

Applying Concept of Operational Research in Construction Industry

Suthar Nisarg Arvindbhai¹, Prof. Javraj V. Solanki²

¹Student (M.Tech (Civil Engg.), Construction Engineering and Management), U. V. Patel College of Engineering, Ganpat University, Kherva, Mehsana, Gujarat, India

²Assistant Professor, Civil Engineering Department, U. V. Patel College of Engineering, Ganpat University, Kherva, Mehsana, Gujarat, India

***______

Abstract - Operations Research (OR) is the method of advanced analytical to support complex problem-solving and decision making. The success of OR methods is that it is a systematic approach to solving problems by provide a framework for constructing conceptual and mathematical models finding out the best among all solutions with respect to given measurable parameters (variables), and finding out the best solutions among all problems, In this regards, OR contributes to improving project management by applying different techniques such as Critical Path Methods (CPM) and Project Evaluation Review Technique (PERT), reduce better logistics for quality delivery through network optimization, traffic simulations, decision theory, game bottleneck elimination (game theory), simulations, linear programing, public transport scheduling and planning, monte carlo simulation, transportation problems, etc. In this research paper we are mainly focus on the practical application of linear programming in construction industry.

Key Words: Operational Research, Decision Making, Linear Programming, Simplex Method, Transportation Problem, Monte-Carlo Simulation, Decision Theory.

1. INTRODUCTION

• What is Operational Research?

Encyclopedia of the Chinese Enterprise Management defines operation research as "To make overall arrangement of the limited resources of human, financial and material in the economic system by using analytical, experimental and numerical methods, aiming to provide optimal plans for decision makers to achieve the most effective management". Approach's (STEPS):

- 1. Orientation,
- 2. Problem Definition,
- 3. Data Collection,
- 4. Model Formulation,
- 5. Solution,
- 6. Model Validation and Output Analysis, and
- 7. Implementation and Monitoring.

1.1 Linear Programming

In order to develop and apply specific operations, research techniques are accustomed determine the optimal choice, among other several courses of action, including the evaluation of specific numerical values, there's also have to formulate a mathematical model. The term formulation refers

to the method of converting the verbal descriptions and numerical data into mathematical expressions , which represents the relationships among relevant decision variables, objective and restrictions, on the utilization of resources like labor, material, time, warehouse space, capital, etc., to many competing activities, like products, services jobs, new equipment, projects etc., on the premise of a given criterion of optimality (George et al, 2000). Application of Software's : The usefulness of this technique is enhanced by the availability of user-friendly computer software such as STORM, TORA, QSB, LINDO, excel solver, @Risk, Various Addin etc. However, there is no computer software for building an LP model.

1.2 Transportation Problem

The transportation model could be a special class of the applied maths problem. It deals with things within which a commodity is transported from sources to destinations. The target is to be determined the amounts shipped from each source to every destination that minimize the overall shipping cost while satisfying both the provision limit and also the demand requirements. The model assumes that the shipping cost on a given route is directly proportional to the quantity of units shipped thereon route. This industry wants an answer for transportation problems with internal control, managing of fund, and resolving disputes of scheduling production over different time periods for construction materials by using the transportation model. Generally, NWCM, LCM, VAM, MODI, etc method are useful. Application of Software's: The usefulness of this technique is enhanced by the availability software such as Excel solver, AtoZmath.com. etc. .

1.3 Monte-Carlo Simulation

In cost budget management, Project Manager and Engineers can be use Monte Carlo Simulation to better understand project budget and estimate final budget at completion. Monte Carlo simulation has been used in construction projects to better understand certain risks of the project. Application of Software's : The usefulness of this technique is enhanced by the availability of software such as Monte Carlo simulation Add-ins, such as @Risk or Risk+.

1.4 Decision Theory

Decision analysis is an analytical approach by decision making that allows managers to solve problems with

uncertainty figures as a prominent factor. A model is developed to represent the decision-making problem, facilitate logical analysis, and produce a recommended course of action. Decision Theory calculation is a creating combination of a events, strategies, payoff table, opportunity loss or regret table. five decision rules (criteria) commonly used in decision process under uncertainty were presented and applied.

