
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7622

GENETIC ALGORITHM FOR SOLVING SIMPLE MATHEMATICAL

 EQUALITY PROBLEM

 Himani Panwar 1, Pragya2, Dharamveer Singh 3, Abha Singh 4

1Student, Department of IT, IMS Engineering College, Ghaziabad, India
2Assistant Professor, Department of IT, IMS Engineering College, Ghaziabad, India

3Student, Department of IT, IMS Engineering College, Ghaziabad, India
4Student, Department of IT, IMS Engineering College, Ghaziabad, India

---***---

Abstract - This paper explain genetic algorithm in brief

with the help of flowchart and solve the simple

mathematical equality problem with the help of genetic

algorithm. Genetic algorithms are used to generate high

quality solutions for optimizations problems and search

problems. Genetic Algorithm is a popular optimization tool

in the field of natural science, finance and economics,

mathematics , earth science, industry, management ,

biological science, earth science and computer science.

Genetic Algorithms are based on the ideas of natural

selection and genetics. Genetic algorithms follow the process

of evolution and natural selection which means those

species who can adapt to changes in their environment are

able to survive and reproduce and go to next generation and

those who are not able to adapt changes they will be

discarded.

Key Words: Genetic Algorithm, selection, population,

fitness function.

1. INTRODUCTION

Genetic algorithm became famous because of the work of
John Holland in the early 1970s, and with the help of his
book "Adaptation in Natural and Artificial Systems (1975)".
He was the founder of genetic algorithm. A genetic
algorithm is a search heuristic and optimization algorithm
which is inspired by Charles Darwin’s theory of natural
evolution. Darwin's concept of evolution is then applied to
computer science to solve computational problems which
takes a lot of time if solved manually .This algorithm shows
the process of natural selection from the generation where
the fittest individuals are selected from the generation for
the reproduction in order to produce offspring of the next
generation, the fittest ones will survive in the next
generation. Genetic algorithms imitate the process of
natural selection. In simple words, they choose the
individuals from the generation and then find their
objective function and follow rest of the steps to find out
the best solution. Genetic algorithms are based on an
analogy with genetic structure and behaviour of
chromosome of the population. Genetic algorithms are

used to solve the complex problems in the field of
searching and optimization problems. The process of
natural selection starts with the evolution selection is very
important step in this it selects the fittest individuals from
a population and they produce offspring which inherit the
characteristics of the parents and will be added to the next
generation the process is repeated till we found the
optimal answer to the problem. If parents have better
fitness, their offspring will be better than parents and have
a better chance at surviving, the whole genetic algorithm
revolve around this only the fittest one will have more
chance of surviving. This process keeps on repeating and at
the end, a generation with the fittest individuals will be
found. This notion can be applied for a search problem and
also for optimization problem.

2. PHASES

There are 5 phases in genetic algorithm which are as
follows:

1. Initial population
2. Fitness function
3. Selection
4. Crossover
5. Mutation

2.1 Initial Population

This process starts with a set of individuals which is called
a Population. An individual have it’s own characteristics
and theses individuals are known as Genes. Genes are
combined into a string to form a Chromosome.

2.2 Fitness Function

The fitness function determines how fit an individual is it
will survive in next generation or not. The fitness function
plays a vital role in genetic algorithm. The fitness function
gives score to each individual. The probability that an
individual will be selected for next generation is based on
its fitness score. The fittest ones will survive in next
generation.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7623

2.3 Selection

The idea of selection phase is to select the fittest individuals
from the population and give approval to them for the next
generation. Individuals are selected based on their fitness
scores. Individuals with high fitness score have more chance
to be selected for reproduction.

2.4 Crossover

Crossover is the most important phase in a genetic

algorithm. A crossover point is randomly selected from the

generation and Offspring are created by exchanging the

genes of parents among themselves until the crossover

point is reached. The new offspring are added to the

population and new population will be generated.

2.5 Mutation

This process is used to maintain the diversity in the
generation and it prevents premature convergence. In
mutation genes are randomly replaced on a position with
a new value.

2.6 Termination

The algorithm terminates if the population has converged.
On termination algorithm provides the optimal answer.

