
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2490

Memories using in Digital System Design

AUTHORS – NADIMPALLI RAJKUMAR1, ARUNKUMAR S2, PAVAN KUMAR E3

1,2,3Department of Electronics and Communication Engineering, Sai Vidya Institute of Technology

--***---
ABSTRACT : Memory is a main component of the digital
system. Memories are used to store the data within the
system. Every system needs memory to store the data and
process the data to complete its operation successfully.
Memory can volatile or non-volatile, volatile memory
stores the data until unless power is supplied. Non-volatile
memory stores the data even after the power is removed.
Random Access Memory (RAM) is of Volatile memory and
Read Only Memory (ROM) is a Non- volatile memory. In
this paper we learn the different types of RAM and ROM
and their operation in detail. Speed of the system depends
on type of the memory used in the system.

 INTRODUCTION

In this paper, we will discuss various types of memory
provided by manufacturers, either as individual
integrated circuits or as resources within ASIC or FPGA
fabrics. We will discuss the distinguishing properties of
each kind of memory, including their timing
characteristics and costs, and describe how to model
some of them in Verilog. We will distinguish between
memory that can be both read and written, called
random access memory (RAM), and memory that can
only be read, called read-only memory (ROM). We use
the term RAM instead of read/write memory largely for
historical reasons. Memories in very early computers
enforced sequential access, that is, access to locations in
increasing order of address, due to the physical medium
on which the data was stored. The invention of memories
in which locations could be read and written with equal
facility in any order was a significant milestone, and so
the term RAM has stuck.

 ASYNCHRONOUS STATIC RAM

One of the simplest forms of memory is asynchronous
static RAM. It is asynchronous because it does not rely on
a clock for its timing. The term static means that the
stored data persists ndefinitely so long as power is
applied to the memory component. Static RAM is volatile,
meaning that it requires power to maintain the stored
data, and loses data if power is removed. Since engineers
are fond of abbreviations, the term static RAM is usually
further shortened to SRAM. Asynchronous SRAM
internally uses 1-bit storage cells that are similar to the
D-latch circuit. Within the memory component, the
address is decoded to select a particular group of cells
that comprise one location. For largely historical reasons,
most manufacturers use active-low logic for the control
signals. Further, since asynchronous SRAMs are usually

only available as packaged integrated circuits, and not as
blocks in ASIC libraries or FPGAs, they usually have
bidirectional tristate data input/output pins.

Given that the storage cells in an asynchronous SRAM are
basically latches, it is not surprising that the timing is
similar to that of a D-latch. The control section that
sequences the datapath containing the memory must
ensure that the address is stable before commencing the
write operation and is held stable during the entire
operation. Otherwise, locations other than the one to be
updated may be affected. In isolation, we can also
perform back-to-back read operations simply by
changing the address value. The read operation is
essentially a combinational operation, involving
decoding the address and multiplexing the selected latch-
cell’s value onto the data outputs. Changing the address
simply causes a different cell’s value to appear on the
outputs after a propagation delay.

Manufacturers of asynchronous SRAM chips publish the
timing parameters for write and read operations in data
sheets. The parameters typically include setup and hold
times for address and data values, and delays for turning
tristate drivers on and off.

Fig1: Timing for write and read operations in an
asynchronous SRAM.

 Other performance-related parameters are the write
cycle time and the read cycle time, which are the times
taken to complete write and read operations,
respectively. Manufacturers offer chips in different speed
grades, with faster chips usually costing more. This
allows us, as designers, to make cost/performance trade-
offs in our designs.

While asynchronous SRAMs are conceptually simple and
have simple timing behavior, the fact that they are
asynchronous can make them difficult to use in clocked
synchronous systems. The need to set up and hold

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2491

address and data values before and after activation of the
control signals and to keep the values stable during the
entire cycle means that we must either perform
operations over multiple clock cycles, or use delay
elements to ensure correct timing within a clock cycle. A
asynchronous SRAMs are usually used only in systems
with low performance requirements, where their low
cost is a benefit.

SYNCHRONOUS STATIC RAM

Given the difficulties associated with asynchronous
SRAMs, many memory component vendors and
implementation fabrics provide synchronous SRAMs,
otherwise known as SSRAMs. The internal storage cells
of SSRAMs are the same as those of asynchronous
SRAMs. However, the interface includes clocked registers
for storing the address, input data and control signal
values, and in some cases, output data. In this section, we
will describe two forms of SSRAMs in general terms. The
details of control signals and timing will vary between
SSRAMs provided by different component vendors and
implementation fabrics. As always, we need to read and
understand the data sheets before using a component in
a design.