Wald's MaxiMin or MiniMax Hurwicz's Maximax or MiniMin Savage's Laplace's, etc

Application of Software's: Generally, Microsoft Excel is Used for the solving out Decision Theory

2. PRACTICAL APPLICATION:

2.1. Linear Programming:

2.1.1 Graphical Method:

Rajasthan Municipal Water System distributes drinking water through the gravitational method leads to problem as a inadequate in pressure, which could be solved by introducing mechanical pump booster station at a various building housing area. The pressure expected by a gravitational method is 6 kg/cm² and by mechanical pumping station put at 9 kg/cm². In this case study 2 area A & B is taken into consideration, where 'A' is a 'Paramanand Colony' and 'B' is a 'Santoshi Bhar' area. A & B are expected to get combined pressure not more than limit of 15 & 12 kg/cm² respectively. Pressure combinations for A & B are show below. Find out minimum pressure required in the municipality.

Table	-1:	Pressure
-------	-----	----------

	Gravitational Method (kg/cm ²)	Mechanical Booster (kg/cm²)
Α	0.25	3
В	0.40	4

From the case study, the following formulation can be made. (i) Objective Function is $Q = 6X_1 + 9X_2$

(ii) $0.25X_1 + 3X_2 \le 15$ 'A' - Paramanand Colony Constant $0.40X_1 + 4X_2 \le 12$ 'B' – Santoshi Bhar Constant

(iii) Non – Negativity Constant, $X_1, X_2 \ge 0$

Fig 1: Graphical Solution

2.1.2 Simplex Method:

The following data was required for residential building work. The building has G+5 building located at Ahmedabad. 3 floor construction had been completed. The building estimate is Rs. 3 crores.

Table -2: Required Dat	ta
------------------------	----

Raw Material Needed	Quantity of Whole Structure
Manpower	157
Cement (50kg)	180
Sand (Cft)	515
Brick	20,657

Table -3: Each Floor Requirement

	Ground Floor (Per Day)	First Floor (Per Day)	Second Floor (Per Day)	
Manpower	19	15	13	
Cement	27	22	18	
Sand	85	76	63	
Brick	3120	2850	2232	

Table -4: Profit

Floor	Profit
Ground Floor	11,15,900
First Floor	9,75,700
Second Floor	4,15,450

From the case study , the following formulation can be made.

(i) Objective Function is MAX Z = 11,15,900X₁ + 9,75,700X₂ + 4,15,450X₃
(ii) Subject to

International Research Journal of Engineering and Technology (IRJET) e

ET Volume: 07 Issue: 04 | Apr 2020

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

 $19X_1 + 15X_2 + 13X_3 \le 157$ Manpower $27X_1 + 22X_2 + 18X_3 \le 180$ Cement $85X_1 + 76X_2 + 63X_3 \le 515$ Sand $3120X_1 + 2850X_2 + 2232X_3 \le 20657$ Brick (iii) Non – Negativity Constant, $X_1, X_2, X_3 \ge 0$

Optim	Optimal solution: p = 6761040; x = 6.05882, y = 0, z = 0										
	Solve Examples Erase everything										
	 ○ Hide tableaus (faster). ● Show tableaus. ○ Show tableaus and intermediate solutions. ● Other tableaus and intermediate solutions. 										
Table	eau 1:										
	×	У	z	s1	s2	s3	s 4	P			
s 1	19	15	13	1	0	0	0	0	157		
s2	27	22	18	0	1	0	0	0	180		
s3	85	76	63	0	0	1	0	0	515		
s4	3120	2850	2232	0	0	0	1	0	20657		
р	-1115900	-975700	-415450	0	0	0	0	1	0		
Table	eau 2:										
	×	V	z	s1	s2	s3	s 4	P		_	
s 1	0	-1.98824	-1.08235	1	0	-0.223529	0	0	41.8824		
s2	0	-2.14118	-2.01176	0	1	-0.317647	0	0	16.4118		
×	1	0.894118	0.741176	0	0	0.0117647	0	0	6.05882		
54	0	60.3529	-80.4706	0	0	-36.7059	1	0	1753.47	_	
p	0	22045.9	411629	0	0	13128.2	0	1	6761040		

Fig -2: Simplex Solution

A organization plans on building a maximum of 11 new stores in a Gandhinagar city. They will construct these stores in one among of three sizes for every location 1. A convenience store 24x7 2. Standard and 3. An expanded service store. The convenience store is estimated Rs. 15 Crore to build and 80 employees to operate. The standard store requires Rs. 10 Crore to build and 50 employees to operate. The expandedservices store requires Rs. 18 Crore to build and 60 employees to operate. The organization can be arrange Rs. 50 Crores in construction capital, and 250 employees to staff the stores. On the average, the convenience store nets Rs. 5 Crores annually, the standard store nets Rs. 2.5 Crore annually, and the expanded-services store nets Rs. 4 Crore annually. How many of each should they build to maximize their revenue? formulate, LPP model Maximization of allocation.

