

Identification of the Potent Inhibitors for a Coronavirus Protease- an *In-Silico* Approach

Swati Kumari¹

¹PG Student, Department of Bioinformatics, Central University of South Bihar, Gaya-824236, India

Abstract - In December 2019, the outbreak of novel coronavirus disease (COVID-19) has spared from Wuhan to every continent on the earth in every single generation. Till now, there is no treatment for severe disease COVID-19 and very hard to control the current situation, as WHO concerns pandemic. COVID-19 also belongs to genera β -CoVs shows similarity with SARS-CoV. Both use the ACE-2 receptor for their entry into the human host cell by interaction of spike glycoprotein which present on the surface of coronavirus. Some of the pre-existing drugs such as, Hydroxychloroquine, and Favipiravir that have shown effective results against COVID-19. Phytochemicals, especially flavonoids, also having anti-viral properties against CoVs have been reported in studies to inhibit COVID-19 virus main protease. I performed a molecular docking study using the drug Hydroxychloroquine and Favipiravir and 40 flavonoids molecules. This study suggested that, among these Silymarin, Quercetin, β -Naphthoflavone, and Apigenin can be the potential drug. These all having much higher binding affinity against target COVID-19 main protease and docked with similar binding pocket residues.

Key Words: Coronavirus, COVID-19, Beta coronaviruses, β -CoVs, SARS-CoV-2, Main proteases, Flavonoids, Docking, Drug discovery.

1. INTRODUCTION

In December 2019, the outbreak of novel coronavirus disease (COVID-19), have originated in bats first in the Wuhan region, China. COVID-19 (transmitted from Bat to Human) has spared from Wuhan to every continent on the earth in every single generation. Thus, the World Health Organization (WHO) concerns Covid-19 to a global pandemic on 11 March 2020 [1, 2, 3].

Timeline of COVID-19: In India, according to India Fights Corona COVID-19, there are 80,722 peoples who have active Cases, 4,167 peoples were Death, and 60,490 peoples were Cured / Discharged on 26th May, 2020 [4]. As the World Health Organization (WHO) report, COVID-19 spread in 215 Countries, areas, or territories. Worldwide there are 5,370,375 peoples Confirmed cases and 344,454 peoples Confirmed death on 26th May, 2020 [5].

Beta coronaviruses (β -CoVs) are known to affect a wide range of birds and Mammals such as severe acute respiratory syndrome (SARS) in 2003 and the Middle East respiratory syndrome (MERS) in 2012. COVID-19 caused by

In December 2019, the outbreak of novel lisease (COVID-19) has spared from Wuhan to nt on the earth in every single generation. Till no treatment for severe disease COVID-19 and control the current situation, as WHO concerns WID-19 also belongs to genera β -CoVs shows h SARS-CoV. Both use the ACE-2 receptor for to the human host cell by interaction of spike which present on the surface of coronavirus. re-existing drugs such as. Hydroxychloroguine. SARS-CoV-2 shows similarity with SARS-CoV their origin in live animal (Bat) and transmitted to Human. SARS-CoV causes SARS & ARDS disease and SARS-CoV-2 cause SARS & COVID-19 disease. Both viruses show similar symptoms as fever, cough, and shortness of breath. The study also showed that both show 79% genomic sequence similarity and share conserved binding domain for their S-protein. The angiotensin-converting enzyme 2 (ACE2) receptor is common in both for their entry in the human host cell [7, 12].

> COVID-19 also belongs to genera β -CoVs, uses singlestranded (positive-sense) RNA as their genetic material which associated with a nucleoprotein within a capsid comprised of matrix protein which makes a difference in their genomic and phenotypic structure from others. The length of the genome is around 30 kb, which codes for both structural proteins: spike (S), membrane (M), envelope (E), and nucleocapsid (N) and non-structural proteins [6].

