 S6 200 250 0.004 80 0.32 S7 240 250 0.004 96 0.384 S8 260 250 0.004 104 0.416 S9 240 250 0.004 96 0.384		S3	240	250	0.004	96	0.384
S6 200 250 0.004 80 0.32 S7 240 250 0.004 96 0.384 S8 260 250 0.004 104 0.416 S9 240 250 0.004 96 0.384		S4	260.8	250	0.004	104.32	0.41728
S7 240 250 0.004 96 0.384 S8 260 250 0.004 104 0.416 S9 240 250 0.004 96 0.384		S5	220	250	0.004	88	0.352
S7 240 250 0.004 96 0.384 S8 260 250 0.004 104 0.416 S9 240 250 0.004 96 0.384		S6	200	250	0.004	80	0.32
S8 260 250 0.004 104 0.416 S9 240 250 0.004 96 0.384			240	250		96	0.384
S9 240 250 0.004 96 0.384		S8	260	250		104	0.416
Hardness S1 80 300 0.0033 28.3333 0.0935							
Hardness S1 80 300 0.0033 28.3333 0.0935							
	Hardness	S1	80	300	0.0033	28.3333	0.0935

Table -5: Calculation of WQI for month of June 2018

International Research Journal of Engineering and Technology (IRJET)Volume: 07 Issue: 04 | Apr 2020www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

	S2	85	200	0.0022	20	0.000
			300	0.0033	30	0.099
	S3	90	300	0.0033	33	0.1089
	S4	99	300	0.0033	27.3333	0.0902
	S5	82	300	0.0033	32.6667	0.1078
	S6	98	300	0.0033	33.4667	0.11044
	S7	100.4	300	0.0033	36.6667	0.121
	S8	110	300	0.0033	36.6667	0.121
	S9	110	300	0.0033	36.6667	0.121
	S1	100	200	0.005	50	0.25
Alkalinity	S2	102	200	0.005	51	0.255
	S3	106	200	0.005	53	0.265
	S4	110	200	0.005	55	0.275
	S5	102	200	0.005	51	0.255
	S6	105	200	0.005	52.5	0.2625
	S7	108	200	0.005	54	0.27
	S8	110	200	0.005	55	0.275
	S9	110	200	0.005	55	0.275
TDS	S1	120	500	0.002	24	0.048
105	S1 S2				24	
		110	500	0.002		0.044
	S3	140	500	0.002	28	0.056
	S4	170	500	0.002	34	0.068
	S5	150	500	0.002	30	0.06
	S6	180	500	0.002	36	0.072
	<u>S7</u>	120	500	0.002	24	0.048
	<u>S8</u>	140	500	0.002	28	0.056
	S9	120	500	0.002	24	0.048
Chloride	S1	30	250	0.004	12	0.048
dinorrae	S2	30	250	0.004	12	0.048
	S3	35	250	0.004	14	0.056
	S4	40	250	0.004	16	0.0 64
	S5	30	250	0.004	10	0.048
	55 S6	30	250	0.004	12.8	0.0512
	S7	30	250	0.004	12.0	0.048
	S8	40	250	0.004	12	0.048
	<u> </u>	38	250	0.004	15.2	0.0608
	39	30	230	0.004	13.2	0.0000
Calcium	S1	32	75	0.013	42.6667	0.55467
	S2	32	75	0.013	42.6667	0.55467
	S3	36	75	0.013	48	0.624
	S4	36	75	0.013	48	0.624
	S5	36	75	0.013	48	0.624
	S6	20	75	0.013	26.6667	0.34667
	S7	30	75	0.013	40	0.52
	S8	40	75	0.013	53.33	0.69329
	<u> </u>	35	75	0.013	46.66	0.60658
				I for month o		

 Table -5: Calculation of WQI for month of October 2018

	Sites	Observed Value(Vi)	Standard Value(Si)	Unit Weight(wi)	Quality Rating(qi)	Weighted value
Parameters						(wi*qi)
рН	S1	7.5	8.5	0.1176	33.3333	3.92
	S2	7.2	8.5	0.1176	13.3333	1.568

International Research Journal of Engineering and Technology (IRJET)Volume: 07 Issue: 04 | Apr 2020www.irjet.net