The simplest kind of SSRAM is often called a flowthrough
SSRAM. It includes registers on the inputs, but not on the
data outputs. The term flow-through refers to the fact
that data read from the memory cells flows through
directly to the data outputs. Having registers on the
inputs allows us to generate the address, data and
control signal values according to our clocked
synchronous design methodology, ensuring that they are
stable in time for a clock edge.

Fig2: Timing for a flow-through SSRAM.

Another method of SSRAM is called a pipelined SSRAM. It
includes a register on the data output, as well as registers
on the inputs. If there is no time in which to perform
combinational operations on the read data before the
next clock edge, it needs to be stored in an output
register and used in the subsequent clock cycle. A
pipelined SSRAM provides that output register. We
declare a variable to represent the stored register value

and assign a new value to it on a rising clock edge. We
can promote this approach to model an SSRAM in
Verilog. We need to declare a variable that represents all
of the locations in the memory. The way to do this is to
declare an array variable, which represents a collection
of values, each with an index that corresponds to its
location in the array. For example, to model a 4K*16-bit
memory, we would write the following declaration: reg
[15:0] data_RAM [0:4095];

The declaration specifies a variable named data_RAM
that is an array with elements index from 0 to 4095. Each
element is a 16-bit vector. Once we have declare the
variable representing the storage, we declare an always
block that performs the write and read operations. The
block is similar in form to that for a register. For example,
an always block of a model a flow-through SSRAM based
on the

variable declaration above is

always @(posedge clk)

if (en) if (wr) begin data_RAM[a] <= d_in; d_out <= d_in;
end else

d_out <= data_RAM[a];

Since there are many minor difference on the general
concept of a pipelined SSRAM, it is hard to present a
general template, especially one that can be recognized
by synthesis tools. A common alternative approach is to
use a CAD tool that generates a memory circuit and a
Verilog model of that circuit. We can then instantiate the
generated model as a component in a larger system.

 MULTIPORT MEMORIES

A multiport memory usually consumes more circuit area
more than a single-port memory with the same number
of bits of storage, since it has separate address decoders
and data multiplexers for each access port. Only the
internal storage cells of the memory are shared between
the multiple ports, though additional wiring is needed to
connect the cells to the access ports. However, the cost of
the extra circuit area is necessitate.

In some applications, such as high performance graphics
processing and high-speed network connections.
Suppose we have one subsystem producing data to store
in the memory, and another subsystem accessing the
data to process it in some way. If we use a single-port
memory, we would need to multiplex the addresses and
input data from the subsystems into the memory, and we
would have to arrange the control sections of the
subsystems so that they take turns to access the memory.

There are two potential problems here. First, if the
combined rate at which the subsystems need to move

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2492

data in and out of the memory exceeds the rate at which
a single access port can operate, the memory becomes a
bottleneck. Second, even if the average rates don’t exceed
the capacity of a single access port, if the two subsystems
need to access the memory at the same time, one must
wait, possibly causing it to lose data. Having separate
access ports for the subsystems obviates both of these
problems. The only remaining difficulty is the case of
both subsystems accessing the same memory location at
the same time. If both accesses are reads, they can
proceed. If one or both is a write, the effect depends on
the a feature of the particular dual-port memory. In an
asynchronous dual-port memory, a write operation
performed concurrently with a read of the same location
will result in the written data being reflected on the read
port after some delay. Two write operations performed
concurrently to the same location result in an
unpredictable value being stored. In the case of a
synchronous dual-port memory, the effect of concurrent
write operations depends on when the operations are
performed internally by the memory. We should advice
from the data sheet for the memory component to
understand the effect.

Some multiport memories, particularly those
manufactured as packaged components, provide
additional circuits that compare the addresses on the
access ports and indicate when contention arises. They
may also provide circuits to arbitrate between conflicting
accesses, ensuring that one proceeds only after the other
has completed. If we are using multiport memory
components or circuit blocks that do not provide such
features and our application may result in conflicting
accesses, we need to include some form of arbitration as
a separate part of the control section in our design. An
alternative is to ensure that the subsystems accessing the
memory through separate ports always access separate
location.

Fig3: Datapath for a FIFO using a dual-port memory.