> Spike proteins play an essential role in viral entry into host cells. These protein binds to human cells through its spike glycoprotein, a trimeric class-1 fusion protein, making this protein a key target for potential therapies and diagnosis. This genome acts just like a messenger RNA when it infects a cell and directs the synthesis of two long polyproteins that include the machinery that the virus needs to replicate new viruses. These proteins include a replication/transcription complex that makes more RNA, several structural proteins that construct new virions, and two proteases. The main proteases (Mpro) play essential roles in cutting the polyproteins into all of these functional pieces [8].

> Flavonoids are naturally occurring secondary metabolites widely found in Medicinal plants and rich in Dietary sources. Flavonoids have Pharmacological properties that include antioxidant, anti-inflammatory, anti-viral, anticancer, antimicrobial, and immunomodulatory functions. Different flavonoids have been found to antiviral activity against parainfluenza virus, poliovirus, herpes virus, HIV, Respiratory syncytial virus and etc. Preliminary studies indicate that flavonoids can inhibit viral infections by interfering with host factors that are essential for the virus for their survival in host cells [9,10].

> Some of the pre-existing drugs (Chloroquine, Remdesivir, Lopinavir, Ritonavir, Arbidol, Hydroxychloroquine, Favipiravir) have been previously tested to test their efficacy and safety in the treatment of viral disease like Influenza, Ebola, SARS, and MERS-CoV. Hydroxychloroquine is used to prevent or treat malaria and Favipiravir is an antiviral medication used to treat influenza. As coronaviruses belongs

to SARS family and very closely related, some studies suggesting it may have some effect in patients with COVID-19 which generated promising result [11-12].

2. MATERIALS & METHOD

2.1 Retrieval of protein

Protein data bank (PDB) is a repository for 3-D structure of protein in detail. The 3-D structure of target protein COVID-19 main protease was obtained from PDB (PDB ID: 5R84).

2.2 Library and ligand structure preparation

PubChem is an open database of chemical molecules and their activities against biological assays. The structure of the drug (Hydroxychloroquine and Favipiravir) and 40 flavonoids phytochemical compound was retrieved from Pubchem in SDF format. The activities of all compounds were taken in terms of inhibitory activity, which satisfied the Lipinski's rule of 5.

S. No.	Pubchem	Compound Name	Mol. Formula	Mol. Wt.	XlogP3	H-Bond	H-Bond
	CID	-		(g/mol)		Donor	Acceptor
						Count	Count
1.	5280442	Acacetin	$C_{16}H_{12}O_5$	284.2	2.1	2	5
2.	5280443	Apigenin	C15H10O5	270.2	1.7	3	5
3.	5281605	Baicalein	$C_{15}H_{10}O_5$	270.2	1.7	3	5
4.	14236566	Bavachin	C20H20O4	324.4	4.1	2	4
5.	2361	B-Naphthoflavone	$C_{19}H_{12}O_2$	272.3	4.4	0	2
6.	641785	Cardamonin	$C_{16}H_{14}O_{4}$	270.2	3.5	2	4
7.	73160	Catechin	$C_{15}H_{14}O_{6}$	290.2	0.4	5	6
8.	160237	Cirsiliol	$C_{17}H_{14}O_7$	330.2	2	3	7
9.	128861	Cyanidin	$C_{15}H_{11}O_{6}^{+}$	287.2		5	5
10.	5281708	Daidzein	$C_{15}H_{10}O_4$	254.2	2.5	2	4
11.	5281612	Diosmetin	C16H12O6	300.2	1.7	3	6
12.	72276	Epicatechin	$C_{15}H_{14}O_{6}$	290.2	0.4	5	6
13.	440735	Eriodictyol	$C_{15}H_{12}O_6$	288.2	2	4	6
14.	492405	Favipiravir	C5H4FN3O2	157.1	-0.6	2	4
15.	5281614	Fisetin	$C_{15}H_{10}O_{6}$	286.2	2	4	6
16.	10251	Flavanone	$C_{15}H_{12}O_2$	224.2	3.2	0	2
17.	145858	Flavylium	C15H11O+	207.2		0	0
		(Anthocyanins)					
18.	5280961	Genistein	C15H10O5	270.2	2.7	3	5
19.	124052	Glabridin	$C_{20}H_{20}O_4$	324.3	3.9	2	4
20.	6253344	Helichrysetin	C ₁₆ H ₁₄ O ₅	286.2	3.1	3	5
21.	5280544	Herbacetin	C15H10O7	302.2	2.2	5	7
22.	72281	Hesperetin (citrus-	$C_{16}H_{14}O_{6}$	302.2	2.4	3	6
		flavonoid)					
23.	5281628	Hispidulin	C ₁₆ H ₁₂ O ₆	300.2	1.7	3	6
24.	3652	Hydroxychloroquine	C ₁₈ H ₂₆ ClN ₃ O	335.9	3.6	2	4
25.	5318980	Icaritin	$C_{21}H_{20}O_6$	368.4	4.8	3	6
26.	3747	Ipriflavone	C ₁₈ H ₁₆ O ₃	280.3	4	0	3
27.	5464170	Irigenin	C ₁₈ H ₁₆ O ₈	360.3	2.6	3	8
28.	5281654	Isorhamnetin	C ₁₆ H ₁₂ O ₇	316.2	1.9	4	7
29.	513197	Isoxanthohumol	C ₂₁ H ₂₂ O ₅	354.4	4.1	2	3
30.	5280863	Kaempferol	C15H10O6	286.2	1.9	4	6
31.	5280445	Luteolin	C15H10O6	286.2	1.4	4	6
32.	159287	Malvidin	C ₁₇ H ₁₅ O ₇ +	331.2		4	6
33.	5281670	Morin	C15H10O7	302.2	1.5	5	7
34.	439246	Naringenin	C15H12O5	272.2	2.4	3	5
35.	73201	Pinostrobin	$C_{16}H_{14}O_4$	270.2	3.1	1	4
36.	5280459	Quercetin	C15H10O7	302.2	1.5	5	7

