
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3491

Parameter Tuning of Apache Spark based Applications for

Performance Enhancement

Saipraveen PN1, Nagaraja GS2

1 UG Student, Dept. of Computer Science and Engineering, RV College of Engineering, Bangalore, India
2 Professor and Associate Dean, Dept. of Computer Science and Engineering, RV College of Engineering, Blr, India

---***---
Abstract - In the recent past, Apache Spark has become the
most popular Big Data Analytics Framework, having taken on
Apache Hive based on MapReduce due to the edge offered by
Spark’s in-memory computation. The key obstacles for Big
Data Analytics are operating on tremendous volumes of data,
managing wide variations in data and high-speed data
processing. Spark provides default configurations which have
been evaluated for low capability hardware and is not the
most optimal solution for specific types of data and the
computations performed on them. Fine grain control through
the various performance parameters is essential to leverage
maximum capabilities of Spark. Parameter tuning of available
hardware resources for Spark applications takes the highest
precedence to achieve optimal performance. However, there
lacks an in-depth understanding on the impact of these
performance parameters. This paper discusses in detail the
various parameters such as number of executors, memory
persistence levels, caching, broadcasting, serialization,
compression, repartitioning and network parameters that can
be tuned to enhance the efficiency of Spark applications
tailored to the data being handled and the execution
environment.

Key Words: Apache Hive, Apache Spark, Big Data,
MapReduce, Parameter Tuning, Performance
Optimization

1.INTRODUCTION

In today’s competitive world it is imperative for
businesses of all scales to understand their customers’ needs
and trends in order to help serve them better. Data driven
decision making is very crucial since every business today is
inclined towards a growth beyond boundaries. It has been
projected that, in 2020, information obtained per second
from each individual person could approximate to 1.7 Mega
Bytes aggregating to a volume of approximately 44 Zetta
Bytes or 44 trillion Giga Bytes and by 2025, 463 Exa-Bytes of
data would be generated every 24 hours [1]. Hence, Big Data
Analytics plays a pivotal role in its overall growth and
market penetration. With advancements in technology and
tremendous increase in computational capabilities contrib-
uted by High Performance Distributed Computing, business-
es are now capable of processing mammoth amounts of data
being ingested at exponential rates. Huge expanse in mobile
phones, IoT devices and other internet services are key

sources of raw data which are churned to form sense out of
it.

The growth and revenue of the business depends on
critical Key Performance Indicators (KPIs) such as metrics
(sales, stocking), analytics (product sales trend), forecasts
(supply demand analysis), decision support systems etc. to
name a few. The mentioned KPIs are driven through data,
hence having the most optimized data processing
capabilities is the need of the hour.

Big data Analytics has its challenges, processing of
enormous amounts of data being produced at high rate and
offering end-users reliable real-time results. Two approach-
es in evaluating or processing the data and overcome the
limitation of latency are batch processing and stream
processing. Batch processing works in a store-and-process
fashion, but for real-time event detection it is important to
process the data on data streams [2].

Technologies have been developed to handle such large
amount of data in parallel. In 2004, Google Inc, published a
paper titled “Google’s MapReduce”. A Map phase splits
queries and circulates it crosswise over numerous nodes
that handle in parallel, the outcomes are consolidated by the
Reduce phase [3]. Apache Hive is a data warehouse tool
implemented on top of MapReduce, it takes SQL queries
which are operated on distributed data in the file system like
a SQL database. Hive can also connect through a shell client
or ODBC and execute SQL queries on the data stored on the
Hadoop cluster. Hive makes it easy to port form SQL-based
applications to Hadoop. Apache Spark is a unified cluster
computing engine designed to be fast and general-purpose, it
is a computational engine at the core and takes responsi-
bility of scheduling, distributing and monitoring applications
across multiple worker machines, or a computing cluster.
Spark extends the widely adopted MapReduce model, on top
of either yarn or Mesos to run queries on data and efficiently
supporting more types of computations including interactive
queries and stream processing.

Spark Architecture Fig. 1 illustrates the various process-
ing modules of Spark, such as Spark Core which consists of
fault tolerant and immutable Resilient Distributed Datasets
(RDDs), APIs for performing SQL like operations on RDDs,
schedulers for assigning tasks to various executor systems
and memory management components. Spark SQL allows
writing of SQL Queries against data or use SQL like functions
to transform datasets in Spark. Spark Streaming enables

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3492

real-time input data processing. Spark MLlib provides an
entire library of machine learning and data mining tools to
run on datasets in Spark and GraphX library for analysis and
processing of graph-based data structures [3]. Apache Spark
facilitates two special kinds of operations namely, Trans-
formations and Actions. Transformations perform a lazy
evaluation where a dependency graph is built on the RDDs
during transformations until an action is triggered, during
which spark figures out the shortest path across the
dependencies by working backwards. Actions return RDDs
of DataFrames to the driver program on completion of
computations.