One specialized form of dual-port memory is a firstin
first-outmemory, or FIFO. It is used to queue data
arriving from a source to be processed in order of arrival
by another subsystem. The data that is first in to the FIFO
is the first that comes out; hence, the name. The most
common way of building a FIFO is to use a dual-port

memory as a circular buffer for the data storage, with one
port accepting data from the source and the other port
reading data to give to the processing subsystem. Each
port has an address counter to keep track of where data
is written or read. Data written to the FIFO is stored in
successive free locations. When the write-address
counter reaches the last location, it wraps to location 0.
As data is read, the read-address counter is advanced to
the next available location, also wrapping to 0 when the
last location is reached. If the write address wraps
around and catches up with the read address, the FIFO is
full and can accept no more data. If the read address
catches up with the write address, the FIFO is empty and
can provide no more data. FIFO can store a variable
amount of data, depending on the rates of writing and
reading data. The size of memory requied in a FIFO
depends on the maximum amount by which reading of
data lags writing. Determining the maximum size may be
difficult to do. We may need to evaluate worst-case
scenarios for our application using mathematical or
statistical models of data rates or using simulation.

 DYNAMIC RAM

Dynamic RAM (DRAM) is another form of volatile
memory that uses a different form of storage cell for
storing data. Static RAM uses storage cells that are
similar to D-latches. In contrast, a storage cell for a
dynamic RAM uses a single capacitor and a single
transistor, The DRAM cells are thus much smaller than
SRAM cells, so we can fit many more of them on a chip,
making the cost as per bit of storage lower. However, the
access times of DRAMs are longer than those of SRAMs,
and the complexity of access and control is greater. Thus,
there is a trade-off of cost, performance and complicated
against memory capacity. DRAMs are most commonly
used as the main memory in computer systems, since
they desires of the need for high capacity with relatively
low cost. However, they can also be used in other digital
systems. The choice between SRAM and DRAM depends
on the requirements and constraints of each application.

When the transistor is turned off, the capacitor is isolated
from the bit line, thus storing the charge on the capacitor.
To write to the cell, the DRAM control circuit pulls the bit
line high or low and turns on the transistor, thus
charging or discharging the capacitor. To read from the
cell, the DRAM control circuit precharges the bit line to
an intermediate level, then turns on the transistor. As the
charges on the capacitor and the bit line equalize, the
voltage on the bit line either increases slightly or
decreases slightly, depending on whether the storage
capacitor was charged or discharged.

A sensor detects and amplifies the change, thus
determining whether the cell stored a 1 or a 0.
Unfortunately, this process destroys the stored value in
the cell, so the control circuit must then restore the value

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2493

by pulling the bit line high or low, as appropriate, before
turning off the transistor. The time taken to complete the
restoration is added to the access time, making the
overall read cycle significantly longer than than that for
an SRAM. Off, the capacitor is isolated from the bit line,
thus storing the charge on the capacitor. To write to the
cell, the DRAM control circuit pulls the bit line high or
low and turns on the transistor, thus charging or
discharging the capacitor. To read from the cell, the
DRAM control circuit precharges the bit line to an
intermediate level, then turns on the transistor. As the
charges on the capacitor and the bit line equalize, the
voltage on the bit line either increases slightly or
decreases slightly, depending on whether the storage
capacitor was charged or discharged. A sensor detects
and amplifies the change, thus determining whether the
cell stored a 1 or a 0. Unfortunately, this process destroys
the stored value in the cell, so the control circuit must
then restore the value by pulling the bit line high or low,
as appropriate, before turning off the transistor. The time
taken to complete the restoration is added to the access
time, making the overall read cycle significantly longer
than than that for an SRAM.

Fig4: A DRAM storage cell.

Another property of a DRAM cell is that, while the
transistor is turned off, charge leaks from the capacitor.
This is the meaning of the term “dynamic” applied to
DRAMs. To compensate, the control circuit must read and
restore the value in each cell in the DRAM before the
charge decays too much. This process is called refreshing
the DRAM. DRAM manufacturers typically specify a
period of 64ms between refreshes for each cell. The cells
in a DRAM are typically organized into several
rectangular arrays, called banks, and the DRAM control
circuit is organized to refresh one row of each bank at a
time. Since the DRAM cannot perform a normal write or
read operation while it is refreshing a row, the refresh
operations must be interleaved between writes and
reads. Depending on the application, it may be possible to
refresh all rows in a burst once every 64ms.
Alternatively, we may have to refresh one row at a time
between writes and reads, making sure that all rows are
refreshed within 64ms. The important thing is to avoid
scheduling a refresh when a write or read is required and
cannot be deferred.