						Г
	S3	7.2	8.5	0.1176	13.3333	1.568
	S4	6.5	8.5	0.1176	-33.333	-3.92
	S5	8.5	8.5	0.1176	100	11.76
	S6	6.28	8.5	0.1176	48	5.6448
	S7	6.8	8.5	0.1176	13.333	1.568
	S8	6	8.5	0.1176	66.667	7.84
	S9	6.2	8.5	0.1176	53.333	6.272
Turbidity	S1	100	25	0.04	4	0.16
	S2	120	25	0.04	4.8	0.192
	S3	155	25	0.04	6.2	0.248
	S4	140	25	0.04	5.6	0.224
	S5	105	25	0.04	4.2	0.168
	S6	142	25	0.04	5.68	0.2272
	S7	135	25	0.04	5.4	0.216
	S8	150	25	0.04	6	0.24
	S9	160	25	0.04	6.4	0.256
	<i>a</i> :					
DO	S1	15	5	0.2	26.666	5.33333
	S2	15	5	0.2	26.666	5.33333
	S3	23	5	0.2	560	112
	S4	21	5	0.2	426.66	85.3333
	S5	15	5	0.2	26.666	5.33333
	S6	26	5	0.2	760	152
	S7	20	5	0.2	360	72
	S8	25	5	0.2	693.33	138.667
	S9	23	5	0.2	560	112
BOD	S1	10	5	0.2	200	40
עטע	S1 S2	10	5	0.2	200	
	S2 S3		5			48
		15		0.2	300	60
	S4	12	5	0.2	240	48
	S5	9	5	0.2	180	36
	S6	18	5	0.2	360	72
	S7	14	5	0.2	280	56
	S8	18	5	0.2	360	72
	S9	19	5	0.2	380	76
Conductivity	S1	300	250	0.004	120	0.48
	S2	250	250	0.004	100	0.4
	S3	249	250	0.004	99.6	0.3984
	S4	230	250	0.004	92	0.368
	S5	300	250	0.004	120	0.48
	S6	200	250	0.004	80	0.32
	S7	200	250	0.004	80	0.32
	S8	200	250	0.004	84	0.336
	50 S9	260	250	0.004	104	0.336
Hardnoss	59 S1	80				
Hardness			300	0.0033	0.26667	0.00088
	S2	87	300	0.0033	0.29	0.00096
	S3	89	300	0.0033	0.29667	0.00098
	S4	82	300	0.0033	0.27333	0.0009
	S5	60	300	0.0033	0.2	0.00066
	S6	100	300	0.0033	0.33333	0.0011
	S7	100	300	0.0033	0.33333	0.0011
	S8	120	300	0.0033	0.4	0.00132

International Research Journal of Engineering and Technology (IRJET)

IRJET Volume: 07 Issue: 04 | Apr 2020

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

	S9	110	300	0.0033	0.36667	0.00121
Alkalinity	S1	70	200	0.005	0.35	0.00175
	S2	95	200	0.005	0.475	0.00238
	S3	80	200	0.005	0.4	0.002
	S4	80	200	0.005	0.4	0.002
	S5	50	200	0.005	0.25	0.00125
	S6	110	200	0.005	0.55	0.00275
	S7	100	200	0.005	0.5	0.0025
	S8	120	200	0.005	0.6	0.003
	S9	130	200	0.005	0.65	0.00325
		4.45	= 0.0			0.050
TDS	S1	145	500	0.002	29	0.058
	S2	140	500	0.002	28	0.056
	S3	170	500	0.002	34	0.068
	S4	130	500	0.002	26	0.052
	S5	180	500	0.002	36	0.072
	S6	123	500	0.002	24.6	0.0492
	S7	130	500	0.002	26	0.052
	S8	100	500	0.002	20	0.04
	S9	140	500	0.002	28	0.056
	S1	30	250	0.004	12	0.048
Chloride	S2	26.4	250	0.004	10.56	0.04224
	S3	30	250	0.004	12	0.048
	S4	60	250	0.004	24	0.096
	S5	40	250	0.004	16	0.064
	S6	25.5	250	0.004	10.2	0.0408
	S7	35	250	0.004	14	0.056
	<u>S8</u>	30	250	0.004	12	0.048
	S9	35	250	0.004	14	0.056
Calcium	S1	35	75	0.013	46.666	0.60667
	S2	34	75	0.013	45.333	0.58933
	S3	32	75	0.013	42.666	0.55467
	S4	32	75	0.013	42.666	0.55467
	S5	32	75	0.013	42.666	0.55467
	S6	17.2	75	0.013	22.933	0.29813
	S7	36	75	0.013	48	0.624
	S8	40	75	0.013	53.333	0.69333
	S9	32	75	0.013	42.6667	0.55467

The Water Quality Index was then calculated by using the formula of Weighted Arithmetic Index formula for the month of June and October as follows:

Water Quality index for the month of June:

 $WQI(site1) = \sum wiqi / \sum wi = 82.9355 / 0.5889 = 140.83$

WQI(Site 2)= 81.43/0.5889 =138.27

WQI(Site 3)= 136.427/0.5889= 231.6

WQI(Site 4)= 168.63/0.5889 = 286.34

WQI(Site 5)= 138.08/0.5889 = 234.47

- WQI(Site6)= 189.301/0.5889 = 321.44
- WQI(Site 7)= 198.13/0.5889 = 336.44
- WQI(Site 8)= 248.02/0.5889 =421.15
- WQI(Site 9)=199.02 /0.5889 =337.95

Similarly, the Water Quality Index for the month of October 2018, is as follows:

