
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3277

SQLIA – Detection and Prevention

Prachit Raut1, Vedang Gharat 2

1Student, Department of Computer Engineering, Padmabhushan Vasant Dada Patil Pratishthan’s College of
Engineering, Mumbai, Maharashtra, India

2Student, Department of Information Technology, Universal College of Engineering, Vasai
---***--
Abstract - In present era, cyber-attacks are used to steal
and manipulate huge volume of assets from different lines of
businesses. So, it is necessary to protect our important assets
from such attacks. SQL Injection Attack has been one of the
top most vulnerabilities in OWASP’s Top 10 list of security
vulnerabilities. SQL Injection compromises confidentiality,
availability and integrity of the data. Therefore, it is
mandatory to protect user data from such attack. In SQL
Injection attack the attacker intentionally uses harmful
characters, and inputs it in such a way that it alters the
collection of user assets and gets the desired data. This
research paper is prepared in such a fashion that it gives a
complete analysis about SQL Injection, SQL Injection types,
Detection methods and preventive measures for this attack.

Key Words: SQL Injection, Stored, Union, Select,

Prevention, Detection, Architecture, SQL Queries, Token,

Inferential.

1. INTRODUCTION

Now-a-days web applications are prevalent and has become
essential for every individual. There are n number of
security contraventions that takes place every day one of
them is SQL Injection attack. SQL is abbreviated as
Structured Query Language [1]. The main purpose of this
language is to communicate with the database in order to
manipulate the data. SQL Injection is commonly referred as
SQLI, it is an attack in which an unauthorized user tries to
attack the system or a network using a malignant SQL
queries in order to get the access of the database and
manipulate the data which is not meant to be accessed.
Unfiltered SQL queries are the prime reasons for this attack.
Various SQLI attack techniques implemented by attackers
are combinations of SQL statements. Today, more than 1
million websites are being infected because of SQLI attack.
There are different types of SQLI attacks and each one uses
different manner to attack the website. The classic SQLI
attacks were easy to block so to not manipulate the data
form the databases. But the combination of SQLI attack and
XSS attacks makes the data extraction and manipulation of
the data from the database much easier [3]. Various
techniques were discussed to surpass SQL Injections. One of
them was to implement avert code with conventional
encoding and decoding techniques. Even today defensive
codes are implemented but they are not that strong enough
to protect the data from SQLI attacks. Although there are
many ways to prohibit SQLI vulnerabilities the main

problem all of these is that their application is difficult to
implement. These methods are likely to have human errors
and are not applied as automated techniques. The rest of the
paper is organized as follows:

2. Insights of SQLI attack
3. Types of SQLI Attacks
4. Risks related to SQLI attack
5. Ways to attack,
6. Attack Prevention Techniques
7. Conclusion
8. References

2. INSIGHTS OF SQLI ATTACK

SQLI Attack is considered to be severe type of attack
affecting confidentiality, integrity and availability of the data.
This attack adds harmful SQL code to a web form input box
to gain access or manipulate the data in the database [2]. By
using this weakness an attacker can send his commands
directly to the database and destroy the complete
functionality of an application. Attacker can use this attack to
execute system level commands that may result in denial of
the service to the application by the system.

Fig 1. Explanation of a simple SQLI attack

3. TYPES OF SQLI ATTACKS

SQLI attacks can be performed in various ways. Attacker
keeps a track of system’s behavior and then selects the best
suitable attack for a specific system or a network. The attack
is very much common with ASP and PHP applications as it

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3278

uses much older functional interface which are easily
vulnerable to SQLI Attacks and which makes attacker to
penetrate through them easily and manipulation becomes
less difficult.

Following are the types of SQLI attacks [4].

