
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4252

A Review on Data Streaming and Frameworks used in Data Stream

Processing

Yogeshwari, Suma B

1Department of Computer Science and Engineering, R.V College of Engineering, Bengaluru, Karnataka, India
2Professor, Department of Computer Science and Engineering, R.V College of Engineering, Bengaluru, Karnataka,

India

---***---

Abstract – With the emergence of cloud computing, big
data analytics, and Internet of Things (IoT), there is an
increasing analysis in the data streaming processes for making
real-time data-driven decisions. Data streaming is a process in
which large amount of data is transferred continuously. It
allows real-time data to be analyzed. Some of the examples of
data streaming are IoT sensors, real-time advertising, click-
stream data from websites and apps, server and security logs,
wireless communications, etc. In this paper, we present an
overview of the state-of-the-art technologies in the area of
data stream processing. Also, a brief evolution of data
streaming process will be discussed along with an overview of
two important frameworks, namely Apache Storm and Apache
Flink.

Key Words: Data Stream Processing, Data Streaming Apache
Storm, Apache Flink, Data stream processing frameworks

1.INTRODUCTION

In this age of Information Technology, with such

advancement, huge quantity of data is being generated on a

daily basis, for example, search engines, user data in social

media, emails, computer logs, messages, wireless

communications, etc. With this vast amount of data being

generated in real-time, there is a need to process this high-

velocity and real-time data on a continuous basis,

contributing to variety of technical challenges.

1.1 Data Streaming and its Evolution

Data streaming is the processing of huge amount of data

being generated at high-velocity from various sources in real-

time. This paradigm is applicable to high-velocity data being

generated from various sources including Internet of Things,

click-stream, business intelligence, market data, social media,

mobile phones, etc.

With the invention of computers, the need for processing

of information and data was created. In the early days,

computer scientists used to write programs to process data,

which used to be stored on punch cards. Later, Assembly

languages and programming languages like Fortran, C, C++

and Java were brought into existence. These languages were

used by software engineers to programs for the tasks of data

processing. Consequently, databases like SQL, IBM’s database

were invented, which improved the recognition of data

processing by broader audiences. This helped more people to

reach data processing, and therefore no longer need to

depend on programmers to for generating specific programs

and analyze the data. SQL had also extended the amount and

form of applications related to data processing such as

enterprise applications, year-on-year development estimates,

average basket size, etc.

Batch processing was being used for data processing, in

which the data used to be stored in a storage system and

computations used to be scheduled on these systems to

process the data. These computations were not run

continuously, as a result of which, the computations would

have to be re-run on a continuous basis to get up-to-date

results. The age of Big Data emerged with the paper on

MapReduce, published by Google. MapReduce is a

programming tool used for processing and creating large data

sets [3]. This programming model was based on two

primitives – Map and Reduce. Users need to specify a map

function, which generates a set of intermediate key/value

pairs by processing a key/value pair. They also need to

specify reduce function which merges all the values which are

associated with an intermediate key. This functional style of

programming allowed computations to be parallelized and

also allowed the executions of these programs on large

clusters of commodity machines. Later, Apache Hadoop came

into picture. It is an open-source framework for storing and

processing large data sets in distributed computing

environment. After Apache Hadoop, the field of data

processing evidenced the emergence of Apache Spark, which

took parallelism in batch processing to next level. Then

Apache Storm came into picture, which introduced stream

processing. It enabled programs to be written such that they

can be run continuously. Unlike batch processing, in stream

processing the programs can be run on the data continuously

and outcomes produced in real-time, while generating data.

Later stream processing advanced with the introduction of

Apache Kafka, which brought storage mechanism in message

streams. It played the role of buffer in between the sources of

data and processing systems. As the initial adopters didn’t

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4253

think of streaming process as reliable enough, they used both

batch processing and stream processing simultaneously.

Lambda architecture was such a system, which was a

combination of both the processing systems. Recently,

Apache Flink was introduced, with the introduction of which,

developers and data/ analytics leaders started believing that

stream processing can be trusted with mission critical

applications, processing of complex events, and continuous

running. [6]

2. OVERVIEW OF DATA STREAMING FRAMEWORKS

2.1 Apache Storm

Storm was developed by Nathan Marz and a team at

BackType, which was later acquired by Twitter, who made

the project open sourced [7]. Later it was adopted by Apache

and it became the benchmark for distributed real-time

processing systems, enabling to process a large amount of

data.

Fig-1: Cluster design of Apache Storm (source:

https://www.tutorialspoint.com/apache_storm/images/z

ookeeper_framework.jpg)

Queries in context of Storm are called topologies, which are

defined as “directed graphs where the vertices represent

computation and the edges represent the data flow between

computation components” [2]. There are two types of

vertices in topology, namely, spout and bolt. The former

represents source of data tuples used within topology and the

latter is held responsible for processing the data. Spouts can

be written to read data from sources of data such as database,

messaging frameworks, distributed file systems, etc. Bolts can

perform simple transformations for streams, and complex

stream transformations require multiple bolts. Storm mainly

has two main types of nodes, namely Nimbus (master node)

and Supervisor (worker node). The former is the central

component of Storm and its main job is to run the topology. It

analyzes and gathers the tasks which are to be performed and

distribute these tasks to the supervisors available.