Table -1: Drug and Flavonoids ligand molecule follow Lipinski's rule of 5

Т

ISO 9001:2008 Certified Journal

Т

International Research Journal of Engineering and Technology (IRJET) e

Volume: 07 Issue: 05 | May 2020

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

37.	73571	Sakuranetin	$C_{16}H_{14}O_5$	286.2	2.7	2	5
38.	1548994	Silymarin	$C_{25}H_{22}O_{10}$	482.4	2.4	5	10
39.	124211	Skullcapflavone II	C19H18O8	374.3	2.9	2	8
40.	439533	Taxifolin	$C_{15}H_{12}O_7$	304.2	1.5	5	7
41.	460715	Trihydroxychalcone	$C_{15}H_{12}O_4$	253.2	3.2	3	4
42.	5281703	Wogonin	$C_{16}H_{12}O_5$	284.2	3	2	5

2.3 Molecular docking

Study of molecular docking of COVID-19 main protease (PDB ID: 5R84) with the drug (Hydroxychloroquine and Favipiravir) and 40 flavonoids compound was done by using virtual screening tool PyRx AutodockVina v0.8. The cleaning of protein was done by removing the water molecule, heteroatoms, and bounded ligand molecules to prepare the protein for further docking by adding H atom to them. All the ligand molecules were docked with the selected targets to know their conformation in the binding pocket of protein and their binding energy. Binding pose with the highest docked energy of all ligand molecules was selected for analysis. Protein-ligand interaction and binding pocket was analysed by PyMOL and UCSF Chimera [13, 14].

3. RESULTS & DISCUSSION

3.1 Protein interaction with pre-existing drugs

The *in-silico* protein-ligand interaction gives the information about the interacting residue, H-bond along with the docking score. The picture shows the labelled residues interacting within 4 Å of the protein (PDB ID: 5R84) with docked ligand namely, Hydroxychloroquine and Favipiravir.

Fig -1: Representing the docking poses of Hydroxychloroquine with COVID-19 main protease (PDB ID: 5R84).

Fig -2: Representing the docking poses of Favipiravir with COVID-19 main protease (PDB ID: 5R84).

3.2 Binding affinity

Molecular docking study gives the binding pose (conformation) and binding affinity (docking score) of ligand. Molecules docked with a protein having a high affinity. Binding affinity of all ligands are shown in graph 1.