Historically, timing of DRAM control signals used to be
asynchronous, and management of refreshing was

performed by control circuits external to the DRAM
chips. More recently, manufacturers changed to
synchronous DRAMs (SDRAMs) that use registers on
inputs to sample address, data and control signals on
clock edges. This is analogous to the difference between
asynchronous and synchronous SRAMs, and makes it
easier to incorporate DRAMs into systems that use a
clocked synchronous timing methodology. Manufacturers
have also incorporated refresh control circuits into the
DRAM chips, also making use of DRAMs easier. Since
applications with very high data transfer rate
requirements may be limited by the relatively slow
access times of DRAMs, manufacturers have more
recently incorporated further features to improve
performance. These include the ability to access a burst
of data from successive locations without having to
provide the address for each, other than the first, and the
ability to transfer on both rising and falling clock edges.
These features are mainly motivated by the need to
provide high-speed bursts of data in computer systems,
but they can also be of benefit in non-computer digital
systems. Because of the relative complicated of
controlling DRAMs, we will not go into detail of the
control signals required and their sequencing.

 READ-ONLY MEMORIES

The memories that we have seen so far has a ability to do
both read the stored data and update it autocratically. In
contrast, a read-only memory, or ROM, has only ability to
read the stored data. This is useful in cases where the
data is constant, so there is no need to update it. The data
is either incorporated into the circuit during its
manufacture, or is programmed into the ROM
subsequently. We will describe number of ROM that take
one or other of these approaches.

Combinational ROMs

A simple ROM is a combinational circuit that points from
an input address to a constant data value. We could
specify the ROM satisfy in tabular form, with a row for
each address and an entry showing the data value for
that address. Such a table is essentially a truth table, so
we could, in principle, implement the mapping using the
combinational circuit design techniques. However, ROM
circuit structures are generally much denser than
arbitrary gate-based circuits, because each ROM cell
needs at most one transistor. Indeed, for a complex
combinational function with multiple outputs, it may be
better to use a ROM to implement the function than a
gatebased circuit.

In FPGA fabrics that will provide SSRAM blocks, we can
use an SSRAM block as a ROM. We modify the always-
block template for the memory to omit the part that
updates the memory content. We could include a case
statement to determine the data output. The content of
the memory is loaded into the FPGA as part of its

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2494

programming when the system is turned on. Thereafter,
since the data is not updated, it is constant. For large
ROMs, writing the data directly in the Verilog code like
this is very cumbersome. Values are read from the file
into successive elements of the specified variable until
either the end of the file is reached or all elements of the
variable are loaded.

 Programmable ROMs

ROMs in which the contents are manufactured into the
memory are suitable for applications where the number
of manufactured parts is high and where we are sure that
the contents will not need to change over the lifetime of
the product. In other applications, we would prefer to be
able to revise the ROM contents from time to time, or to
use a form of ROM with lower costs for low-volume
production. A programmable ROM (PROM) meets these
requirements. It is manufactured as a separately
packaged chip with no content stored in its memory cells.
The memory contents are programmed into the cells
after manufacture, either using a special programming
device before the chip is assembled into a system, or
using special programming circuits when the chip is in
the final system. There are a number of forms of PROMs.
Early PROMs used fusible links to program the memory
cells. Once a link was fused, it could not be replaced, so
programming could only be done once. These devices are
now largely obsolete. They were replaced by PROMs that
could be erased, either with ultraviolet light so its called
as EPROMs, or electrically using a higher-than-normal
powersupply voltage so its called as electrically erasable
PROMs, or EEPROMs.

Flash Memories

Most new designs use flash memory, which is a form of
electrically erasable programmable ROM. It is organized
so that blocks of storage can be erased at once, followed
by programming of individual memory locations. A flash
memory typically allows only a limited number of
erasure and programming operations, typically hundreds
of thousands, before the device “wears out.” Thus, flash
memories are not a suitable replacement for RAMs.
There are two kinds of flash memories, NOR and NAND
flash, referring to the organization of the transistors that
make up the memory cells. Both kinds are organized as
blocks (commonly of 16, 64, 128, or 256 Kbytes) that
must be erased in whole before being written. In a NOR
flash memory, locations can then be written (once per
erasure) and read (an arbitrary number of times) in
random order. The IC has similar address, data and
control signals to an SRAM and can read data with a
comparable access time, making it suitable for use as a
program memory for an embedded processor, for storing
configuration parameters to be used to control system
operation, and for storing configuration information for
FPGAs.