Supervisors may have one or many worker processors. They

assign the tasks to worker processors. Their main job is to

spawn worker processors based on the instructions it is

getting from Nimbus. Storm utilizes an internal centralized

message network for coordination in between Nimbus and

Supervisors, which is named as Zookeepers. Zookeeper.

Along with creating worker processors, supervisors also

monitor those worker processors and regenerate workers as

necessary. Storm guarantees that every message is processed

at-least once [1].

2.2 Apache Flink

Apache Flink is an open-source real-time processing

framework which is used for processing streaming data. It is

used for scalable, high performance and accurate real-time

applications. Similar to the Apache Storm, Flink uses master-

worker model. It consists of two element types, namely Job

manager, which acts as the master and one or more Task

Manager(s), which act as the worker(s). Unlike Storm, there

is no layer in between the master and the workers like

Zookeeper in Storm. Job Manager is held responsible for

creating the execution graphs after receiving the job dataflow

graphs from the client. It is also responsible for assigning the

jobs to Task Managers within the clusters and supervising the

execution of the jobs. Each Task Manager is held responsible

for executing the tasks assigned to it by the Job Manager.

Each Task Manager has a certain number of cluster

computing slots used for parallelizing the tasks. The slot

number can be configured and it is recommended to use as

many slots as the number of CPU cores present in each Task

Manager node. They should also send the status of execution

of tasks to the Job Manager. Flink guarantees that every

message is processed exactly once. Apache Flink is usually

written in Java and Scala.

As compared to Apache Storm relative to the performance,

Flink has very low latency and high throughput [5].

https://www.tutorialspoint.com/apache_storm/images/zookeeper_framework.jpg
https://www.tutorialspoint.com/apache_storm/images/zookeeper_framework.jpg

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4254

Fig-1: Apache Flink architecture (source:
https://www.tutorialspoint.com/apache_flink/images/ex

ecution_architecture.jpg)

2.3 Summarized comparison of the frameworks

Framework/Properties Apache

Storm

Apache

Flink

Source model Open

source

Open

source

Processing model Stream Stream

Programming

languages used in

writing

Java, Clojure Java Scala

Processing done for

messages

At least

once

Exactly

once

Throughput Low High

Latency Low Very low

Important System

components

Nimbus,

Zookeeper,

Supervisor

Job

Manager,

Task

Manager

3. CONCLUSION

 In this paper, the state-of-art technologies in the area of data

stream processing, along with the evolution of data

streaming processes have been discussed. This evolution

discusses how the data streaming came into existence from

batch processing. Also, two important frameworks in the

field of data stream processing in Big Data, Apache Storm

and Apache Flink have been discussed. A summarized

comparison among the two frameworks has been given. The

two frameworks are used for data stream processing in real-

time applications.

REFERENCES

[1] Hesse, G., & Lorenz, M. (2015). Conceptual Survey on

Data Stream Processing Systems. 2015 IEEE 21st
International Conference on Parallel and Distributed
Systems (ICPADS). doi: 10.1109/icpads.2015.106

[2] Toshniwal, A., Donham, J., Bhagat, N., Mittal, S., Ryaboy,
D., Taneja, S.,… Fu, M. (2014).
Storm@twitter. Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data -
SIGMOD 14. doi: 10.1145/2588555.2595641

[3] Dean, J., & Ghemawat, S. (2008).
MapReduce. Communications of the ACM, 51(1), 107–
113. doi: 10.1145/1327452.1327492

[4] Real-time Data Stream Processing - Challenges and
Perspectives. (2017). International Journal of Computer
Science Issues, 14(5), 6–12. doi:
10.20943/01201705.612

[5] Kolajo, T., Daramola, O., & Adebiyi, A. (2019). Big data
stream analysis: a systematic literature review. Journal
of Big Data, 6(1). doi: 10.1186/s40537-019-0210-7

[6] Krettek, A. (2019, February 28). The data processing
evolution: A potted history. Retrieved from
https://www.itproportal.com/features/the-data-
processing-evolution-a-potted-history/

[7] PrakashAll, C. (n.d.). Apache Storm: Introduction.
Retrieved from
https://www.linkedin.com/pulse/apache-storm-
introduction-chandan-prakash

[8] Tiwari, A. (2017, November 17). Apache Storm: The
Hadoop of Real-Time - DZone Big Data. Retrieved from
https://dzone.com/articles/apache-storm-the-hadoop-
of-real-time-1

https://www.tutorialspoint.com/apache_flink/images/execution_architecture.jpg
https://www.tutorialspoint.com/apache_flink/images/execution_architecture.jpg
https://www.itproportal.com/features/the-data-processing-evolution-a-potted-history/
https://www.itproportal.com/features/the-data-processing-evolution-a-potted-history/
https://www.linkedin.com/pulse/apache-storm-introduction-chandan-prakash
https://www.linkedin.com/pulse/apache-storm-introduction-chandan-prakash
https://dzone.com/articles/apache-storm-the-hadoop-of-real-time-1
https://dzone.com/articles/apache-storm-the-hadoop-of-real-time-1