Graph -1: Binding affinity of ligand molecules with their target COVID-19 main protease (PDB ID: 5R84).

3.3 Visualization of protein-ligand interaction

In this work, the drug (Hydroxychloroquine, and Favipiravir) and 40 flavonoids molecule was docked to the target protein to predict the active site of the protein. The docking study shows the binding affinity which is

summarized in Table 2. The PYMOL visualization of the docked pose of top 4 ligand showed the binding pocket of the protein where ligands are bonded. Interacting residue and the bonds were carefully observed in protein-ligands interaction.

Fig -3: Representing the docking poses of compound Silymarin with COVID-19 main protease (PDB ID: 5R84).

Fig -4: Representing the docking poses of compound Quercetin with COVID-19 main protease (PDB ID: 5R84).

Fig -5: Representing the docking poses of compound β -Naphthoflavone with COVID-19 main protease (PDB ID: 5R84).

Fig -6: Representing the docking poses of compound Apigenin with COVID-19 main protease (PDB ID: 5R84).

3.4 Active site prediction

To visualize the binding site (where most the ligand molecules bind), the protein (PDB ID: 5R84) structure and all docked conformation of ligand molecules were open in UCSF Chimera and Maestro, which shows that, there are three regions in the protein where most of the ligand

molecules binding. The *in-silico* protein-ligand interaction results showed that the protein (PDB ID: 5R84) was having the following Amino acid residues at the protein binding pocket which participate in the interaction. Some of the important residue are: THR-111, THR-199, ARG-131, LYS-137, GLN-110, and LEU-287, involved by forming H-bond with ligands.

Fig -7: Representing the Surface of COVID-19 main protease (PDB ID: 5R84) with docked ligand molecules.

Table -2: Docking Result with COVID-19	main protease (PDB ID: 5R84)
--	------------------------------

Sl. No.	Compound Name	Binding Affinity (K cal/mol)	Interacting Residue within 4 Ă	Number of H-Bond	Length in Ă
1.	Silymarin	-8.1	LYS-5, LYS-137, ALA-285, LEU- 286, LEU-287, GLU-288, GLU- 290, ARG-131, ASP-298, THR- 199, GLY-275, TYR-239, LEU- 271, LEU-272	LEU-271 THR-199 ARG-131 LYS-137	2.5 3.2 2.9, 3.1 2.9, 3.2
2.	Quercetin	-8	ARG-131, ASP-197, THR-199, TYR-293, TYR- 237, ASN-238, LEU-272, LEU-286, LEU-287, GLU-288, LYS-5, GLU-290, LYS- 137	GLU-290 THR-199 ARG-131 LYS-137	2.2 3.1 2.9, 3.1 2.0, 3.3
3.	B-Naphthoflavone	-7.9	LEU-287, LEU-285, LEU-272, TYR-237, TYR-239, THR-199, ASP-289, ARG-131, LYS-137	LEU-287 TYR-239	2.8 3.0
4.	Apigenin	-7.8	PRO-9, PHE-8, GLN-127, MET-6, ASP-295, GLN-299, ARG-298, VAL-303, THR-304	THR-304 GLN-127	2.5 3.0
5.	Daidzein	-7.7	GLN-189, MET-49, ARG-188, PRO-52, TYR-54, CYS-44, ASP- 187, HIS-41, GLU-166, ASN-142, LEU-141, MET-165, PHE-140, HIS-164, CYS-145	TYR-54 GLU-166	2.9 3.3
6.	Eriodictyol	-7.7	ARG-298, VAL-303, ASP-153, ILE-152, ASN-151, THR-292, GLN-110, ILE-106, THR-111	ASP-153 ARG-298 GLN-110 THR-111	2.7 3.1, 3.3 2.9, 3.1
7.	Cyanidin	-7.5	GLN-299, GLY-302, ARG-298, MET-6, ASP-295, VAL-303, THR- 304, PHE-8, PRO-9, ALA-7, GLN- 127	THR-304 GLN-299 GLN-127	2.1 3.4 3.0
8.	Diosmetin	-7.5	LEU-286, LEU-287, ASP-289, GLU-290, LYS-137, ARG-131, THR199, ASP-197, TYR-239, TYR-27	THR-199 LEU-287 ARG-131 LYS-137	3.1 3.0 3.0, 3.0 3.1, 2.1
9.	Flavylium	-7.4	ASP-295, ARG-298, GLN-295, VAL-303, MET-6, THR-304,		