Fig 2. Types of SQLI attack

1) InBand SQLI Attack: In an InBand SQLI Attack the
attacker uses similar communication channel for attacking
and stealing the data from that system. It is most commonly
used and easy SQLI attack, also known as Classic SQLI Attack.
Typically, in this attack an attacker sends the payload
through GET or POST HTTP request and in return the data
will be inserted in the page which is returned by the server.
2) Out of Band SQLI Attack: In this attack the attacker does
not use same communication channel, instead it depends on
the features that are enabled in the server’s database that is
being used by the web application. Out-of-band method
offers the attacker a substitute to time-based method if the
server’s response is unstable [14]. Out of band SQLI
technique depends on database server to make DNS or HTTP
requests to deliver data to the attacker. Such is the case with
Oracle’s database UTL_HTTP package which is used to send
HTTP requests from a SQL server which the hacker controls.
3) Piggy Backing Attack: In this attack the attacker “Piggy
Backs” the query with the genuine query as input in a
web-application.[5]
The purpose of this attack is retrieval of information from
the database and Denial of service to the genuine user. Piggy
Backing can be defined as “on the back of other”. In this a
query works as normal query and it is piggy backed by
another harmful query, when the query is executed both of
them gets executed which makes the database vulnerable
exploitation becomes easy. For example: select
customer_details from accounts where
login_id=”administrator” AND pass=’1234’; DELETE FROM
accounts WHERE Customer_Name=”John”;
After execution of the first query the interpreter sees the ‘;’
Semi Colon and executes the second query with the first
query. The second query is harmful and so it will delete the
all the data of the customer ‘John’.

4) Blind Base (Boolean) Attack: Blind base SQLI is an
inferential SQLI which depends on sending a SQL query to
the database which impels the application to return different
output deciding whether the query returns a TRUE or FALSE
result. Depending on the result the data with HTTP response
might change or be the same. In such situation the attacker
might interfere if the result returned is true or false even if
no data is
returned from the database [16]. The attack usually slow
especially on huge databases as the attacker will need to
extract a database, character by character [6].
5) Union Query SQLI Attack: This attack uses Union
operator (U) in the SQL Query. The SQL queries are joined
using this Union operator. While firing the query the first
statement is a normal query after which the harmful query is
adjoined to it with a Union operator. The attacker must
design a SELECT statement similar to the Original query. For
this a valid table should be known to the attacker, also it is
necessary to know the number of column and rows in first
query and their data type.
It bypasses the prevention and detection mechanism of the
system [13].

Fig 3. Union query injection attack.

6) Blind Base (Time) Attack: It is an Inferential Injection
technique that depends on sending an SQL query to the
database and it forces the database to wait for some specific
time (in seconds) before returning. The response time
indicates to the attacker whether the outcome of the query is
True or False. After the result is returned, an HTTP response
will be returned with a delay (in Seconds) or might returned
immediately. This allows the attacker to conclude if the
payload used returned true or false, even if no data was
returned from the database [9].
For example: http://example.com/items.php?id=2 this url
will send query to database to SELECT title, description,
body FROM items WHERE ID = 2, after this attacker might
fire a query which will return true and other with false this
will makes it easier for the attacker to distinguish between
the two results and to easily manipulate the data .
7) Error Based SQLI Attack: An Error Based SQLI Attack is
useful when the attacker is unable to exploit the
vulnerability in the database using other techniques. In this
attack the database is forced to perform some operation
which will result in an error and then the attacker tries to
gain some information from the error messaged displayed
[8].
8) Tautology: In Tautology based injection the attacker
injects one or more conditional statements which are always
true and it is most commonly used for bypassing the login
pages and extracting the data from the database. Attacker

http://example.com/items.php?id=2

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3279

injects the query in the input field, the query is transformed
into tautology which causes all the rows which are aimed in
the query to return.

For Example: Bypassing the login page:

SELECT name from users where username='a' OR '1' = '1'
AND password='a' OR '1' = '1'.

The code injected (OR 1=1) transforms the entire WHERE
clause in a tautology. The database evaluates the condition in
the statement and if the condition turns out to be true it
checks the rows in the query and returns the specific rows or
all of them. Above mentioned query will return all the
possible entities from the database.
9) Compounded SQLI Attack: Compound spoofing also
known as content injection is a combination of Content
Spoofing and SQL Injection. Content spoofing mainly focuses
on injecting harmful content to the websites and is basically
a client-side attack [12]. Whereas the SQL Injection attack
mainly focuses to target the databases in which attacker
crafts the malicious code in such a fashion that it would be
treated as a legit query and is a server-side attack which
provides ability to the attacker for unauthorized access to
database.