- WQI (Site1)=∑wiqi//∑wi= 50.608/0.5889=85.93
- WQI (Site 2)=56.184= /0.5889 =95.40
- WQI (Site 3)= 174.88/0.5889= 296.96
- WQI (Site 4)= 138.55/0.5889 =235.26
- WQI (Site 5)= 54.43/0.5889 =92.43
- WQI (Site6)= 230.584/0.5889 = 391.550
- WQI (Site 7)=127.70/0.5889 = 216.844
- WQI (Site 8)= 219.86/0.5889 =373.34
- WQI (Site 9)=195.35 /0.5889 =331.72

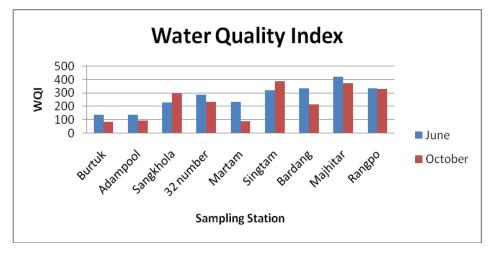


Figure-1 Graphical Representation of WQI for June 2018 and October 2018

4. CONCLUSIONS

The objective of the study was to calculate the Water Quality Index (WQI) of Teesta River which flow through the state of Sikkim in order to assess its suitability for drinking purposes. The water quality index (WQI) of the river was assessed for East District for the month o June and October 2018 as presented in Figure 1 above using the data tabulated in table 3 and table 4. The WQI for the month of June and October was found out to be the highest in Site 8 during both June and October with the value of 421.15 and 373.34 respectively.

The obtained value is a clear indication that water from Teesta River is unsuitable for drinking purposes and must therefore be treated before use to avoid water related diseases. And it is also need for regular monitoring of water quality in order to detect the changes in physicochemical parameters. Thus it is suggested that proper waste management should be taken up.

ACKNOWLEDGEMENT

The Authors of the paper is thankful to the Principal Scientists of State Pollution Control Board Sikkim Dr Gopal Pradhan for his continuous support and providing us valuable data. The author is also thankful to Dr. Mimi Das Saikia (Professor, Assam Downtown University). Also a heartwarming gratitude to the staffs and members of SPCB, Sikkim for the help the provided for the help they provided in the laboratory works

REFERENCES

- [1] Govindraj S, Selvaraj D, Kuppuraj RM, Rangaswamy M (2009), Water quality in select regions of Cauvery Delta River basin, Southern India, with emphasis on monsoonal variation. Environmental Monitoring and Assessment, In press (DOI:10.1007/s10061-009-1013-7).
- [2] Babu, K.N., D. Padmalal, R. Sreeja and S. Sreebha, (2003), Water Quality Variation of Bharatapuzha River, South West Cost of India: Problems and Solutions. In: Environments Pollution, Singh, V.P. and R.N. Yadava, (Eds). Allied Pub. Pvt. Ltd., New Delhi, India, pp 29-43
- [3] Nasrollahzadeh C, Vardi A . (2002), Tajan River water quality study of quality index curves, Proceedings of the Sixth International River Engineering Conference. Volume II. Ahvaz, Chamran University, p 903.
- [4] Almeida, C.A., Quintar, S., Gonzalez. P., and Mallea, M.A. (2007): Influence of urbanization and tourist activities on the water quality of the Portero de los Funes River (San Luis Argentina). Environment Monitoring and Assessment, 133: 459–465
- [5] Mini, I. and Radhika. C. G. and Ganga Devi, J. (2003): Hydrological studies on a lotic ecosystem, Vamanapuram River, Thiruvananthapuram, Kerala, South India. Poll. Res., 22(4) 617-626.
- [6] Th. Alexander Singh, N.Sanamacha Meetei, and L. Bijen Meitei(2013). "Seasonal Variation of Some Physico- chemical Characteristics of Three Major Riversin Imphal, Manipur: A Comparative Evaluation
- [7] Naz, S. (2014): A study for prediction of water quality of non-reserved ponds of Bhilai-Durgregions for various purpose. Online Int. Interdisciplinary Res. J. 4: 276-288.
- [8] Lok Siew Chin(2012) "River Water Quality Profile In University Technology Malaysia Campus". Thesis for Bachelor of Civil Engineering.
- [9] Khwakaram, A. I., Majid, S. N. and. Sharma, N. Y. (2012): Determination of Water Quality Index (WQI) for Qalyasan stream in Sulaiman city, Kurdistan region of Iraq. Int. J. Plant and Animal Environ. Sci., 2(4), pp. 148 157.
- [10] Singh, P. and Balasingh, R. (2011): Limnological studies of Kodaikanal Lake (Dindugal District), in special reference to phytoplankton diversity. Ian. J. Fund. Appl. L. Sci., 1(3): 112-118.
- [11] R.K.Horton, An index number for rating water quality, Journal of Water Pollution Control Federation, 37 (3), 1965, pp 300-306.
- [12] P. B. Jagadeeswari and K. Ramesh, Water Quality Index for Assessment of Water Quality in South Chennai Coastal Aquifer, Tamil Nadu, India, International Journal of Chem. Tech Research, 4 (4), 2012, pp 1582-1588.
- [13] APHA, (2005). Standard Methods for the Examination of Water and Waste Water, 21th ed. American Public Health Association, Washington, D.C.