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Abstract - In the recent past, Apache Spark has become the 
most popular Big Data Analytics Framework, having taken on 
Apache Hive based on MapReduce due to the edge offered by 
Spark’s in-memory computation. The key obstacles for Big 
Data Analytics are operating on tremendous volumes of data, 
managing wide variations in data and high-speed data 
processing. Spark provides default configurations which have 
been evaluated for low capability hardware and is not the 
most optimal solution for specific types of data and the 
computations performed on them. Fine grain control through 
the various performance parameters is essential to leverage 
maximum capabilities of Spark. Parameter tuning of available 
hardware resources for Spark applications takes the highest 
precedence to achieve optimal performance. However, there 
lacks an in-depth understanding on the impact of these 
performance parameters. This paper discusses in detail the 
various parameters such as number of executors, memory 
persistence levels, caching, broadcasting, serialization, 
compression, repartitioning and network parameters that can 
be tuned to enhance the efficiency of Spark applications 
tailored to the data being handled and the execution 
environment. 
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1.INTRODUCTION 
 

In today’s competitive world it is imperative for 
businesses of all scales to understand their customers’ needs 
and trends in order to help serve them better. Data driven 
decision making is very crucial since every business today is 
inclined towards a growth beyond boundaries. It has been 
projected that, in 2020, information obtained per second 
from each individual person could approximate to 1.7 Mega 
Bytes aggregating to a volume of approximately 44 Zetta 
Bytes or 44 trillion Giga Bytes and by 2025, 463 Exa-Bytes of 
data would be generated every 24 hours [1]. Hence, Big Data 
Analytics plays a pivotal role in its overall growth and 
market penetration. With advancements in technology and 
tremendous increase in computational capabilities contrib-
uted by High Performance Distributed Computing, business-
es are now capable of processing mammoth amounts of data 
being ingested at exponential rates. Huge expanse in mobile 
phones, IoT devices and other internet services are key 

sources of raw data which are churned to form sense out of 
it. 

The growth and revenue of the business depends on 
critical Key Performance Indicators (KPIs) such as metrics 
(sales, stocking), analytics (product sales trend), forecasts 
(supply demand analysis), decision support systems etc. to 
name a few. The mentioned KPIs are driven through data, 
hence having the most optimized data processing 
capabilities is the need of the hour. 

Big data Analytics has its challenges, processing of 
enormous amounts of data being produced at high rate and 
offering end-users reliable real-time results. Two approach-
es in evaluating or processing the data and overcome the 
limitation of latency are batch processing and stream 
processing. Batch processing works in a store-and-process 
fashion, but for real-time event detection it is important to 
process the data on data streams [2]. 

Technologies have been developed to handle such large 
amount of data in parallel. In 2004, Google Inc, published a 
paper titled “Google’s MapReduce”. A Map phase splits 
queries and circulates it crosswise over numerous nodes 
that handle in parallel, the outcomes are consolidated by the 
Reduce phase [3]. Apache Hive is a data warehouse tool 
implemented on top of MapReduce, it takes SQL queries 
which are operated on distributed data in the file system like 
a SQL database. Hive can also connect through a shell client 
or ODBC and execute SQL queries on the data stored on the 
Hadoop cluster. Hive makes it easy to port form SQL-based 
applications to Hadoop. Apache Spark is a unified cluster 
computing engine designed to be fast and general-purpose, it 
is a computational engine at the core and takes responsi-
bility of scheduling, distributing and monitoring applications 
across multiple worker machines, or a computing cluster. 
Spark extends the widely adopted MapReduce model, on top 
of either yarn or Mesos to run queries on data and efficiently 
supporting more types of computations including interactive 
queries and stream processing. 

Spark Architecture Fig. 1 illustrates the various process-
ing modules of Spark, such as Spark Core which consists of 
fault tolerant and immutable Resilient Distributed Datasets 
(RDDs), APIs for performing SQL like operations on RDDs, 
schedulers for assigning tasks to various executor systems 
and memory management components. Spark SQL allows 
writing of SQL Queries against data or use SQL like functions 
to transform datasets in Spark. Spark Streaming enables 
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real-time input data processing. Spark MLlib provides an 
entire library of machine learning and data mining tools to 
run on datasets in Spark and GraphX library for analysis and 
processing of graph-based data structures [3]. Apache Spark 
facilitates two special kinds of operations namely, Trans-
formations and Actions. Transformations perform a lazy 
evaluation where a dependency graph is built on the RDDs 
during transformations until an action is triggered, during 
which spark figures out the shortest path across the 
dependencies by working backwards. Actions return RDDs 
of DataFrames to the driver program on completion of 
computations. 