From the case study, the following formulation can be made.

(i) Objective Function is

 $MAX Z = 5X_1 + 2.5X_2 + 4X_3$

(ii) Subject to

$$\begin{split} X_1 + X_2 + X_3 &\leq 11 \\ 15 X_1 + 10 X_2 + 18 X_3 &\leq 50 \end{split}$$

 $80X_1 + 50X_2 + 60X_3 \le 250$

(iii) Non – Negativity Constant,

 $X_1, X_2, X_3 \ge 0$

	X1	=	No. of convenience store			
	X2	=	No. of standard stores			
	X 3	=	No. of expanded service store			
	X1=	2.77778	X2=	0	X3=	0.46296
	Conven.	Stand.	Exp. Serv.		Limit	
Construct	15	10	18		50	
Staffing	80	50	60		250	
Revenue	5	2.5	4			
Constraints			3.240740741	<=	11	
			50	<=	50	
			250	<=	250	
Maximize			15.74074074			

Fig -3: Excel Solver Solution

In Sabarmati River, the accessible water was allocated for the requirement of daily household consumption, electric power generation, and irrigation among 3 communities. The water allocated per annum per capita for all uses in theses three communities are $68m^3$, $62m^3$ and $58m^3$. The allocation of water were based on the critical factors of fertilized land area, population of communities, industrialization. The population of the communities are 3850, 5300 & 2400 respectively. Power supply capacities of 100W, 120W & 85W. While the land areas of irrigation are 90 hectares, 85 hectares and 70 hectares respectively. Allowable allocation limits of more than 6000 peoples, less than 200W and 125 hectares were stipulated for the purposes. Assume nonnegativity condition. Using the above information, formulate, LPP model, Maximization of allocation.

From the case study , the following formulation can be made.

(i) Objective Function is

 $MAX Z = 68X_1 + 62X_2 + 58X_3$

(ii) Subject to

 $3850X_1 + 5300X_2 + 2400X_3 \ge 6000$ $100X_1 + 120X_2 + 85X_3 \le 200$ $90X_1 + 85X_2 + 70X_3 \ge 125$

(iii) Non – Negativity Constant, $X_1, X_2, X_3 \ge 0$

📕 Lings 188 - Lings Model - Lings1	- 0 <mark>X</mark>
File Edit Solver Window Help	Clos
Dere ine of Spe See 19	
😰 Lingo Madel - Lingo 1	
1221=(65*21)+(62*21)+(56*21); 12512=	
(100 ⁴ x)+(120 ⁴ y)+(8 ⁴ x)∮=000,	
(9/%)+(10 ⁺ %)+(10 ⁺ 2)=125;	
pay, pat	
p=0;	
END	
Fig -4: Lingo Input	

2	Lingo 18.0 - Solution Report - Lingo1							-	đ	,
Fi	e Edit Solver Window Help									
C		§₽Θ		E ? 18						
	Solution Report - Lingo1									
	Global optimal solution for Objective value: Infeasibilities: Total solver iterations: Elapsed runtime seconds:	und.	136.3897 0.000000 2 0.68				^			
	Hodel Class:		19							
	Total variables: Scolineer variables: Integer variables:	3 0 0								
	Total constraints: Sonlinear constraints:	7 0								
	Total nonzeros: Nonlinear nonzeros:	15 D								
		Variable X Y Z	Walue 0.0408095 0.000000 1.948424	Reduced Cost 0.000000 19.44413 0.000000						
		Row 1 2 3 4	Slack or Surplus 136.3897 0.000000 0.000000 42.38524 0.28524	Dual Price 1.000000 -0.2292264E-03 0.6080252 0.000000						
L		6	0.000000	0.000300		 	 v			

Fig -5: Lingo Output

2.2 Transportation Problem:

A Ready-Mix Concrete Supplier has 3 batching plant are required to supply concrete to four projects. The unit cost of transportation from a batching plant are listed in a cost matrix. The capacity of production of batching plant and requirement of concrete on a projects per day are also listed. Optimize the problem by using NWCM, LCM, VAM & RAM.

