
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5117

PRODUCT DELIVERY OPTIMIZATION

Prof Ratna Nayak1, Vedank Vekhande2, Bhavya Sheth2, Rohan Dhumal2, Prashant Patra2

1Assistant Professor, Computer Department, KJSIEIT Sion, Mumbai, Maharashtra, India.
2Student, Computer Department KJSIEIT Sion, Mumbai, Maharashtra, India.

---***--

Abstract - In Today’s Modern World of Digital Technology
we often come across the issue of Transportation especially
while travelling on multiple destinations. Transportation can
be related with delivery of a product from E-commerce sites,
Public Transportation like School bus, Garbage collector vans,
etc. So, it pretends to be quite tedious task of planning the
entire route, especially when there are much greater number
of locations. So, in our approach we used Dijkstra’s algorithm
to calculate distance between the two distinct pairs of given
input locations. Recursively calculating the distance between
every two pairs and selecting the one with least distance is
main objective of my approach. This would be followed until
all the given input locations would be visited by the user. The
process of distance calculation is automated using the RPA
software calculation, elsewise Customer would have needed to
manually enter the locations on web and analyse it for endless
hours. Our designed Application will just locations as input
and display the optimized sequence of locations to the
Customer. This will save not only Time but Money and Fuel too.
The application was much more needed for since it will be
saving the valuable resources of environment.

Key Words: RPA, Orchestrator: - Software Bots API:-
Application Program Interface, GA:- Genetic Algorithm ,
CRM

1. INTRODUCTION

This document is template. We ask that authors follow some

Product Delivery Optimizer is a simple API like web

application which would be assisting anybody either

personal or commercial agent desires to travel on multi-

route locations in least possible time or saving time or else

both. The application would be helping such desirous people

to by planning their journey in real time, without really

bothering about complex planning.

A) Robotic Process Automation (RPA)

Robotic Process Automation (RPA) is a latest software tool in
the market for dealing with the repetitive tasks and
processes mostly associated with the computer software. In
Today’s world of Digitization tons of data is generated in the
form of Application Forms, Queries, Excel sheets, etc. A lot of
Manual Workforce is required to fill up these forms or to
perform the same repetitive task. RPA comes into the picture
for such a set of repetitive tasks. Whether be it filling online
forms, excel sheets, emails, continuous monitoring, web
trafficking or any such work.

RPA recommends items by matching the attributes of a
product with the user's profile.

Advantage

 Makes Repetitive tasks easier of user preferences.

 Structure is simple to visualize.

 Wide support of Applications and API.

B) Designing Elements of RPA

i) Flowcharts

Flowchart is one of the designing platforms where typically
like an algorithm our working model flow. Using Flowchart
structure in RPA helps us in visualizing the flow of model
easily. Mostly Flowchart is used to in the case when working
with the loops like structure or repetitive subroutine calls,
etc.

Advantages

 High performance.

 Clean Visualization.

ii) Sequences.

Sequences unlike the flowcharts helps to embed the multiple
processes one inside the other. Unlike Flowcharts they don’t
allow full view of all the processes at the same time but
possess much higher speeds of execution. Also, they can’t
support looping like jumping back to the passed location.

Advantage

 Allows multiple task embedding.

 Eliminates Loops.

 Accurate.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5118

Disadvantages

 Jumping back not allowed.

 Scalability problem.

 Multiple variables are required.

C) State Machines

A state machine is a type of automation that uses a finite
number of states in its execution. It can go into a state when
it is triggered by an activity, and it exits that state when
another activity is triggered.

Another important aspect of state machine are transitions, as
they also enable you to add conditions based on which to
jump from one state to another. These are represented by
arrows or branches between states.

There are two activities that are specific to state machines,
namely State and Final State, found under Workflow > State
Machine.

Uipath (RPA) Robots:

The Robot is UiPath’s execution agent that enables you to
run processes developed in Studio. Robots need to be
connected to Orchestrator in order to execute processes or
they have to be licensed locally (read more about licensing).
The type of Robot you have at your disposal is determined
by the license, while the Robot service is determined by the
deployment.