International Research Journal of Engineering and Technology (IRJET)Volume: 07 Issue: 05 | May 2020www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

			GLN-127, PHE-8, PRO-9		
10.	Glabridin	-7.4	LEU-287. LEU-286. LEU-272.	ASP-289	2.9
201	Giubiiu		TYR-237. TYR-239. THR-199.	THR-199	3.0
			GLU-288, ASP-289, GLU-290,		0.0
			LYS-137		
11	Herhacetin	-74	ARG-298 VAL-303 PHE-294	GLN-110	31
11.	nerbacetin	/.1	$\Delta SP_{2}95$ THR 292 $\Delta SP_{1}153$	THR-111	2930
			CIN_110 THR-111 II F-106	ΔRG-298	2.5, 5.0
			IIF_{110} , $IIII_{111}$, III_{1100} , IIF_{1100} , IIF_{1100}	MRG-270	5.1, 5.1
12	Luteolin	-74	LVS_137 CLU_200 LFU_286	I VS-137	3130
12.	Luteonn	-7.4	LEU-200, LEU-200, LEU-200, LEU-200, ADC 121	LI5-157 I FII 207	2.0
			THD 100 $I = 11277$ TVD 220	ТЦО-207 ТЦО 100	2.1
			THR-177, $EE0-272$, $FIR-237$, TVD 227 THD 100 ASD 107	TUD 227	2.0
			11R-237, 11R-190, ASI -197	ADC 121	2.0
				ARG-151	5.0, 5.0
13	Bavachin	-73	GLN-299 ARG-298 VAL-303		
15.	Davaciiii	-7.5	THR-304 Δ SP-295 MET-6 Δ I Δ -		
			7 CIN-127 PRO-9 PHF-8		
14	Hesperetin	-73	ARG-131 ASP-197 IVS-137	TYR-227	21
14.	nesperenn	-7.5	THR-199 TYR-220 TVR-227	LFII-297	3.0
			111(-177), 111(-237), 111(-237), 1511-272, ASP-289, C111-290	THP-100	3.0
			LEU-272, ASI-207, GLU-290, LEU-286 LEU-287	LYS-127	3032
				ARG-131	303134
15	Kaemnferol	-73	LVS-5 LFII-286 LFII-287 GLII-	THR-199	3.0, 5.1, 5.1
15.	Kaempieroi	-7.5	288 ASP-289 CI II-290 IVS-	ΔRG-131	2931
			137 THR-199 ARG-131 TYR-	LYS-137	2.9, 3.1
			239	GUIL290	2.5, 5.2
16	Morin	-73	$IIF_{152} ASP_{152} DHF_{8} ASN_{152}$	GL0-290	3.2
10.	MOTIN	-7.5	151 VAL-104 VAL-303 ARC-	THR-111	3.2
			208 THP_111 CIN_110 THP_	IIIR-111 IIF-152	2.1, 5.2
			290, THR-111, dEN-110, THR-	ARG-298	2.1
17	Naringenin	-73	LFIL-286 LFIL-287 CLIL-288	ARG-131	3030
1/.	Naringenni	-7.5	TYR_{-239} THR_199 ASP-197	LYS-137	2933
			IVS-5 ARC-131 IVS-137 ASP-	L15-157	2.7, 5.5
			289		
18	Tavifolin	-73	ARG-131 ASP-197 TYR-239	ARG-131	3031
10.	Tuxitoini	/10	TYR-237 THR-199 LYS-137	LYS-137	2931
			LEU-272 LEU-287 LEU-286	THR-199	3.2
			ASP-289 GLU-290	LEII-287	2.9
19	Acacetin	-7.2	LYS-5. LEU-287 LEU-286 GLU-	LYS-137	2.8.32
			290 ASP-289 TYR-239 THR-	ARG-131	232932
			199 ARG-131 LYS-137 CIUL	1110 151	2.0, 2.7, 3.2
			288		
20	Baicalein	-7.2	TYR-239, THR-199 LEII-286	LYS-137	2.9.32
	Zaioaioiii		LEU-287. GLU-288 ASP-289	GLU-290	2.3
			GLU-290, LYS-5, LYS-137, ARG-	ARG-131	3.0. 3.1
			131.		
21	Epicatechin	-7.2	LEU-287, VAL-204, LEU-272	LYS-137	3.2
	*		TYR-237, TYR-239, THR-199	THR-199	3.2
			ASP-289, GLU-290, LYS-137	TYR-239	2.9
			ARG-131, ASP-197	LEU-287	2.2
				ARG-131	3.0. 3.1
22	Fisetin	-7.2	ARG-298, VAL-303, THR-292	ARG-298	3.2
			THR-111. GLN-110. ILE-152.	GLN-110	3.1
			ASP-151, ASP-153	THR-111	2.6.2.9.30
23	Isorhamnetin	-7.2	LYS-137, LYS-5, ARG-131, ASP-	LYS-5	2.8.3.1
<u> </u>				210 0	, 0.1