Table -5: Transportation Problem Table

Batching		Projec	Capacities		
Plant	P1	P2	P3	P4	(Cum)
BP1	50	80	60	30	120
BP2	25	30	70	40	100
BP3	60	50	40	60	80
Requirement	50	70	40	60	

	D_1	D_2	D_3	D_4	D _{dummy}	Supply
S_1	-50 <mark>(50)</mark>	80 <mark>(70)</mark>	60	- 30	-	0
S	-25		70 <mark>(40)</mark>	-40 <mark>(60)</mark>		0
<u>S</u>	- 60	-50	40	- 6 0	-0 <mark>(80)</mark> -	0
Demand	0	0	0	0	0	

Initial feasible solution is

	D_1	D_2	D_3	D_4	D _{dummy}	Supply
S_1	50 (50)	80 (70)	60	30	0	120
S_2	25	30	70 (40)	40 (60)	0	100
<i>S</i> ₃	60	50	40	60	0 (80)	80
Demand	50	70	40	60	80	

Fig -6: North-West Corner Method

Minimum Transportation Cost = (50*50)+(80*70)+(40*70)+(80*40) = 13,300 Rs.

	D_1	D_2	D_3	D_4	D _{dummy}	Supply
<u>S</u> 1			-60	-30 <mark>(40)</mark>	0 <mark>(80)</mark>	0
S	-25 <mark>(50)</mark>	-30 <mark>(50)</mark>	-70	-40		0
S	- 6 0	-50 <mark>(20)</mark>	-40 <mark>(40)</mark>	-60 <mark>(20)</mark>		0
Demand	0	0	0	0	0	

Initial feasible solution is

	D_1	D_2	D_3	D_4	D _{dummy}	Supply
S_1	50	80	60	30 (40)	0 (80)	120
S_2	25 (50)	30 (50)	70	40	0	100
<i>S</i> ₃	60	50 (20)	40 (40)	60 (20)	0	80
Demand	50	70	40	60	80	

Fig -7: Least Cost Method

MinimumTransportationCost=(25*50)+(30*50)+(50*20)+(40*40)+(30*40)+(60*20)=7750 Rs.

	<i>D</i> ₁	<i>D</i> ₂	D3	D ₄	D _{dummy}	Supply	Row Penalty
<i>S</i> ₁	50 (20)	80	60 (40)	30 (60)	0	120	30 20 20 20 20 30
<i>S</i> ₂	25 (30)	30 (70)	70	40	0	100	25 5 15
<i>S</i> ₃	60	50	40	60	0 (80)	80	40
Demand	50	70	40	60	80		
Column Penalty	25 25 25 50 50	20 50 	20 10 10 60 	10 10 10 30 30 30	0 		

Fig -8: Vogel's Approximation Method

MinimumTransportationCost=(25*50)+(30*50)+(50*20)+(40*40)+(30*40)+(60*20)=7750 Rs.

	<i>D</i> ₁	<i>D</i> ₂	D ₃	D_4	D _{dummy}	Supply
S_1	50 (20)	80	60	30 (60)	0 (40)	0
<i>S</i> ₂	25 (30)	30 (70)	70	40	0	0
S ₃	60	50	40 (40)	60	0 (40)	0
Demand	0	0	0	0	0	

Initial feasible solution is

	D_1	<i>D</i> ₂	D_3	D_4	D _{dummy}	Supply		
S_1	50 (20)	80	60	30 (60)	0 (40)	120		
<i>S</i> ₂	25 (30)	30 (70)	70	40	0	100		
<i>S</i> ₃	60	50	40 (40)	60	0 (40)	80		
Demand	50	70	40	60	80			
	Fig -9: Russel's Approximation Method							

Т

Inter

Volume: 07 Issue: 04 | Apr 2020

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

2.3 Monte-Carlo Simulation:

Consider the case of dealer of certain construction product for which probability distribution of daily demand and the probability distribution of the lead time, both develop empirically by observation, probability distribution of daily demand.