3. GENETIC ALGORITHM

Process of genetic algorithm is as follows:

STEP 1: Determine the number of chromosomes,

generation, and mutation rate and crossover rate value for

the population.

STEP 2: Generate chromosomes and initialization of

values to the chromosomes.

STEP 3: Repeat steps 4-7 until the number of generations

is met.

STEP 4: Calculation of fitness values of chromosomes by

calculating the objective function.

STEP 5: Chromosomes selection

STEP 6: Crossover

STEP 7: Mutation

STEP 8: Solution (Best Chromosomes)

3.1 Flowchart

Flowchart of genetic algorithm is as follows:

4. Linear equality problem

So here is the example of applications of genetic algorithm

to solve the simple mathematical linear equality problem.

Suppose there is equality a + 2b + 3c + 4d+5e = 20, genetic

algorithm will be used to find the value of a, b, c, d and e

that satisfy the above equation for this problem the

objective is minimizing the value of function f(x) where

f(x) = ((a + 2b + 3c + 4d+5e) - 20). Since there are five

variables in the equation, namely a, b, c, d and e we can

compose the chromosome as follow: To speed up the

computation, we can restrict that the values of variables a,

b, c, and d are integers between 0 and 20.

4.1 Initialization

 For example we define the number of chromosomes in

population are 6, then we generate random value of gene

a, b, c ,d and e for 6 chromosomes

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7624

Chromosome[1] = [a;b;c;d;e] = [11;05;04;00;08]

Chromosome[2] = [a;b;c;d;e] = [09;15;03;01;03]

Chromosome[3] = [a;b;c;d;e] = [04;00;01;08;02]

Chromosome[4] = [a;b;c;d;e] = [01;05;13;04;06]

Chromosome[5] = [a;b;c;d;e] = [02;09;12;09;02]

Chromosome[6] = [a;b;c;d;e] = [08;14;05;11;00]

4.2 Evaluation

We calculate the objective function value for each

chromosome produced in the initialization step:

F_obj[1] = Abs((11 + 2*5 + 3*4 + 4*0 + 5*8) - 20) =53

F_obj[2] = Abs((9 + 2*15 + 3*3 + 4*1 + 5*3) - 20) = 47

F_obj[3] = Abs((4 + 2*0 + 3*1 + 4*8 + 5*2) - 20) = 29

F_obj[4] = Abs((1 + 2*5 + 3*13 + 4*4 + 5*6) - 20) = 76

F_obj[5] = Abs((2 + 2*9 + 3*12 + 4*9 + 5*2) - 20) = 82

F_obj[6] = Abs((8 + 2*14 + 3*5 + 4*11 +5*0) – 20) = 75

4.3 Selection

The chromosomes which higher fitness will have more

probability to be selected for the next generation. To

calculate fitness probability we have to calculate the

fitness of each chromosome. To avoid the divide by zero

problem, the value of F_obj is added by 1 so that fitness

will be calculated.

Fitness[1] = 1 / (1+F_obj[1]) = 1/(1+53) = 0.0185

Fitness[2] = 1 / (1+F_obj[2]) = 1/(1+47) = 0.0208

Fitness[3] = 1 / (1+F_obj[3]) = 1/(1+29)= 0.0333

Fitness[4] = 1 / (1+F_obj[4]) = 1/(1+76) = 0.013

 Fitness[5] = 1 / (1+F_obj[5]) = 1/(1+82) = 0.0120

Fitness[6] = 1 / (1+F_obj[6]) = 1/(1+75) = 0.0132

Total=0.0185 + 0.0208 + 0.0333 + 0.013 + 0.0120+

0.0132

 =0.1108

The probability for each chromosomes is formulated by

this formula:

P[i] = Fitness[i] / Total

P[1] = 0.0185 / 0.1108= 0.167

P[2] = 0.0208 / 0.1108 = 0.188

P[3] = 0.0333 / 0.1108 = 0.301

P[4] = 0.013 / 0.1108= 0.1173

P[5] = 0.0120 / 0.1108 = 0.1083

P[6] = 0.0132 / 0.1108 =0.1191

From the probabilities above we find out that the

Chromosome 3 has the highest fitness, so Chromosome 3

has the highest probability to be selected for the next

generation. For the selection process we use roulette

wheel method, for that we should compute the cumulative

probability values and their sum should be equal to 1 if

their sum is not equal to 1 then there is some error in

above computations:

C[1]=0.0167

C[2]= 0.0167 + 0.188=0.2606

C[3]= 0.0167 + 0.188 + 0.301=0.3518

C[4]= 0.0167 + 0.188 + 0.301+0.1173 =0.7167

C[5]= 0.0167 + 0.188 + 0.301+0.1173 + 0.1083 =0.7811

C[6]= 00.0167 + 0.188 + 0.301+0.1173 + 0.1083 +

0.1191=1.00

This process is used to generate random number R in the

range 0-1 as follows.

R[1] = 0.209

R[2] = 0.482

R[3] = 0.111

R[4] = 0.842

R[5] = 0.589

R[6] = 0.801

So here we do the comparison and on the basis of that new

chromosomes will be formed. If random number R[1] is

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7625

greater than C[1] and smaller than C[2] then select

Chromosome[2] as a chromosome in the new population

for next generation[1][2]:

NewChromosome[1] = Chromosome[2]

NewChromosome[2] = Chromosome[3]

NewChromosome[3] = Chromosome[1]

NewChromosome[4] = Chromosome[6]

NewChromosome[5] = Chromosome[3]

NewChromosome[6] = Chromosome[5]

Chromosomes in the population thus became:

Chromosome[1] = [09;15;03;01;03]

Chromosome[2] = [04;00;01;08;02]

Chromosome[3] = [11;05;04;00;08]

Chromosome[4] = [08;14;05;11;00]

Chromosome[5] = [04;00;01;08;02]

Chromosome[6] = [02;09;12;09;01]

4.4 Crossover

In this example, we use one-cut point, i.e. we randomly

choose a position in the parent chromosome and then

exchange sub-chromosome till we reach the one cut point.

Parent chromosome which will mate is randomly choose

and the number of mate Chromosomes is controlled using

crossover rate (ρc) parameters. Pseudo-code for the

crossover process is as follows:

Begin

 k← 0;

 while(k<population)do

 R[k] = random(0-1);

 if(R[k]< ρc) then

 select Chromosome[k] as parent;

end;

k = k + 1;

end;

 end;s

Chromosome k will be selected as a parent if R[k]. Suppose

we set that the crossover rate is 25%, then Chromosome

number k will be selected for crossover if random

generated value for Chromosome k below 0.25. The

process is as follows: First we generate a random number

R as the number of population.

R[1] = 0.117

R[2] = 0.482

R[3] = 0.185

R[4] = 0.199

R[5] = 0.356

R[6] = 0.892

For random number R above, parents are

Chromosome[1], Chromosome[3] and Chromosome[4]

will be selected for crossover.

Chromosome[1] >< Chromosome[3]

Chromosome[3] >< Chromosome[4]

Chromosome[4] >< Chromosome[1]

After chromosome selection, the next step is to determine

the position of the crossover point. This is accomplished

by generating random numbers between 1 to length of

Chromosome–1. Position of crossover point = length of

chromosome-1(5-1) = 4.

In this case, generated random numbers should be

between 1 and 4. When we get the crossover point,

parents Chromosome will be cut at crossover point and

genes will be interchanged. For example we will generate

3 random number and we get:

C[1] = 2

C[2] = 3

C[3] = 1

Then for first crossover, second crossover and third

crossover, parent’s gens will be cut at gen number 2, gen

number 3 and gen number 1 respectively, e.g.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7626

Chromosome[1] = Chromosome[1] >< Chromosome[3]

= [09;15;03;01;03] >< [11;05;04;00;08]

= [09;15;04;00;08]

Chromosome[3] = Chromosome[3] >< Chromosome[4]

= [11;05;04;00;08] >< [08;14;05;11;00]

= [11;05;04;11;00]

Chromosome[4] = Chromosome[4] >< Chromosome[5]

= [08;14;05;11;00] >< [04;00;01;08;02]

= [08;00;01;08;02]

Thus Chromosome population after experiencing a

crossover process:

Chromosome[1] = [09;15;04;00;08]

Chromosome[2] = [04;00;01;08;02]

Chromosome[3] = [11;05;04;11;00]

Chromosome[4] = [08;00;01;08;02]

Chromosome[5] = [04;00;01;08;02]

Chromosome[6] = [02;09;12;09;01]

4.5. Mutation

Mutation_rate parameter determines the number of

chromosomes that have mutations in a population.