International Research Journal of Engineering and Technology (IRJET)

IRJET Volume: 07 Issue: 05 | May 2020

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

			197 ASP-289 GLU-290 GLU-	GLU-288	34
			200 I EII 206 I EII 207 THD		20
			200, LEU-200, LEU-207, THK-	ASF-209	2.9
			199, IHR-198,	AKG-131	3.1
				THR-199	2.9, 2.9
24.	Isoxanthohumol	-7.2	LYS-137, GLU-290, LEU-286,	THR-199	3.2
			LEU-287, ASP-289, ARG-131,	ARG-131	3.2
			ASP-197, THR-199, TYR-237,	LEU-287	3.2
			TYR-239, LEU-271, LEU-272		
25	Flavanone	-71	MET-6 ALA-7 PRO-9 PHE-8		
20.	Thavailone .	/11	CIN_299 ARC-298 VAL-303		
			TUD 204		
20	Highidulin	7 1		ADC 121	20.20
26.	Hispidulin	-/.1	LEU-2/2, LEU-286, LEU-2/8,	ARG-131	3.0, 3.0
			GLU-288, ASP-289, GLU-290,	LYS-137	3.0, 3.2
			THR-199, TYR-239, ARG-131,	GLU-290	2.6
			LYS-137		
27.	Irigenin	-7.1	ARG-131, LYS-137, ASP-197,	LYS-5	2.9
			THR-199, ASP-289, GLU-290,	THR-199	2.7, 3.2
			GLN-127, LYS-5, LEU-287, LEU-	GLU-290	2.5, 3.5
			286	ARG-131	2.8.3.3
				LYS-137	2732
20	Malvidin	71		CIN 127	20
20.	Marvium	-7.1	ADC 200 CIN 200 ASD 205	GLN-127	2.9
			ARG-296, GLN-299, ASP-295,	GLN-299	3.4
			PRU-9, PHE-8, SER-113, ALA-7,	MEI-6	2.0
			GLN-127		
29.	Catechin	-7	VAL-303, ARG-298, ASP-153,	ARG-298	3.3, 3.3,
			ILE-152, ASN-151, PHE-112,	GLN-110	3.1
			ILE-106, THR-11, GLN-110,	THR-111	3.0, 2.9, 2.1
			THR-292		
30.	Cirsiliol	-7	LEU-286, LEU-287, LEU-272,	THR-199	3.2
			TYR-237 TYR-239 THR-199	LEU-287	2.8
			THR-198 ASP-197 ARG-131	ASP-197	27
			IVS_127 ASP_280	I SV-137	2.7
			L15-157, ASI -207	ADC 121	24.20
21	C	-		ARG-151	3.4, 3.0
31.	Genistein	-/	LEU-287, LEU-286, GLY-275,	1HR-1993	3.1
			LEU-271, LEU-272, TYR-237,	LYS-137	3.2
			TYR-239, ASP-197, THR-199,	LEU-271	2.6
			ARG-131, LYS-137, ASP-298,	LEU-287	3.4
				ARG-131	3.2
32.	Pinostrobin	-7	LEU-286, LEU-287, GLU-288,	GLU-290	2.4
			ASP-289, GLU-290, LYS-5, TYR-	LYS-137	2.9, 3.2
			239. THR-199. ASP-197. ARG-	ARG-131	2.9. 3.0
			131 LYS-137	1110 101	, 0.10
22	Sakuranetin	-7	I FIL-286 I FIL-287 CI II 200	LVS-137	3032
55.	Sakuranetin	- /		ADC 121	3.0, 3.2
			ASP-289, GLU-290, L15-5, L15-	ARG-131	2.8, 3.0, 3.3
			137, THR-199, TYR-239, ASP-		
			197, AKG-131		
34.	Wogonin	-6.8	ARG-298, GLN-107, GLN-110,	ARG-298	2.8, 3.0
			ILE-106, SER-158, ASN-151,	ASP-153	3.3
			ASP-153, ILE-152, CYS-156,	SER-158	3.0, 3.1
			PHE-8		
35.	Icaritin	-6.7	LEU-286, LEU-287, LEU-272.	TYR-237	2.0
	_ ··· · -		TYR-237 ASN-238 THR-199	LYS-137	2.8
			ASP-289 CI11-200 IVS-127	THR_100	33
			ARC_{-121}		202222
26	Inviflar	67		CED 150	2.0, 3.2, 3.3
36.	iprillavone	-6./	ILE-152, VAL-303, ASN-151,	SEK-158	2./
			ASP-153, AKG-298, SER-158,	AKG-298	2.9