 

Fig -1: Components of Apache Spark 
 

2. OVERVIEW AND PROBLEM STATEMENT 
 

The Apache Spark application considered for assessing 
the performance of parameter tuning is an implementation 
of a Real-time Twitter Streaming System. Twitter has over 
330 million monthly active users and generates over 500 
million tweets per day. The streaming System utilizes 
developer APIs and other streaming systems to access, 
process and store real-time tweets. 

The experimental study was performed on a Hadoop 
cluster with 4 worker nodes running Apache Spark 2.4, each 
worker node is allocated with 128 GB of RAM and 64 
processor cores. The Experiment section will cover the 
impact of tuning performance parameters like number of 
executors, memory persistence levels, caching, broadcasting, 
serialization, com-pression, repartitioning and network 
parameters etc. on the streaming system. The execution 
times is the metric taken into consideration for evaluating 
the performance, it has been tabulated in Table 2 to derive 
insights and conclude the analysis. 

3. EXPERIMENTATION 
 

The Real-time Twitter Streaming System takes Access 
Token, Access Token Secret, Consumer Key (API Key) and 
Consumer Secret (API Secret) as arguments for the 
developer API to access online tweets. Apache Flume offers 
an architecture for easy and robust streaming of data flows, 
tweets are fetched every 90 seconds. Various Spark 
transformation operations are performed on the contents of 
the tweets. 

On execution of the streaming application with the 
default configurations provided by Spark, the results for over 
40,000 tweets were provided in 97 seconds. Further 
subsections indicate the performance improvements on 
tuning of various performance parameters. 

3.1 Number of Executors 
 

Choosing the optimal number of executors based on the 
available cores, number of nodes in the cluster, volume of 
data and available executor memory gives a significant 
performance improvement. The Spark application can be 
configured through the properties such as ‘spark.driver 
.cores‘, ‘spark.driver.memory’, ‘spark.executor-.cores’, ‘spark. 
executor.memory’ and ‘spark.executor.-instances’. Fig. 2 
depicts the Spark hierarchy to understand the various 
processes involved in the execution of a Spark application. A 
strategy for optimising the number of executors has been 
given in [4] whose steps are as follows: 

A. Calculation of Available Cores 

 The number of available cores are first identified which 
is 64 cores per node and 256 total available cores for 
processing. Hadoop or Yarn daemons executing in the 
background require one core which has to be excluded from 
the available cores resulting in 252 remaining cores 
considering 4 worker nodes. 

B. Calculation of Number of Executors per Node 

The thumb rule to select the number of cores per 
executor is 5 cores per executor. With this assumption, the 
number of executors to be set is 252/5 i.e. 51 executors. The 
cluster manager requires one executor for maintaining 
metadata of the submitted application. Finally leaving 50 
executors in the cluster hence ‘spark.executor.instances’ is 
set to 12. 

C. Calculation of Memory per Executor 

Each cluster node is equipped with 128GB of RAM. The 
total memory has to be distributed to the 12 executors per 
node Hence, the executor memory is calculated to be 10GB, 
‘spark.executor.memory’ is set accordingly. 

D. Repartitioning of Data 

Repartitioning is done on data for faster access, the 
number of partitions are chosen to be a multiple of the total 
number of available executors in the node. Incorporation of 
the above steps helped to set the optimal hardware 
resources for the Twitter Streaming System. The results 
indicated in Table 2 shows a phenomenal reduction in the 
execution time by about 71%. 
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Fig -2: Apache Spark Hierarchy 
 