Mutation process is done by replacing the generation at

random position with a new value. The process is as

follows:

So, first we have to calculate the total length of generation

in the population. The total length of the generation is

total_generation =

number_of_generation_in_Chromosome * number of

population

 = 5 * 6 = 30

Mutation process is done by generating a random integer

between 1 and total gen (1 to 30). . If the generated

random number is smaller than the mutation rate(ρm)

variable then marked the position of gen in chromosomes.

Suppose we define ρm 10%, it is expected that 10% (0.1)

of total gen in the population that will be mutated: number

of mutations = 0.1 * 30 = 1.8 ≈ 3 Suppose generation of

random number yield 2, 14 and 28 then the chromosome

which have mutation are Chromosome number 1 gen

number 2 , Chromosome 3 gen number 4 and chromosome

number 6 gen number 3. The value of mutated gets at

mutation point is replaced by random number between 0-

20. Suppose generated random number are 2 , 0 and 5

then Chromosome composition after mutation are:

Chromosome[1] = [09;02;04;00;08]

Chromosome[2] = [04;00;01;08;02]

Chromosome[3] = [11;05;04;00;00]

Chromosome[4] = [08;00;01;08;02]

Chromosome[5] = [04;00;01;08;02]

Chromosome[6] = [02;09;05;09;01]

After finishing the mutation process then we have one

iteration or one generation of the genetic algorithm. Now,

we can evaluate the objective function after one

generation:

Chromosome[1] = [09;02;04;00;08]

F_obj[1] = Abs((9+ 2*2 + 3*4 + 4*0 + 5*8)-20)

 = 45

F_obj[2] = Abs((4+ 2*0 + 3*1 + 4*8 +5*2)-20)

 = 29

F_obj[3] = Abs((11+ 2*5 + 3*4 + 4*0 +5*0)-20)

 = 13

F_obj[4] = Abs((8+ 2*0 + 3*1 + 4*8 +5*2)-20)

 = 33

F_obj[5] = Abs((4+ 2*0 + 3*1 + 4*8 +5*2)-20)

 = 29

F_obj[6] = Abs((2+ 2*9 + 3*5 + 4*9 +5*1)-20)

 = 56

So, these new Chromosomes will repeat the same process

of genetic algorithm such as evaluation, selection,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 7627

crossover and mutation as the previous generation of

Chromosomes did and at the end a new generation of

Chromosome for the next iteration is produced. This

process will be repeated until a predetermined number of

generations.

5. EXPERIMENTAL RESULTS

By executing the simple genetic algorithm code (SGA)

written in Java programming language. The primary work

of the SGA is performed in three routines selection,

crossover, and mutation we get the best values of the

variables a, b, c, d and e.

SGA Parameters

Population size = 10

Chromosome length = 5

Maximum of generation = 20

Crossover probability = 0.25

Mutation probability = 0.01

Linear equation problem

A value B value C value D value E value

1 1 3 2 0

2 6 4 0 0

1 0 2 2 1

1 1 0 3 1

2 0 1 0 3

6 0 3 0 1

4 4 0 2 0

0 3 2 2 0

3 2 2 0 1

4 4 0 2 0

6. CONCLUSION

 GA have an objective function which determines
the quality of the solution.

 GA finds the solution near to optimal answer.

 Outcomes shows that the genetic algorithm have
the ability to find optimal solution for solving
linear equation.

 GA is easy to understand and implement.

 GA can be used for solving the complex problems.

 Most fittest will survive and choose for next
generation.

7. REFERNCES

[1] Denny Hermawanto, “Genetic Algorithm for
 Solving Simple Mathematical Equality Problem”,
 Indonesian Institute of Sciences (LIPI),
 INDONESIA[1]

[2] Lubna Zaghlul Bashir, “Solve Simple Linear
Equation using Evolutionary Algorithm”, World
Scientific News 19 (2015) 148-167[2]