International Research Journal of Engineering and Technology (IRJET) e-

Volume: 07 Issue: 05 | May 2020

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

			VAL-104, PHE-294		
37.	Cardamonin	-6.6	GLN-107, GLN-110, PRO-108,	GLU-240	2.7
			PRO-132, ILE-200, GLU-240,	HIS-246	3.0
			VAL-202, HIS-246, PRO-293,		
			ILE-249, PHE-294		
38.	Helichrysetin	-6.6	PRO-9, ALA-7, MET-6, GLN-127,	GLN-127,	2.9
			PHE-8, THR-304, VAL-303, ARG-	MET-6	2.3
			298		
39.	Skullcapflavone II	-6.5	ASN-84, MET-82, ARG-40, VAL-	ARG-188	3.0, 3.0
	_		186, ASP-187, ARG-188, GLU-	ARG-40	3.2
			55, TYR-54, ASN-153, PRO-52	GLU-55	2.9
				TYR-54	3.0, 3.4
40.	Trihydroxychalcone	-6.5	PHE-8, ASN-151, ARG-298, VAL-	PHE-294	2.2
			297, ASP-295, PHE-294, ILE-	GLN-110	3.3
			106, GLN-110	ARG-298	3.1, 3.2
41.	Hydroxychloroquine	-6.2	PRO-9, PHE-8, ALA, -7, GLN-127,	GLY-2	2.0, 2.4
			MET-6, ASP-295, ARG-298, GLN-	VAL-303	2.7
			299, SER-1, GLY-2, VAL-303		
42.	Favipiravir	-5.6	ARG-298, ASP-295, THR-292,	ARG-298	3.0
	-		GLN-110, THR-111, ILE-106,	ASP-295	2.5
			GLN-127, ASN-151, PHE-8	ASN-151	2.1
				GLN-110	2.8
				THR-111	2.1, 2.9, 3.0

3. CONCLUSIONS

Drug designing is the inventive process of finding new medications based on the knowledge of a biological target. This molecule will interact with the protein or binds on their active site and activates or inhibits the function of this biomolecule protein.