Fig -1: Components of Apache Spark

2. OVERVIEW AND PROBLEM STATEMENT

The Apache Spark application considered for assessing
the performance of parameter tuning is an implementation
of a Real-time Twitter Streaming System. Twitter has over
330 million monthly active users and generates over 500
million tweets per day. The streaming System utilizes
developer APIs and other streaming systems to access,
process and store real-time tweets.

The experimental study was performed on a Hadoop
cluster with 4 worker nodes running Apache Spark 2.4, each
worker node is allocated with 128 GB of RAM and 64
processor cores. The Experiment section will cover the
impact of tuning performance parameters like number of
executors, memory persistence levels, caching, broadcasting,
serialization, com-pression, repartitioning and network
parameters etc. on the streaming system. The execution
times is the metric taken into consideration for evaluating
the performance, it has been tabulated in Table 2 to derive
insights and conclude the analysis.

3. EXPERIMENTATION

The Real-time Twitter Streaming System takes Access
Token, Access Token Secret, Consumer Key (API Key) and
Consumer Secret (API Secret) as arguments for the
developer API to access online tweets. Apache Flume offers
an architecture for easy and robust streaming of data flows,
tweets are fetched every 90 seconds. Various Spark
transformation operations are performed on the contents of
the tweets.

On execution of the streaming application with the
default configurations provided by Spark, the results for over
40,000 tweets were provided in 97 seconds. Further
subsections indicate the performance improvements on
tuning of various performance parameters.

3.1 Number of Executors

Choosing the optimal number of executors based on the
available cores, number of nodes in the cluster, volume of
data and available executor memory gives a significant
performance improvement. The Spark application can be
configured through the properties such as ‘spark.driver
.cores‘, ‘spark.driver.memory’, ‘spark.executor-.cores’, ‘spark.
executor.memory’ and ‘spark.executor.-instances’. Fig. 2
depicts the Spark hierarchy to understand the various
processes involved in the execution of a Spark application. A
strategy for optimising the number of executors has been
given in [4] whose steps are as follows:

A. Calculation of Available Cores

 The number of available cores are first identified which
is 64 cores per node and 256 total available cores for
processing. Hadoop or Yarn daemons executing in the
background require one core which has to be excluded from
the available cores resulting in 252 remaining cores
considering 4 worker nodes.

B. Calculation of Number of Executors per Node

The thumb rule to select the number of cores per
executor is 5 cores per executor. With this assumption, the
number of executors to be set is 252/5 i.e. 51 executors. The
cluster manager requires one executor for maintaining
metadata of the submitted application. Finally leaving 50
executors in the cluster hence ‘spark.executor.instances’ is
set to 12.

C. Calculation of Memory per Executor

Each cluster node is equipped with 128GB of RAM. The
total memory has to be distributed to the 12 executors per
node Hence, the executor memory is calculated to be 10GB,
‘spark.executor.memory’ is set accordingly.

D. Repartitioning of Data

Repartitioning is done on data for faster access, the
number of partitions are chosen to be a multiple of the total
number of available executors in the node. Incorporation of
the above steps helped to set the optimal hardware
resources for the Twitter Streaming System. The results
indicated in Table 2 shows a phenomenal reduction in the
execution time by about 71%.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3493

Fig -2: Apache Spark Hierarchy

3.2 Caching of DataFrames

Caching is an optimization strategy where incremental
and dynamic computations are performed. Caching
techniques provided by Spark allow the saving of partial
intermediate results in either memory or can persist in solid
storages for subsequent reuse based on the available
memory. In Spark, memory allocation comes into one of two
classifications: execution and storage. Execution memory
corresponds to computation in shuffle, join, sort, and
aggregation operations, whereas storage memory correspo-
nds to caching and distribution of internal data across the
cluster. ‘spark.memory.fraction’ expresses the size of the
unified memory region as a fraction of the JVM heap space
which is occupies 60% memory by default, to persist RDDs.
The rest 40% memory is reserved for objects created during
execution, user data structures and Spark internal metadata.
‘spark.memory.storageFraction’ expresses the size of mini-
mum storage space as a fraction of the unified memory
region which is 0.5 by default [5]. Cached blocks in the
minimum storage space are immune to being evicted during
execution.