3.2 Caching of DataFrames 

Caching is an optimization strategy where incremental 
and dynamic computations are performed. Caching 
techniques provided by Spark allow the saving of partial 
intermediate results in either memory or can persist in solid 
storages for subsequent reuse based on the available 
memory. In Spark, memory allocation comes into one of two 
classifications: execution and storage. Execution memory 
corresponds to computation in shuffle, join, sort, and 
aggregation operations, whereas storage memory correspo-
nds to caching and distribution of internal data across the 
cluster. ‘spark.memory.fraction’ expresses the size of the 
unified memory region as a fraction of the JVM heap space 
which is occupies 60% memory by default, to persist RDDs. 
The rest 40% memory is reserved for objects created during 
execution, user data structures and Spark internal metadata. 
‘spark.memory.storageFraction’ expresses the size of mini-
mum storage space as a fraction of the unified memory 
region which is 0.5 by default [5]. Cached blocks in the 
minimum storage space are immune to being evicted during 
execution. 

The Twitter Streaming System generated and reused four 
data frames for several transformations before completion of 
the job. To assess the impact of caching, all data frames were 
cached in memory subsequently on creation and execution 
times were compared. 

Observations from Table 2 indicate that the application 
executed approximately 42% faster after caching and reuse 
of intermediate results. Additionally, a dynamic memory 
management algorithm for Apache Spark can be utilised to 
handle factors that influence memory management such as 
optimal storage level, spark memory ratio selections, heavy 
memory burden and garbage collection overheads. Size of 
data to be cached and available memory size can be 
considered to determine the optimal storage categories 
namely, MEMORY AND DISK, MEM-ORY ONLY SER MEMORY 
AND DISK SER and MEM-ORY ONLY [6]. 

 
 

3.3 Adaptive Serialization 
 

Run-time statistics such as JVM heap memory usage, 
partition size, cached output size, I/O speed and serialization 
performance can be collected dynamically and stored in 
round-robin structures for selection of system storage 
categories listed in the previous subsection. Serialization 
though Java and Kryo algorithms are supported by Spark, the 
default serialization configuration is changed from one RDD 
to one block to gain flexibility. In cases where RDDs have a 
greater number of blocks, different serialization algorithms 
can be used on different blocks in a single RDD. This dynamic 
serialization strategy yields up to a speedup of 2 when 
compared to the unoptimized Spark execution [7]. 

3.4 Broadcasting of Variables 
 

Broadcast variables get shared throughout all the nodes 
in the cluster. Broadcast join is an effective strategy of 
optimization in Spark to maximize the efficiency of join 
operations. For a map join, one of the join components may 
be materialized to prevent the sorting and shuffling step 
which is a computationally expensive operation. Shuffling 
incurs data migration with also impacts bandwidth, but 
shuffling can be useful at times where data skewness has to 
be resolved. Data locality is how close data is to the process. 
Locality has an impact during broadcasting, based on the 
locality the following parameters can be set viz. PROCESS 
LOCAL, NODE LOCAL, NO PREF, RACK LOCAL and ANY. The 
broadcasted values are sent as a file to all mappers and 
joined with the other table during its read operation, 
boosting efficiency [8]. While performing a join operation, 
the Twitter Streaming application broadcasts the smaller 
data frame to all nodes in the cluster. Observations from 
Table 2 indicate that the application executed approximately 
16% faster due to broadcasting of the smaller table. 

3.5 Partitioning 
 

One of the essential optimization strategies for enhancing 
Apache Spark’s efficiency is to increase the degree of 
parallelism for the tasks to be carried out. Data partitioning 
governs how to access all hardware resources while 
executing a job and is an important concept for achieving 
parallelism in Apache Spark. By default, Spark reads data 
from neighbouring cluster nodes into a Resilient Distributed 
Dataset (RDD). Transformations on chunks of data can be 
automated once partitions are built. Given the configuration 
of clusters and the task requirements, the level of partitions 
in Spark must be taken with caution. It is crucial to pick the 
correct amount of partitions required. Increasing to a large 
number of partitions implies that every partition has rather 
less or no records. Far too few partitions result in handling 
larger collection of data. For a given job, an ideal amount of 
partitions should be determined depending on the number 
of available processor cores and the usable RAM for each 
executor. The Driver process of Spark will execute one 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 05 | May 2020                 www.irjet.net                                                                     p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 3494 
 

parallel job for each partition in the RDD, until the available 
number of cores. In the experimental scenario, the RDDs can 
have 256 partitions at the most since there are 256 cores 
present in the cluster. Spark performs a shuffled hash join by 
default, the smaller data frame is broadcasted to minimises 
shuffling followed by the join operation. 