The Robot is split into four components, each being
dedicated to a particular task in your automations. The
Robot components are as follows:

 Service

 Service Mode

 User Mode

 Executor

 Tray

 Command Line Interface

Having the Robot components split as explained above helps
developers, support users, and computers easily run,
identify, and track what each component is executing.
Special behaviours can be configured per component this
way, such as setting up different Firewall rules for the
Executor and the Service.

UiPath Orchestrator is a web application that enables you to
orchestrate your UiPath Robots in executing repetitive
business processes.

Uipath Orchestrator:

 Orchestrator lets you manage the creation, monitoring, and
deployment of resources in your environment, acting in the
same as an integration point with third-party solutions and
applications.

UiPath Orchestrator Use Cases

UiPath’s Orchestrator power comes from its capability of
managing your entire Robot fleet. Attended, Unattended,
Nonproduction, Studio, or StudioX Robots - they can all be
managed from this centralized point.

Attended - This type of Robot is triggered by user events, and
operates alongside a human, on the same workstation.
Attended Robots are used with Orchestrator for a
centralized process deployment and logging medium.

Unattended - Robots run unattended in virtual environments
and can automate any number of processes. On top of the
Attended Robot capabilities, the Orchestrator is responsible
for remote execution, monitoring, scheduling and providing
support for work queues.

Studio / StudioX - has the features of an Unattended Robot,
but it should be used only to connect your Studio or StudioX
to Orchestrator for development purposes.

NonProduction - similar to Unattended Robots, but they
should be used only for development and testing purposes.

You are able to run debugging in Studio with all types of
Robots.

Genetic Algorithms: -

Genetic algorithms (GA) like neural networks are biologically
inspired and represent a new computational model having
its roots in evolutionary sciences. Usually GAs represent an
optimization procedure in a binary search space, and unlike
traditional hill climbers they do not evaluate and improve a
single solution but a set of solutions or hypotheses, a so-
called population.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5119

The GAs produce successor hypotheses by mutation and
recombination of the best currently known hypotheses.
Thus, at each iteration a part of the current population is
replaced by offspring of the most fit hypotheses. In other
words, a space of candidate hypotheses is searched in order
to identify the best hypothesis, which is defined as the
optimization of a given numerical measure, the so-called
hypothesis fitness. Consider the case of function
approximation based on given input-output samples: The
fitness is the accuracy of the hypothesis (solution) over the
training set.

The strength of this parallel process is enhanced by the
mechanics of population modification, making GAs adequate
candidates even for NP-hard problems. Mathematically, they
are function optimizers and they encode a potential solution
based on chromosome-like data structures. The critical
information is preserved by applying recombination
operators to these structures. Their most interesting
properties are [2]:

•Efficiency.

•Simple programmability.

•Extraordinary robustness regarding the input data.

The most important property is robustness, and this
represents an emulation of nature’s adaptation algorithm of
choice. Mathematically, it means that it is possible to find a
solution even if the input data do not facilitate finding such a
solution.

A* Algorithm:

Google Maps uses A* algorithm for finding the shortest path
and alternates routes in real time. A* algorithm is an
advanced form of Breadth first search. It avoids costly path
and choose the most promising path. It is a very smart
algorithm. It is used approximate the shortest path in real-
life situations, like- in maps, games where there can be many
hindrances. It is formulated in terms of weighted graphs in
case of google map this weight is travel time. Starting from a
specific node (source node) of a graph, it constructs a tree of
paths starting from that node, expanding paths one step at a
time, until one of its paths ends at the predetermined
destination node.

At each iteration of its main loop, A* needs to determine
which of its partial paths to expand into one or more longer
paths. It does so based on an estimate of the cost (total time
taken) still to go to the goal node. Specifically, A* selects the
path that minimize. f(n)=g(n)+h(n)

where n is the destination node on the path, g(n) is the cost
of the path from the start node to n, and h(n) is a heuristic
that estimates the shortest path from source to the
destination. The heuristic is problem-specific. In this case it
is time taken to reach somewhere.

