
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2781

A Central Provisioning Service for Sharable, Stable and Scalable Build

Agents in Jenkins

Tarun Chaitanya Varma.K1, Mohan Kumar.K2, Meghana Amirineni3, Rakesh Reddy.N4,

1,2,3,4 Computer Science & Engineering, Lendi Institute of Engineering and Technology, Vizianagaram
---***---
Abstract - In the software development practice, project

code is integrated and build under various operating System

environments. For this build, the developer needs different OS

environments. In continuous integration, the code is

integrated and build in different target platforms like

Windows, Linux by using some services. We provide one of

those services to build the code. Our service is Jeeves. It will

provide the multiple OS required by the user as agents. Jeeves

uses the cloud service to provide multiple OS such as AWS and

Digital Ocean. We use this service in the Continuous

Integration tool which is Jenkins. In Jenkins, we Initialize

Jeeves service as a Jenkins plugin. Jeeves has a user interface

that is used to display the agents which are available to build.

When the user wanted to build the code he requests the agent

to Jeeves then Jeeves looks for an available agent. If the agent

is available it will lease the agent and after build is done the

user will return the agent to the Jeeves and it will place it in

the agent pool. The reason for distributed agents is for scale,

or to provide different tools, or build on different target

platforms like Windows, Mac, and Linux. This service is

developed by java, nodejs, and operated on Windows or Linux

operating systems. By using this we perform Static agents

sharing among different Jenkins server fleet.

Key Words: Continuous Integration, Automated Build,
Distributed Agents, Scalability needs.

1. INTRODUCTION

With growing competition in the continuous integration (CI),

the limitations in Jenkins come in the way of teams.CI is a

critical service nowadays. People are running bigger

workloads, needing more plugins, and high availability.

Services like instant messaging platforms need to be online

all the time. Jenkins is unable to stay up with this expectation

and an outsized instance requires tons of overhead to stay it

running. It is common for somebody to restart Jenkins a day

which delays processes. Errors need to be contained to a

specific area without impacting the whole service.

Continuous Integration also referred to as CI, is a crucial part

of modern software development. In fact, it is a real game-

changer when Continuous Integration is introduced into an

organization since it radically alters the way teams think

about the whole development process. It has excellent

potential to reinforce the event process from continuous

build integration to continuous deployment. CI is a

development process in which developers commit their

work frequently followed by build and testing before it’s

acceptance. Jenkins is an Open Source CI tool built in java

which supports building and testing of projects virtually.

The basic task of Jenkins is to execute some predefined steps

known as jobs based on a trigger. In short, Jenkins monitors

your version system for changes. Whenever a change is

detected, it automatically compiles and builds the

application. If something goes wrong, it immediately notifies

the developers so that they can fix the issue immediately.

Traditionally, Jenkins master and agents run on a dedicated

server and are available only on a company intranet. In this

setup, we have a fixed number of agents, and therefore it is

not scalable. Jenkins talks to the GitLab server which is

additionally hosted internally and available on an equivalent

company intranet.

1.1. JENKINS

Jenkins may be a tool to use either as a server for continuous

integration or an endless delivery hub that comes with many

additional plugins to tweak continuous delivery workflow.

Besides Jenkins, there’re many proprietary continuous

integration tools. If you’d wish to see these options also

check our corresponding article where we compare the main

CI tools in today’s market. Git is a Version Control System

with a repository for source code management that enables

working online and offline. Servers. Another popular tool

during this category is Ansible that automates configuration

management, cloud provisioning, and application

deployment.

Jenkins is a monolithic application based on a combination of

a master and a slaves. The Jenkins master monitors sources,

triggers jobs when predefined conditions are met, publishes

logs, and artifacts. It doesn't run actual tasks but makes sure

that they're executed. The Jenkins agent/slaves, on the

opposite hand, do the particular work. When the master

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2782

triggers a job execution, the actual work is performed by an

agent. Everything fails sooner or later so we should be ready

for failure recovery. The Jenkins master must run all the time

so as to stay Jenkins up and running. Hence, the Jenkins

master may be a single point of failure. Amazon web services

are the biggest cloud service provider currently in the cloud

market.

In AWS, you can deploy Jenkins on Amazon Elastic Compute

Cloud (Amazon EC2). The Jenkins environment will be

placed inside Amazon Virtual Private Cloud (Amazon VPC). It

will also use Amazon Elastic Block Store (EBS) volume for

storage purposes. This intercontinental development may

have multiple teams working separately on different

components or they may collaborate together to work on

overlapped components.

1.2 ADVANTAGE OF GOING TO THE CLOUD

Advantage of going to the cloud

 On-demand Jenkins slaves

 Reliable managed environment

 No manual management of slaves

 Highly (if not infinitely) scalable

 AWS provides a variety of instance types, use

instance types to define various slaves labels and

Use the slave best suited to the job without over or

under provisioning computing resources.

2. LITERATURE REVIEW

A few works have been discussed in history on CI and

Jenkins. Nikitha Seth proposed as [1] Jenkins as master-slave

architecture and the implementation of Jenkins for software

patch integration and release to the client. Wettinger

proposed as [2] they present a collaborative and holistic

approach to capturing DevOps knowledge in a

knowledgebase. Besides the ability to implement a crawling

framework to automatically discover and capture DevOps

knowledge. Charanjot Singh discussed [3] be comparing

different continuous integration and delivery tools taking

into consideration different parameters like performance

monitoring post-deployment, pipeline integration, cloud

compatibility, and server monitoring.