In a NAND flash memory, on the other hand, locations are
written and read one page at a time, a page being
typically 2 Kbytes. Read access to a given location would
require reading the page containing the location,
followed by selection of the required data, taking several
microseconds. If all of the locations in a page are
required, however, sequential reading is much faster,
comparable in time to SRAM. Erasing a block and writing
a page of data are significantly slower than SRAM access
times. For example, the data sheet for the Micron
Technology MT29F16G08FAA 16G bit IC specifies a
random read time of 25µs, a, sequential read time of
25ns, a block erase time of 1.5ms, and a page write time
of 220µs. Given their different access behavior, NAND
flash memories have a different interface than SRAMs,
making control circuits more involved. The advantage of
NAND flash memory is that the density of storage cells is
greater than that of NOR flash. Thus, NAND flash chips
are better suited to applications in which large amounts
of data must be stored cheaply. One of the largest
applications of NAND flash memories is in memory cards
for consumer devices such as digital cameras. They are
also used in USB memory sticks for general purpose
computers.

ACKNOWLEDGMENT

I would like to express my sincere thanks to Prof.Pavan
Kumar E (Sai Vidya Institute of Technology) for having
guided us in this whole research and finally help us to
complete this paper as a whole.

REFERENCES

[1] http://www.rgcetpdy.ac.in/Notes/IT/II%20YEAR/
DIGITAL%20SYSTEM%20DESIGN/Unit%204.pdf

[2]https://en.wikipedia.org/wiki/Dynamic_randomacces
s_memory4

[3]http://www.staroceans.org/kernel-
anddriver/Digital%20Design%20-
%20An%20Embedded%20Systems%20Approach%20Us
ing%20Verilog.pdf

[4]https://www.researchgate.net/profile/Nikola_Zlatan
ov3/publication/295550090_Computer_Memory_A
pplications_and_Management/links/56cb9e3c08ae5
488f0db1882/Computer-Memory-Applicationsand-
Management.pdf