The Twitter Streaming System generated and reused four
data frames for several transformations before completion of
the job. To assess the impact of caching, all data frames were
cached in memory subsequently on creation and execution
times were compared.

Observations from Table 2 indicate that the application
executed approximately 42% faster after caching and reuse
of intermediate results. Additionally, a dynamic memory
management algorithm for Apache Spark can be utilised to
handle factors that influence memory management such as
optimal storage level, spark memory ratio selections, heavy
memory burden and garbage collection overheads. Size of
data to be cached and available memory size can be
considered to determine the optimal storage categories
namely, MEMORY AND DISK, MEM-ORY ONLY SER MEMORY
AND DISK SER and MEM-ORY ONLY [6].

3.3 Adaptive Serialization

Run-time statistics such as JVM heap memory usage,
partition size, cached output size, I/O speed and serialization
performance can be collected dynamically and stored in
round-robin structures for selection of system storage
categories listed in the previous subsection. Serialization
though Java and Kryo algorithms are supported by Spark, the
default serialization configuration is changed from one RDD
to one block to gain flexibility. In cases where RDDs have a
greater number of blocks, different serialization algorithms
can be used on different blocks in a single RDD. This dynamic
serialization strategy yields up to a speedup of 2 when
compared to the unoptimized Spark execution [7].

3.4 Broadcasting of Variables

Broadcast variables get shared throughout all the nodes
in the cluster. Broadcast join is an effective strategy of
optimization in Spark to maximize the efficiency of join
operations. For a map join, one of the join components may
be materialized to prevent the sorting and shuffling step
which is a computationally expensive operation. Shuffling
incurs data migration with also impacts bandwidth, but
shuffling can be useful at times where data skewness has to
be resolved. Data locality is how close data is to the process.
Locality has an impact during broadcasting, based on the
locality the following parameters can be set viz. PROCESS
LOCAL, NODE LOCAL, NO PREF, RACK LOCAL and ANY. The
broadcasted values are sent as a file to all mappers and
joined with the other table during its read operation,
boosting efficiency [8]. While performing a join operation,
the Twitter Streaming application broadcasts the smaller
data frame to all nodes in the cluster. Observations from
Table 2 indicate that the application executed approximately
16% faster due to broadcasting of the smaller table.

3.5 Partitioning

One of the essential optimization strategies for enhancing
Apache Spark’s efficiency is to increase the degree of
parallelism for the tasks to be carried out. Data partitioning
governs how to access all hardware resources while
executing a job and is an important concept for achieving
parallelism in Apache Spark. By default, Spark reads data
from neighbouring cluster nodes into a Resilient Distributed
Dataset (RDD). Transformations on chunks of data can be
automated once partitions are built. Given the configuration
of clusters and the task requirements, the level of partitions
in Spark must be taken with caution. It is crucial to pick the
correct amount of partitions required. Increasing to a large
number of partitions implies that every partition has rather
less or no records. Far too few partitions result in handling
larger collection of data. For a given job, an ideal amount of
partitions should be determined depending on the number
of available processor cores and the usable RAM for each
executor. The Driver process of Spark will execute one

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3494

parallel job for each partition in the RDD, until the available
number of cores. In the experimental scenario, the RDDs can
have 256 partitions at the most since there are 256 cores
present in the cluster. Spark performs a shuffled hash join by
default, the smaller data frame is broadcasted to minimises
shuffling followed by the join operation.

Different numbers of partitions along with equal
corresponding number of cores are evaluated for execution
time. In the unoptimized run, 16 partitions were allocated to
a single core. Subsequent runs consider double the partitions
of the previous steps along with broadcast join as indicated
in Table 1 for increased number of partitions and avoiding of
shuffles.

From Table 2 it can be inferred that a 69% reduction in
the execution time could be achieved. The results indicate
that on increasing the number of partitions and cores using
’total-executor-cores’ from 16 to the highest possible cap of
256 there was no major difference in the execution times.