Fig 4. Injection of HTML code via vulnerable column

Type Objective SQL query

Union Data
extraction

Select * from stu_data
where stuid=‘’ union
select * from
details -- and pwd=‘b’;

Tautologies Authentication
bypass

Select * from stu_data
where stuid=‘vxyz’ and
pwd =’b’ or ‘4’=’4’

Piggy
Backing

Dataset
Extraction

Select Rno FROM Stu
WHERE login = ‘abc’ AND
pass = ”; DROP table St --’

Incorrect
queries

Identification
of injectable
parameters

SELECT * FROM students
WHERE username =
'aaa"' AND
password =

Inference Determining
Database
Schema

SELECT name, email
FROM members WHERE
id=5; IF
SYSTEM_USER='sa'
SELECT 1/0 ELSE
SELECT 5

4. RISKS RELATED TO SQLI ATTACK

SQLI attacks are harmful and risks related to it encourages
hackers to attack the database. The main out-comes of this
attack are as follows:
1) Loss of confidentiality: Databases contains highly
sensitive
data such as Phone numbers, Bank Account numbers, etc.
Attack on database can cause misuse of such data and which
results in loss of confidentiality.
2) Loss of Integrity: After attacking the database the
attacker might manipulate the data by modifying or deleting
data and such manipulation of data can cause let loss of data
integrity.
3)Loss of Authentication: If the attacker successfully
bypasses the login page and gets into the database then the
authenticity is lost as unauthorize user gets successfully in
the database.

5. WAYS TO ATTACK

There are many reasons which makes the system prone to
attacks. Here are some of the many reasons which cause
loopholes in a system which makes in vulnerable.

1) Tempering of URL: URL tempering is one of the widely
used common way to access data. Detection is comparatively
tough, also it requires much skills. An URL might contain
sensitive information like Primary Key IDs, any entity names,
such information can be used to gain access to data.
Tempering or modifying URL can be achieved by attaching
harmful strings to the URL. SQL Queries can also be used in
the URL to check if the website is vulnerable.
2) Improper input validation: Incorrect input validation is
the main source of SQLI attacks. So, to avoid such
vulnerabilities avert coding must be done. Encoding of the
input must be done as attacker mostly uses the meta
characters into the query which can confuse the SQL parser
and illuminate the user inputs as SQL tokens so restricting
the use of such meta characters will terminate the use of
such characters. Solution to this is encryption of user queries
in such a fashion that all the meat characters are encrypted
and are illuminated as general characters to the database
system.
3) Identify input sources: One must check all the input
sources to their application as there may be many possible
ways to input the data to the application. These input
sources can be a gateway
for the vulnerabilities to get in the database [17].
4) Use of automated tools: Automated tools have made it
easier to exploit and manipulate data. Tools such as SQL
Map, Whitewidow, DSSS, Blisqy, etc. are used. These tools
hold various payloads in them to detect and exploit SQL
vulnerabilities.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3280

6. ATTACK PREVENTION TECHNIQUES

1) Sanitizing and validating user inputs: Validation of
user inputs is necessary to check if the given user data as
input is acceptable for whatever user intends to use it for.
Another reason could be if the user gives wrong input then it
should prompt the user about invalid input, rather than
giving access to the information. To avoid this, we can use an
PDO (PHP Data Objects). PDO is an interface for accessing
the database, it also supports 12 different database drivers.

Working of PDO Statements:

A) Prepare a query with null values as placeholders with
either a question mark or a variable name with a colon
preceding it for each value.
B) Attach the values to the placeholders and execute the
query.
Now, to prevent password from cracking, the php.ini file
should look like this: display_errors = Off and log_errors = On.
This will all the error individually gather in the error log
instead of popping it up or printing it. But if an attacker gets
the logs it would be harmful. So, we would use a try/catch OR
set_exception_handler while doing error_log($e-
>getMessage()).

2) Using SQL Parameters: SQL Parameters does check for
type and length validation. Validation is done by both user
and client side. If the values appeared to be outside the range
it would trigger an error. The code below elaborates the use
of parameter collections:

 SqlDataAdapter myCommand = new
SqlDataAdapter("UserLogin", conn);
 myCommand.SelectCommand.CommandType =
CommandType.StoredProcedure;
 SqlParameter parm =
myCommand. SelectCommand.Parameters.Add
("@cust_id", SqlDbType.VarChar, 15);
 parm.Value = Login.Text;

In this example above, the @cust_id is treated as a literal
value instead of as executable code. The value is first
checked for length and type and if the value of @cust_id does
not fulfill with the given length and type Value, an exception
will pop.

Fig 5. Defense Mechanism

This defense mechanism is mainly designed to prevent
SQLIA’s. The defense mechanism primarily checks for input
information and also detects web address bar for
information, mainly sensitive character detection. First the
server side checks for the IP address authenticity. Access to
the server is denied for the users with unverified input
values and if the input value matches SQL defense
mechanism rule, only then the user is allowed to access the
server. At last the server checks and verifies input values for
user to give him privileges. If the user exceeds beyond the
given number of permissions the system sends the alert
message to the administrator and the user is blocked
instantly. Besides this, the server also monitors the activity
simultaneously and records the attack when all the
verification done is proved as invalid.