Different numbers of partitions along with equal 
corresponding number of cores are evaluated for execution 
time. In the unoptimized run, 16 partitions were allocated to 
a single core. Subsequent runs consider double the partitions 
of the previous steps along with broadcast join as indicated 
in Table 1 for increased number of partitions and avoiding of 
shuffles. 

From Table 2 it can be inferred that a 69% reduction in 
the execution time could be achieved. The results indicate 
that on increasing the number of partitions and cores using 
’total-executor-cores’ from 16 to the highest possible cap of 
256 there was no major difference in the execution times. 

Table -1: Performance Evaluation on Partitioning 

Performance 
Parameter 

No. of 
Partitions 

No. of 
Cores 

Execution 
Time (sec) 

    Default Default Default 97 

    Default 16 16 206 

Broadcast Join 16 16 30 

Broadcast Join 32 32 32 

Broadcast Join 64 64 31 

Broadcast Join 128 128 28 

Broadcast Join 256 256 28 

 
3.6 Garbage Collection 
 

JVM (Java Virtual Machine) Garbage Collector (GC) evicts 
old objects to make room for new ones, by tracing through 
all user created Java objects and identify the objects without 
any reference. Cost of garbage collection is proportional to 
the number of Java objects, frequent run-time execution of 
the JVM GC indicates insufficient memory for computation. 
The memory used for caching of RDDs has to be reduced to 
lower GC overhead. Alternatively, if GC is not frequently 
executed the memory used for caching of RDDs can be 
increased. The memory fraction for caching can be set to 
spark.storage.memoryFraction in the Spark properties file. 
Statistics on frequency of garbage collection and time spent 
by GC can be obtained by adding ‘verbose:gc -XX: + PrintGC 
Details -XX: +PrintGCTimeStamps’ to the Java options. 

4. RESULTS 
 

The Experimentation section analysed the execution time 
considering tuning parameters such as Number of Executors, 
Caching of DataFrames, Broadcasting of variables, Partition-
ing and other miscellaneous optimizations at an independent 
level and observed maximum reduction in the application 
execution time by performing resource optimizations. 

However, the efficiency can be further enhanced by combin-
ing of multiple tuning parameters discussed in the previous 
sections. In the Twitter Streaming System, combination with 
caching, optimization of number of executors, Broadcasting 
and partitioning indicated in Table 2 resulting in 88.6% 
reduction in execution time on the Twitter Streaming Service 
application. 

Table -2: Performance Evaluation After Tuning Individual 
Parameters 

Performance Parameter 
Execution 
Time (sec) 

Performance 
Improvement % 

Default Configuration 97 0 

Broadcasting of Variables 81 16.5 

Caching of DataFrames 57 41.2 

Partitioning 30 69 

Hardware Resource 
Optimisation 

23 76.2 

Combination of 
Parameters 

13 86.6 

 
5. CONCLUSION AND FUTURE WORK 
 

 It can be concluded from this study that certain 
parameters could be tuned in the Twitter Streaming System 
to achieve maximum efficiency in terms of execution time of 
the Spark applications and emphasizing the significance of 
performance tuning in Spark based applications as opposed 
to MapReduce applications. The results give a clear indica-
tion that the suggested optimization techniques could 
achieve a phenomenal 86.6% reduction in the execution time 

on tuning of parameters. Although Spark can perform much 
faster due to its in-memory computations and execution 
plans, it can be concluded that unless the user does not have 
an understanding of the properties of the data being 
handled, fine tuning cannot be performed and tuning is very 
much essential to leverage the best performance of Apache 
Spark. This study took up the performance tuning in the 
cluster with the standalone cluster manager. Further study 
can include the performance of various cluster managers like 
Yarn and Mesos which are prevalent scenarios in real-time 
business use-cases. Additionally, using Scala or Python as the 
language for Spark applications has been a debatable topic 
amongst developers, it can be further explored to identify 
the scenarios suitable for either of the languages. 
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