Table -6: Unit Demand & Probability

Unit Demand	3	4	5	6	7	8	9	10	11	12
Probabili	0.02	0.08	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0
ty			1	6	9	3	0	8	/	6

Table -7: Probability Distribution of Lead Time

Lead Time	2	3	4	5
Probability	0.2	0.3	0.35	0.15

The ordering cost is known to be Rs. 80 per order, the holding cost per unit is estimated of Rs. 2, while unit shortage cost, representing the loss in profit is Rs. 20 per unit per day. The dealer is anxious to know for specific reorder quantities, what would be the total inventory cost (made up by ordering, holding and shortage cost) and thereby selecting an appropriate combination of two of this sum we shall be evaluate, a simulation plan which calls for re-order quantity of 40 unit and re-order level of 20 units with a beginning inventory balance of 30 units. Give the results for 40 days. Random Number for lead time: 47,74,25,21,47,69,9,86

R.N	Demand	Probability	Cum Probability	R.N. Interval	
47	3	0.02	0.02	0	1
74	4	0.08	0.1	2	9
25	5	0.11	0.21	10	20
21	6	0.16	0.37	21	36
47	7	0.19	0.56	37	55
69	8	0.13	0.69	56	68
9	9	0.1	0.79	69	78
80	10	0.08	0.87	79	86
	11	0.07	0.94	87	93
	12	0.06	1	94	99
	Lead Time				
	2	0.2	0.2	0	19
	3	0.3	0.5	20	49
	4	0.35	0.85	50	84
	5	0.15	1	85	99

Fig -10: R.N Interval Distribution

Day	Random Number	Demand	Random Number	Lead Time	Receipt 30	Balance	Order Cost	Holding Cost	Shortage Cost
0						30			
1	68	8				22		44	
2	13	5	47	3		17	80	34	
3	9	4	Please insert random number			13		26	
4	20	5	Please insert random number			8		16	
5	73	9			40	39		78	
6	7	4				35		70	
7	92	11				24		48	
8	99	12	74	4		12	80	24	
9	93	11	Please insert random number			1		2	
10	18	5	Please insert random number			0		0	80
11	24	6	Please insert random number			0		0	120
12	22	6			40	34		68	
13	7	4				30		60	
14	29	6				24		48	
15	57	8	25	3		16	80	32	
16	33	6	Please insert random number			10		20	
17	49	7	Please insert random number			3		6	
18	65	8			40	35		70	
19	92	11				24		48	
20	98	12	21	3		12	80	24	
21	0	3	Please insert random number			9		18	
22	57	8	Please insert random number			1		2	
23	12	5			40	36		72	
24	31	6				30		60	
25	96	12	47	3		18	80	36	
26	85	10	Please insert random number			8		16	
27	72	9	Please insert random number			0		0	20
28	91	11			40	29		58	
29	77	9	69	4		20	80	40	
30	37	7	Please insert random number			13		26	
31	34	6	Please insert random number			7		14	
32	11	5	Please insert random number			2		4	
33	27	6			40	36		72	
34	10	5				31		62	
35	59	8				23		46	
36	33	6	9	2		17	80	34	
37	87	11	Please insert random number			6		12	
38	72	9			40	37		74	
39	73	9				28		56	
40	79	10	80	4		18	80	36	
							Order Cost	Holding Cost	Shortage Cost
							640	1456	220
			44 0	1		0		1	

Fig -11: Simulation in Microsoft Excel

Order Cost = 640 Rs. Holding Cost = 1456 Rs., Shortage Cost = 220 Rs.

2.4 Decision Theory:

A cement bag wholesale store is selling 50 kg cement bag for 270 Rs. It purchased the cement for 264 Rs. per bag. Since some of the bags are about to reach its expiry date and can be sell at low margin profit for 220 Rs. each at the end of 3 months. According to past experience, the actual demand for cement bags are in between 470 to 500 Bags.

Profit = 6 Rs., Loss in Profit = 44 Rs.