Why A* is better than other: -

A* is the most popular choice for pathfinding, because it's
fairly flexible and can be used in a wide range of contexts. A*
is like Dijkstra's Algorithm in that it can be used to find a
shortest path. A* is like Greedy Best-First-Search in that it
can use a heuristic to guide itself.

2. DESIGN

The Designing consists of a looping algorithm of whole
process as shown in the following flowchart presentation

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5120

I. EXISTING SYSTEM

Many other Applications software and API are available
on the Internet for Managing and Planning the Routes
commercially. Example includes the Routific and Locus.sh are
the popular API’s available in the market. Locus.sh manly
focuses on the Customer Relationship Management, along
with route optimization, but its main focus is for generating
optimized path for the vehicular transportation. They both
use the Deep learning algorithms and techniques by learning
form the users navigating data.

Google Maps is great when you have a small number of
deliveries to make. It’s free, fast, and extremely user-friendly.
To use Google Maps as a route planner, look no further than
this helpful guide Google has put together.

With that said, there are some limitations when you’re
trying to plan routes for deliveries.

1.Your routes need to be 10 stops or less

2.You can only plan for 1 driver at a time

3.You can’t optimize routes using constraints like delivery
time windows, vehicle load capacities, driver breaks, etc.

4.You need to eyeball and manually determine an efficient
order for your stops

II. PROPOSED SYSTEM

Our project initiates with taking the inputs from simple
easy to use online web-application form grabbing the data
from the user. The data is in the form of the addresses of the
locations which could be submitted by the user. Once the
form is submitted, the data would appear in the database of
server machine where the RPA software and related
databases would be residing. As soon as the user clicks on the
continuous monitored “submit” button of the RPA main RPA
workflow is triggered by the server “.bat” file.

The RPA workflow rapidly starts automatically calculating
the distances between the pairs of locations. Each pair’s
location is stored, sorted and a sequence according the
smallest distance is generated. This new generated path is
being stored in parallel in the database. The process is in beta
version and supports upto the 20 locations at the time. The
distance calculation is being implemented on the available
Google Maps API. The sorted sequence is conveyed to the
user either on the provided mobile number or the email-id
depending upon the regional availability.

The proposed system contains the following important
parameters:

1. Varying Distance modes:

• Short distance travel: We chose different addresses
in a specific city like the Mumbai City. Generally, we
used the addresses of local fire stations and police
stations in the city.

• Medium distance travel: We chose different
addresses in different cities in a specific state. For
example, in some runs, we chose following 7 cities in
the state of Mumbai Suburban like Thane, Navi
Mumbai, Palghar, etc.

• Long distance travel: We chose different destinations
across America, that spans through multiple states.
For example, in some runs, we chose the city centers
of following cities: Delhi, Chennai, Kolkata, Goa, etc.

B. Varying Number of Locations

1. The data which is the location/address of the user in
Realtime.

2. A* algorithm is used as a trial algorithm in the initial
stages for the performance analysis of the
designed application.

3. Based upon the accuracy of the A* algorithm and
efficiency, further modification in the algorithm
will be performed.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5121

3. CONCLUSION

 IRJET Our primary goal is to provide this tool to different
companies or organizations that have people who need to
visit multiple destinations. Using this tool, they can
determine the efficient path quickly, and that eliminates the
need for them to manually identify a path. As a result, this
approach allows people and organizations to save time, and
money which could be used in other places. This proposed
methodology is practical and extremely easy to use. Our
experimental data-set indicates that our proposed approach
determines a path within a very short amount of time, and
the path is almost always the best possible path that a
human could have generated by using trial and error
approach over several hours and days of time.

REFERENCES

[1] E. W. Dijkstra. A note on two problems in connexon with

graphs. Numerische Mathematik, pages 269–271, 1959.

[2] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics,
4(2):100–107, July 1968

[3] P. Siy. Road map production system for intelligent
mobile robot. In Proceedings. 1984 IEEE International
Conference on Robotics and Automation, volume 1,
pages 562–570, Mar 1984.

[4] M. Noto and H. Sato. A method for the shortest path
search by extended Dijkstra algorithm. In Systems, Man,
and Cybernetics, 2000 IEEE International Conference
on, volume 3, pages 2316–2320 vol.3, 2000.