7. CONCLUSION

In this paper we’ve discussed SQL injection attack with its
principle, attack execution process, prevention and detection
techniques. As SQL injection attack is mainly performed on
databases and application development and so for the vast
majority of firewall are unable to bypass this attack
successfully.

Although the database server is updated, the scripting
languages used are still vulnerable itself. But as the SQL
technology is continuously evolving the loopholes and threat
continues to the databases. Hence the prevention and
detection methods should also need to evolve. More
attention towards server and databases configuration and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3281

more sanitization and filtration of the inputs must be
considered in order to prevent attack. Also, while developing
a web application one must built it with security in mind and
each should be thoroughly tested for SQL Injection attack
vulnerabilities.

8. REFERENCES

[1] Etienne Janot, Pavol Zavarsky “Preventing SQL Injections
in Online Applications” OWASP Application security
conference May 2018, Ghent, Belgium
[2] XuePing-Chen “SQL injection attack and guard technical
research” 2011 Published by Elsevier Ltd
[3] Rubidha Devi.D, R.Venkatesan, Raghuraman.K “A study
on SQL injection techniques” IJPT| Dec-2016 | Vol. 8 | Issue
No.4 | 22405-22415
[4] “Stephanie Reetz” SQL Injection Technical MS-ISAC White
Paper , May 2017
[5] Subhranil Som , Sapna Sinha , Ritu Kataria, “ Study on sql
injection attacks: mode, detection and prevention”
International Journal of Engineering Applied Sciences and
Technology, 2016
Vol. 1, Issue 8, ISSN No. 2455-2143, Pages 23-29
Published Online June - July 2016 in IJEAST
(http://www.ijeast.com)
[6] Zainab S. Alwan, Manal F.Younis “Detection and
Prevention of SQL Injection Attack: A Survey” IJCSMC, Vol. 6,
Issue. 8, August 2017
[7] Sayyed Mohammad Sadegh Sajjadi and Bahare Tajalli
Pour “Study of SQL Injection Attacks and Countermeasures”
International Journal of Computer and Communication
Engineering, Vol. 2, No. 5, September 2013
[8] Nanhay Singh, Khushal Singh, Ram Shringar Raw
(“Analysis of Detection and Prevention of Various SQL
Injection Attacks on Web Applications” www.ijais.org
[9] Nikita Patel, Fahim Mohammed, Santosh Soni “SQL
Injection Attacks: Techniques and Protection Mechanisms”
[10] P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan,
“CANDID: Dynamic Candidate Evaluations for Automatic
Prevention of SQL Injection Attacks” ACM Transactions on
Information and System Security March 2010 Article No.: 14
[11] Kirti Randhe, Vishal Mogal, “Security Engine for
prevention of SQL Injection and CSS Attacks using
DataSanitization Technique”s , Vol. 3, Issue 6, June 2015
[12] G. Kontaxis, D. Antoniades, I. Polakis, and E. P. Markatos
“Anempirical study on the security of cross-domain policies
in rich internet applications” EUROSEC '11: Proceedings of
the Fourth European Workshop on System Security April
2011 Article No.: 7
[13] Nabeel Salih Ali, Abd Samad Shibghatullah “Protection
Web Applications using Real-Time Technique to Detect
Structured Query Language Injection Attacks”International
Journal of Computer Applications Foundation of Computer
Science (FCS), NY, USA Volume 149 - Number 6, 2016
[14] Sonam Panda, Ramani “Protection of Web Application
against Sql Injection Attacks”
International Journal of Modern Engineering Research
(IJMER) Vol.3, Issue.1, Jan-Feb. 2013 pp-166-168

[15] Chris Anley “Advanced SQL Injection in SQL Server
Applications” An NGSSoftware Insight Security Research
(NISR) Publication ©2002 Next Generation Security
Software Ltd
[16] “OWASP Top Ten”
https://owasp.org/www-project-top-ten/
[17] S V Athawale, M A Pund “An Improved Network-based
Intrusion Detection System for Virtual Private Networks”
Journal of Information and Computing Science, Vol. 13, No. 2,
2018

http://www.ijeast.com/
http://www.ijais.org/
https://owasp.org/www-project-top-ten/