Table -8: Event & Strategies (Demanded & Purchased)

E1	470	A1	470
E2	471	A2	471
E15	500	A15	500

Table -9: Payoff Table

EVI	ENT	АСТ					
		A1	A2		A31		
		470	471		500		
E1	470	2820	2776		1500		
E2	471	2820	2826		1550		
E31	500	2820	2826		3000		

Table -10: Opportunity Loss Table (Regret Table)

EVENT		АСТ				
		A1	A1 A2 A31			
		470	471		500	
E1	470	0	44		1320	
E2	471	6	0		1276	
E31	500	180	174		0	

Decision Rules:

Table -11: Laplace Principle: Average of Each Column/No. of Each Column

470	471	472	473		500
A1	A2	A3	A4		A31
2820	2824	2827	2828		2250

Ans: 473: 2828: A4

Table -12: Mini-Max or Maxi-Min: Minimum of Each Column

470	471	472	473		500
A1	A2	A3	A4		A31
2820	2776	2732	2688		1500
Ang. 470, 2020, 41					

Ans: 470: 2820: A1

Table -13: Maxi-Max or Mini-Min: Maximum of **Each Column**

470	471	472	473		500
A1	A2	A3	A4		A31
2820	2826	2832	2838		3000
Ans: 500: 3000: A31					

Table -14: Harwicz's Principle: ($\alpha = 0.6$)

			CRITERIAN VALUE		
ACT	MAX	MIN	α*(Max Value) +		
			$(1-\alpha)^*$ (Min Value)		
A1	2820	2820	2820		
A2	2826	2776	2806		
A31	3000	1500	2400		
Ame. 470, 2020, 41					

Ans: 470: 2820: A1

Table -15: Savage Principle: Principle of Mini-Max Regret)

	470	471	472	473		500
ĺ	A1	A2	A3	A4		A31
	180	174	168	162		1320
	Ans: 473: 162: A4					

Table -16: Summery

Laplace Principle	473	Bags
Mini-Max or Maxi-Min Principle	470	Bags
Maxi-Min or Mini-Min Principle	500	Bags
Harwicz Principle	470	Bags
Savage Principle	473	Bags
Taking Average of 5 Principle	477	Bags

3. CONCLUSION

Operational Research techniques were shown to be useful not only for solving management problems, but also for solving many problems arising at all the levels of the construction process. Today, in the construction sector, the "decision maker" has to provide functionally, formally and economically derived optimal solutions; concluding that the Operational Research view point is applicable as well to the tasks and interrelationships of the participants in the construction problems and also gives beneficiary in all the way possible. OR techniques had been approved and studied by other sectors before, but this technique had resulted in providing great experience in and off construction field.

ACKNOWLEDGEMENT

I would like to thank **Prof. Nirmal Patel** (Civil Engineering Department, U. V. Patel College of Engineering, Kherva, Mehsana, Gujarat, India) for helping me out in Monte-Carlo Simulation work, also I would like to give my sincere gratitude to Kintanbhai Patel (Uma PC Enterprise) & Mirambika Construction for giving me a valuable data, I am not less grateful to other faculties, friends and my family for their constant support and valuable suggestions.

REFERENCES

- [1] Yasser M.R. Aboelmagd, "Linear Programming Application in Construction Sites", Alexandria Journal, Engineering Nov. 2018, doi:10.1016/j.aej.2018.11.006.
- [2] E. Vincent, "Solving Linear Programming Problems and Transportation Problem Using Excel Solver", International Journal of Scientific & Engineering Research, Vol - 7, Issue - 9, Sep. 2016, pp. 134-142, http://www.ijser.org.
- [3] S. Ahmed, "An Approach to Maximize Profit of a Constructing Project within Limited Budget by Using Simplex Method", International Journal of Scientific &

Engineering Research, Vol – 6, Issue – 11, Nov. 2015, pp. 786-791, http://www.ijser.org.

[4] S. Leepaitoon & C. Bunterngchit, "The Application of Monte-Carlo Simulation for Inventory Management: A Case Study of Retail Store", International Journal of the Computer, the internet and Management, Vol-27, No. 2, May 2019, pp. 76-83.

[5] K. Pazek, C. Rozman, "Decision Making Under Condition of Uncertainty in Agriculture: A Case Study of Oil Crops", Original Scientific Paper, UDK=631.368, March 2009, http://agris.fao.org/agrissearch/search.do?recordID=DJ2012054838