Table -1: Performance Evaluation on Partitioning

Performance
Parameter

No. of
Partitions

No. of
Cores

Execution
Time (sec)

 Default Default Default 97

 Default 16 16 206

Broadcast Join 16 16 30

Broadcast Join 32 32 32

Broadcast Join 64 64 31

Broadcast Join 128 128 28

Broadcast Join 256 256 28

3.6 Garbage Collection

JVM (Java Virtual Machine) Garbage Collector (GC) evicts
old objects to make room for new ones, by tracing through
all user created Java objects and identify the objects without
any reference. Cost of garbage collection is proportional to
the number of Java objects, frequent run-time execution of
the JVM GC indicates insufficient memory for computation.
The memory used for caching of RDDs has to be reduced to
lower GC overhead. Alternatively, if GC is not frequently
executed the memory used for caching of RDDs can be
increased. The memory fraction for caching can be set to
spark.storage.memoryFraction in the Spark properties file.
Statistics on frequency of garbage collection and time spent
by GC can be obtained by adding ‘verbose:gc -XX: + PrintGC
Details -XX: +PrintGCTimeStamps’ to the Java options.

4. RESULTS

The Experimentation section analysed the execution time
considering tuning parameters such as Number of Executors,
Caching of DataFrames, Broadcasting of variables, Partition-
ing and other miscellaneous optimizations at an independent
level and observed maximum reduction in the application
execution time by performing resource optimizations.

However, the efficiency can be further enhanced by combin-
ing of multiple tuning parameters discussed in the previous
sections. In the Twitter Streaming System, combination with
caching, optimization of number of executors, Broadcasting
and partitioning indicated in Table 2 resulting in 88.6%
reduction in execution time on the Twitter Streaming Service
application.

Table -2: Performance Evaluation After Tuning Individual
Parameters

Performance Parameter
Execution
Time (sec)

Performance
Improvement %

Default Configuration 97 0

Broadcasting of Variables 81 16.5

Caching of DataFrames 57 41.2

Partitioning 30 69

Hardware Resource
Optimisation

23 76.2

Combination of
Parameters

13 86.6

5. CONCLUSION AND FUTURE WORK

 It can be concluded from this study that certain
parameters could be tuned in the Twitter Streaming System
to achieve maximum efficiency in terms of execution time of
the Spark applications and emphasizing the significance of
performance tuning in Spark based applications as opposed
to MapReduce applications. The results give a clear indica-
tion that the suggested optimization techniques could
achieve a phenomenal 86.6% reduction in the execution time

on tuning of parameters. Although Spark can perform much
faster due to its in-memory computations and execution
plans, it can be concluded that unless the user does not have
an understanding of the properties of the data being
handled, fine tuning cannot be performed and tuning is very
much essential to leverage the best performance of Apache
Spark. This study took up the performance tuning in the
cluster with the standalone cluster manager. Further study
can include the performance of various cluster managers like
Yarn and Mesos which are prevalent scenarios in real-time
business use-cases. Additionally, using Scala or Python as the
language for Spark applications has been a debatable topic
amongst developers, it can be further explored to identify
the scenarios suitable for either of the languages.

REFERENCES

[1] Seedscientific, “Big Stats and Facts About Big Data”,

https://seedscientific.com/how-much-data-is-created-
every-day/

[2] D. Puthal, S. Nepal, R. Ranjan and J. Chen, ”A Secure Big
Data Stream Analytics Framework for Disaster
Management on the Cloud,” 2016 IEEE 18th
International Conference on High Performance Comp-
uting and Communications; IEEE 14th International
Conference on Smart City; IEEE 2nd International

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3495

Conference on Data Science and Systems (HPCC/
SmartCity/DSS), Sydney, NSW, 2016, pp. 1218-1225.

[3] Holden Karau, Andy Konwinski, Patrick Wendell and
Matei Zaharia “Learning Spark” O’Reilly Media, Inc.

[4] P. Ramprasad, “Understanding Resource Allocation
configurations for a Spark application,” http://site.
clairvoyantsoft.com/understanding-resource-allocation-
configurations-Spark-application/

[5] Memory Management Overview https://spark.apache.
org /docs/latest/tuning.html

[6] “S. Chae and T. Chung, DSMM: A Dynamic Setting for
Memory Management in Apache Spark, 2019 IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS), Madison, WI, USA, 2019,
pp. 143-144.”

[7] Y. Zhao, F. Hu and H. Chen, ”An adaptive tuning strategy
on spark based on in-memory computation
characteristics,” 2016 18th International Conference on
Advanced Communication Technology (ICACT),
Pyeongchang, 2016, pp. 484-488.

[8] “Broadcast Join with Spark” https://henning.kropp
online.de/2016/12/11/broadcast-join-with-Spark/