I have performed a molecular docking study using 40 potential naturally occurring flavonoids against the COVID-19 main protease and compared their affinity and amino acid residues at the protein binding pocket which participate in the interaction with the drug Hydroxychloroquine and Favipiravir. Docking results showed that all the flavonoids have high binding affinity against target COVID-19 main protease and docked with similar binding pocket residues.

This study suggested that, among these 4 flavonoid molecules Silymarin, Quercetin, β -Naphthoflavone, and Apigenin can be the potential drug for COVID-19 main protease. This in-*silico* approach can be further investigated to generate more effective and potential drugs through ligand-based drug designing approaches.

ACKNOWLEDGEMENT

I would like to thank Shweta Kumari for helpful discussions and suggestions.

REFERENCES

[1] N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, et al, "A Novel Coronavirus from Patients with Pneumonia in China, 2019", N Engl J Med, vol. 382, Feb. 2020, pp.727–33, doi: 10.1056/NEJMoa2001017.

- [2] C. C. Lai, T. P. Shih, W. C. Ko, H. J. Tang, P. R. Hsueh, "Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Coronavirus disease-2019 (COVID-19): The Epidemic and the Challenges", Int J Antimicrob Agents, vol.55, Mar. 2020, doi: 10.1016/j.ijantimicag.2020.105924.
- [3] D. Cucinotta, M. Vanelli, "WHO Declares COVID-19 a Pandemic", Acta Biomed, vol.91, Mar. 2020, pp.157-160, doi: 10.23750/abm.v91i1.9397.K. Elissa, "Title of paper if known," unpublished.
- [4] #IndiaFightsCorona COVID-19. https://www.mygov.in/covid-19/
- [5] World Health Organization (WHO): https://www.who.int/emergencies/diseases/novelcoronavirus-2019?gclid=Cj0KCQjwhtT1BRCiARIsAGIY51JPTFkpgVyI estkDz7th15RrDbfIqZTY8fywm4ZnSeSyqsYJp-sR-EaAteJEALw_wcB
- [6] L. Mousavizadeh, S. Ghasemi, "Genotype and phenotype of COVID-19: Their roles in pathogenesis", J Microbiol Immunol Infect, Mar. 2020, doi: 10.1016/j.jmii.2020.03.022.
- [7] T. Magrone, M. Magrone, E. Jirillo, "Focus on Receptors for Coronaviruses with Special Reference to Angiotensin-converting Enzyme 2 as a Potential Drug Target - A Perspective", Endocr Metab Immune Disord Drug Targets, Apr. 2020, doi: 10.2174/1871530320666200427112902.
- [8] PDB-101: Molecule of the Month: Coronavirus Proteases. https://pdb101.rcsb.org/motm/242.
- [9] S. Kumar, A. K. Pandey, "Chemistry and Biological Activities of Flavonoids: An Overview",

IRJET Volume: 07 Issue: 05 | May 2020

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

ScientificWorldJournal, Dec. 2013, doi: 10.1155/2013/162750.

- [10] M. Kandeel, M. A. Nazawi, "Virtual screening and repurposing of drugs against COVID-19 main protease", Life Sciences, vol.251, Apr. 2020, doi: 10.1016/j.lfs.2020.117627.
- [11] A.Klimke, G.Hefner, B.Will, U.Voss, "Hydroxychloroquine as an aerosol might markedly reduce and even prevent severe clinical symptoms after SARS-CoV-2 infection", Medical Hypotheses, vol.142, Apr. 2020, doi: 10.1016/j.mehy.2020.109783.
- [12] M. A. Shereen, S. Khana, A. Kazmi, N. Bashir, R. Siddique, "COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses", Journal of Advanced Research, Vol.24, Mar. 2020, pp.91-98, doi:10.1016/j.jare.2020.03.005.
- [13] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, "UCSF Chimera--a Visualization System for Exploratory Research and Analysis", J Comput Chem, vol.25, Oct. 2004, pp.1602-1612, doi: 10.1002/jcc.20084.
- [14] W. L. DeLano, The PyMOL molecular graphics system, 2002. http://www.pymol.org.