3. OUR APPROACH

We can provide service to two different server fleet to share
build agents. The service is built by using the plugins by

connect the Jenkins server and the build agents. When
Jenkins server needs an agent to run a build on a remote
agent it ask service to allocate an agent. The service will look
at the available inventory and find suitable agent it allocate
agent to Jenkins master Jenkins master uses agent for
workload. The reason for distributed agents is for scale, or to
provide different tools, or build on different target platforms
like Windows, Mac and Linux. The result is orchestrating
build agents needs of CI servers to allow sharing agents
among same CI servers. By using this we perform Static
agents sharing among different Jenkins server fleet. A
Jenkins Slave Agent is required to be run at the slave node.
Once the slaves are configured properly. We create Jobs to be
executed on slaves. Slaves can be grouped as per the
Operating System (OS) of slave and OS-specific jobs can be
assigned to these groups easily.

 We have created two group labels for the slave one for
windows and other for Linux. Jenkins allows creating Maven,
Freestyle or External job, etc. We created the Freestyle
Project for our implementation. Jenkins gives options to add
an SCM system like Git, Gerrit Repo, etc. The builds/Jobs can
be parameterized based on requirements. It provides remote
agents to servers for building projects. This is one of the
important actions to be performed in the DevOps style of
approach. It provides different platforms for projects to be
built upon depending on the requirements. This solves one
of the most common problems in the industry: “This code
worked on my system, but not working here”, which is a
huge breakthrough as the developers can develop the code
for different kinds of platforms for much less effort than it
usually is. This reduces a lot of time/latency in delivery. In
this implementation, we have used a parameterized build
step. Jenkins allows adding shell scripts/windows batch
commands. We added our build steps into this script.

4. WORKING

Initially, Jenkins server to be installed in the master system.

In Jenkins, we will initialize the service as a plugin and this

service will be installed in the Jenkins server in the master

system. The service is configured with many agents or nodes

which are in the cloud platforms like AWS, Digital Ocean. The

Jenkins will have many child servers like jenkins1, jenkins2,

etc. The developer wants to build the project and asks the

service to give the required agent. Then the service will look

for any available agents in the server fleet. If an agent is

available it will assign to the developer else it will look for

available local agents. It may be the Windows, Linux, mac

agent the service will provide it. Once the build is done the

developer will release the agent to service and the service

will place in its agent pool. The process will continue like

this.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2783

Fig 4.1. System architecture of Jenkins and the service to

agent pool.

The above figure is the block diagram of the Jenkins with

the service provided through the different build agents.

The master server will be having many servers in it. The

different servers will access the different build agents in

the same time. So, the build process will be easy and the

more stable.

4.1 METHODOLOGY

Input: remote agent credentials (username, password, dns

address)

Output: build output in remote agent.

Step 1 - Initialize the Jenkins server fleet

Step 2 - Activate Jeeves in Jenkins

Step 3 - Initialize the build

Step 4 - If remote agent credentials valid goto step 5

Else goto step 10

Step 5 - If DNS address exists goto step 6

Else goto step 10

Step 6 - if status == online goto step 7

Else goto step 8

Step 7 - Run our build on the agent goto step 11

Step 8 - If any other agents meets the

Requirements goto step 6

Else goto step 9

Step 9 - Wait until (status == online) then goto step 7

Step 10 - Print “credentials invalid”

Step 11 - End

5. RESULTS

The below pictures are the build results obtained when the

project is build in executed from git source code

management.

Fig 5.1 Connecting to build agent.

Fig 5.2 Build output

6. CONCLUSION

The main aim of this project is to provide the remote build
agents for projects o run on multiple environments. We run
our algorithm on the distributed environment so that time
consumption is less and also our algorithm is easy to
implement. By applying our algorithm we will be able to
understand the process of continuous integration in DevOps.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2784

We have identified that there are no open-source for this
type of service. Ability to grasp advanced programming
techniques to solve contemporary issues. We formulated the
The threshold called the support upon analysis of the data.

We designed the steps to be of two parts. So, it is essential to

hosting Jenkins on a reliable platform. Running and

managing it on your own can become a very hectic process,

especially when you start scaling and you have several builds

to take care of. The cloud-based integration in Jenkins will

play a crucial role in future DevOps. DevOps leverage the

benefits of cloud computing to possess a higher degree of

automation and good quality delivery of software.

REFERENCES

[1] Nikita Seth, Rishi Khare "ACI (Automated Continuous

Integration) using Jenkins: Key for Successful Embedded

Software Development",978-1-4673-8253-3/15/$31.00

c 2015 IEEE.

[2] Johannes Wettinger, Vasilios Andrikopoulos, Frank
Leymann “Automated Capturing and Systematic Usage
of DevOps Knowledge for Cloud Applications”, 978-1-
4799-8218-9/15 $31.00 © 2015 IEEE, DOI
10.1109/IC2E.2015.23.

[3] Charanjot Singh, Nikita Seth Gaba, Manjot Kaur,
Bhavleen Kaur ‘Comparison of Different CI/CD Tools
Integrated with Cloud Platform’ 978-1-5386-5933-
5/19/$31.00�c 2019 IEEE

[4] Online Resource: https://jenkins-ci.org/.

[5] Git, https://git-scm.com/

[6] Online Resource:https://wiki.jenkins-
ci.org/display/JENKINS/Home/.

[7] S.A.I.B.S. Arachchi, Indika Perera"Continuous Integration
and Continuous Delivery Pipeline Automation for Agile
Software Project Management",978-1-5386-4417-
1/18/$31.00 ©2018 IEEE

[8] Amazon. Amazon EC2 Instance Types - Amazon
WebServices (AWS). URL: https : / / aws . amazon. com
/ec2/instance-types/.