http://www.rgcetpdy.ac.in/Notes/IT/II%20YEAR/DIGITAL%20SYSTEM%20DESIGN/Unit%204.pdf
http://www.rgcetpdy.ac.in/Notes/IT/II%20YEAR/DIGITAL%20SYSTEM%20DESIGN/Unit%204.pdf
http://www.rgcetpdy.ac.in/Notes/IT/II%20YEAR/DIGITAL%20SYSTEM%20DESIGN/Unit%204.pdf
http://www.rgcetpdy.ac.in/Notes/IT/II%20YEAR/DIGITAL%20SYSTEM%20DESIGN/Unit%204.pdf
http://www.rgcetpdy.ac.in/Notes/IT/II%20YEAR/DIGITAL%20SYSTEM%20DESIGN/Unit%204.pdf
https://en.wikipedia.org/wiki/Dynamic_random-access_memory4
https://en.wikipedia.org/wiki/Dynamic_random-access_memory4
https://en.wikipedia.org/wiki/Dynamic_random-access_memory4
https://en.wikipedia.org/wiki/Dynamic_random-access_memory4
https://en.wikipedia.org/wiki/Dynamic_random-access_memory4
http://www.staroceans.org/kernel-and-driver/Digital%20Design%20-%20An%20Embedded%20Systems%20Approach%20Using%20Verilog.pdf
http://www.staroceans.org/kernel-and-driver/Digital%20Design%20-%20An%20Embedded%20Systems%20Approach%20Using%20Verilog.pdf
http://www.staroceans.org/kernel-and-driver/Digital%20Design%20-%20An%20Embedded%20Systems%20Approach%20Using%20Verilog.pdf
http://www.staroceans.org/kernel-and-driver/Digital%20Design%20-%20An%20Embedded%20Systems%20Approach%20Using%20Verilog.pdf
http://www.staroceans.org/kernel-and-driver/Digital%20Design%20-%20An%20Embedded%20Systems%20Approach%20Using%20Verilog.pdf
http://www.staroceans.org/kernel-and-driver/Digital%20Design%20-%20An%20Embedded%20Systems%20Approach%20Using%20Verilog.pdf
http://www.staroceans.org/kernel-and-driver/Digital%20Design%20-%20An%20Embedded%20Systems%20Approach%20Using%20Verilog.pdf
http://www.staroceans.org/kernel-and-driver/Digital%20Design%20-%20An%20Embedded%20Systems%20Approach%20Using%20Verilog.pdf
http://www.staroceans.org/kernel-and-driver/Digital%20Design%20-%20An%20Embedded%20Systems%20Approach%20Using%20Verilog.pdf
http://www.staroceans.org/kernel-and-driver/Digital%20Design%20-%20An%20Embedded%20Systems%20Approach%20Using%20Verilog.pdf
https://www.researchgate.net/profile/Nikola_Zlatanov3/publication/295550090_Computer_Memory_Applications_and_Management/links/56cb9e3c08ae5488f0db1882/Computer-Memory-Applications-and-Management.pdf
https://www.researchgate.net/profile/Nikola_Zlatanov3/publication/295550090_Computer_Memory_Applications_and_Management/links/56cb9e3c08ae5488f0db1882/Computer-Memory-Applications-and-Management.pdf
https://www.researchgate.net/profile/Nikola_Zlatanov3/publication/295550090_Computer_Memory_Applications_and_Management/links/56cb9e3c08ae5488f0db1882/Computer-Memory-Applications-and-Management.pdf
https://www.researchgate.net/profile/Nikola_Zlatanov3/publication/295550090_Computer_Memory_Applications_and_Management/links/56cb9e3c08ae5488f0db1882/Computer-Memory-Applications-and-Management.pdf
https://www.researchgate.net/profile/Nikola_Zlatanov3/publication/295550090_Computer_Memory_Applications_and_Management/links/56cb9e3c08ae5488f0db1882/Computer-Memory-Applications-and-Management.pdf
https://www.researchgate.net/profile/Nikola_Zlatanov3/publication/295550090_Computer_Memory_Applications_and_Management/links/56cb9e3c08ae5488f0db1882/Computer-Memory-Applications-and-Management.pdf
https://www.researchgate.net/profile/Nikola_Zlatanov3/publication/295550090_Computer_Memory_Applications_and_Management/links/56cb9e3c08ae5488f0db1882/Computer-Memory-Applications-and-Management.pdf
https://www.researchgate.net/profile/Nikola_Zlatanov3/publication/295550090_Computer_Memory_Applications_and_Management/links/56cb9e3c08ae5488f0db1882/Computer-Memory-Applications-and-Management.pdf
https://www.researchgate.net/profile/Nikola_Zlatanov3/publication/295550090_Computer_Memory_Applications_and_Management/links/56cb9e3c08ae5488f0db1882/Computer-Memory-Applications-and-Management.pdf
https://www.researchgate.net/profile/Nikola_Zlatanov3/publication/295550090_Computer_Memory_Applications_and_Management/links/56cb9e3c08ae5488f0db1882/Computer-Memory-Applications-and-Management.pdf
https://www.researchgate.net/profile/Nikola_Zlatanov3/publication/295550090_Computer_Memory_Applications_and_Management/links/56cb9e3c08ae5488f0db1882/Computer-Memory-Applications-and-Management.pdf
https://www.researchgate.net/profile/Nikola_Zlatanov3/publication/295550090_Computer_Memory_Applications_and_Management/links/56cb9e3c08ae5488f0db1882/Computer-Memory-Applications-and-Management.pdf
https://www.researchgate.net/profile/Nikola_Zlatanov3/publication/295550090_Computer_Memory_Applications_and_Management/links/56cb9e3c08ae5488f0db1882/Computer-Memory-Applications-and-Management.pdf
https://www.researchgate.net/profile/Nikola_Zlatanov3/publication/295550090_Computer_Memory_Applications_and_Management/links/56cb9e3c08ae5488f0db1882/Computer-Memory-Applications-and-Management.pdf
https://www.researchgate.net/profile/Nikola_Zlatanov3/publication/295550090_Computer_Memory_Applications_and_Management/links/56cb9e3c08ae5488f0db1882/Computer-Memory-Applications-and-Management.pdf
https://www.researchgate.net/profile/Nikola_Zlatanov3/publication/295550090_Computer_Memory_Applications_and_Management/links/56cb9e3c08ae5488f0db1882/Computer-Memory-Applications-and-Management.pdf

