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Abstract - Businesses use data to make decisions. If 
analysed effectively, data enables forecasting of trends in 
the market, helps businesses understand what customers 
need and prefer, and enables a company to create strategy. 
But the massive volume of data being generated from 
numerous sources is a challenge. Businesses can only take 
full advantage of Big Data if all the data being generated is 
used to its potential. Today availability of data is not a 
problem; the challenge is to effectively handle the incoming 
data, and do so swiftly enough so that data retains its 
importance, and remains meaningful. This era of Big Data is 
about efficient collection, storage and analyses of data, 
which needs good tools. But choosing the right tool comes 
through updated knowledge of the state-of-the-art in data-
handling technologies. This paper analyses the features of 
some cutting-edge Data Ingestion technologies in today’s 
market, and can help identify the technology best suited to a 
company’s business processes. 
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1. DATA INGESTION – AN OVERVIEW 
 

Data can only be properly ‘digested’ if it is properly 
‘ingested’. To ensure that data from multiple sources can 
be effectively analysed, all data must first be moved to a 
common destination. This is done through Data Ingestion 
technologies that enable movement of data from multiple 
different sources to a centralized location, typically a data 
warehouse, which is simply a database designed and built 
for efficient data handling and reportage. Data ingestion 
tools create a data pipeline to enable import, transfer, 
loading and processing of data for later use within the 
warehouse, and facilitate data extraction by supporting a 
variety of data transport protocols.  

Effective data ingestion is a primary requirement for 
building a business intelligence strategy based on data 
analytics. The data ingestion layer is the mainstay of an 
analytics topology. A good analytics system that relies on 
downstream reporting must be provided data that is 
consistently accessible. Thus design of the data pipeline 
will be critical to a business.  

The destination for data moving through an ingestion 
pipeline would be a data warehouse, or a data 
mart/document store. Data sources are widely disparate: 
data from SaaS sources, numerous apps, engineering 
systems that generate data outputs, and data scraped from 
the Internet. Data may be in different formats, including 
RDBMS or other databases, S3 buckets, CSVs, or data 
streams. Since the ingested data is from varied sources, it 

must first be cleansed and transformed for analysis along 
with data from other sources.  

Data can either be ingested in batches, in real time, or 
in a combination of the two methods (the Lambda 
Architecture). Data is ingested in batches and is then 
imported at scheduled intervals. This is useful for 
processes that run on a schedule, e.g., daily reports at a 
specified time. Real-time ingestion is used when 
information collected is time-sensitive and has to be 
monitored and acted upon from moment-to-moment, e.g., 
power grid data. The Lambda Architecture balances the 
benefits of batch and real-time modes. It uses batch 
processing for scheduled data and real-time processing to 
provide views of time-sensitive data [1]. 

1.1 Batch Ingestion vis-à-vis Streaming Ingestion 
 

Business requirements and the operating environment 
decide the structure of the data ingestion layer. A company 
will choose the model based on the timeliness at which 
data must be accessed for analysis.  

Batch processing: In this method, the ingestion layer 
collects data periodically, groups it, and sends to the 
destination in group-sized batches. Groups can be 
processed in any sequence, either using a designated 
schedule or when certain triggers are set off. This method 
is easy to implement, more affordable, and used when 
near/real-time data analysis is not needed.  

Real-time data processing (or stream processing/ data 
streaming): This is done without the grouping of sourced 
data. Data is loaded as soon as it is generated and the data 
ingestion layer recognizes it. This technology is used when 
information analysis requires data that is extremely 
current. This is a more expensive technology, since 
systems must constantly read data sources and accept 
new information.  

A few streaming platforms actually utilize batch 
processing technology. E.g., Apache Spark Streaming. In 
this method, ingested groups are merely smaller in size, or 
are prepared at shorter intervals, but they are still 
processed in group batches. This method is called micro-
batching and it is correct to consider it as a distinct data 
ingestion category. 

1.2 Challenges faced in Data Ingestion 
 

The global data ecosystem is creating varied data 
sources, with data volumes exploding. Information can 
come from widely different data sources: transactional 
databases, SaaS platforms and from mobile phones to IoT 
devices. Sources are constantly evolving and new ones 
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emerging. This makes it difficult to define and create a 
data ingestion technology that can be called future-proof. 

Creating an architecture that can ingest a high volume 
of widely diverse data is expensive and time-consuming. 
Speed is a challenge for the ingestion process and the data 
pipeline. As data grows more complex, developing and 
maintaining data ingestion pipelines grows even more 
arduous, especially for real-time data processing. 
Depending on the field requirement, pipelines can have a 
slow refresh rate, updating maybe every 10 minutes, or 
completely current, like a stock market ticker application 
in peak trading hours. 

Importantly, being able to correctly assess an 
organisation’s data pipeline need is crucial for the design 
of the data ingestion architecture. A business must choose 
a system based on the type of data they need and use. The 
value of data depends on the ability to ingest and integrate 
it. Data warehouses that operate off the cloud, and can 
scale effectively, will maximise the performance of a data 
pipeline. 

1.3 The Data Ingestion Sequence  
 

Till fairly recently, the data ingestion sequence was 
extract, transform, and load (ETL). In this method, data is 
taken from the source, manipulated as per properties of 
the destination database, and thereafter loaded onto the 
destination. With businesses using expensive analytics, 
this preparation was needed, which included data 
transformation, before the data could be loaded into a data 
warehouse. 

But today, much has changed. Cloud-based data 
warehouse technologies like Microsoft Azure SQL Data 
Warehouse, Google BigQuery, Amazon Redshift and 
Snowflake provide very cost-effective options to scale up 
the compute & storage resources in real-time. This means 
that there is no need to preload transformations and the 
entire raw data of an organization can be dumped into the 
data warehouse or data lake. This data can then be used 
while in the data warehouse, with transformations being 
defined and run in SQL - directly at query time. Thus 
Extract, Transform, Load (ETL) has changed to Extract, 
Load, Transform (ELT).  

Creating an ETL/ELT platform from scratch requires 
writing complex data transformation code for the data 
pipeline. Many companies now offer readymade solutions 
tailored to work in specific computing environments or 
software applications. This allows the data analytics team 
to focus on business logic and if a need arises, still develop 
ad hoc transformations. This also guarantees higher 
accuracy, availability, and consistency [2].  

Today, most proprietary data ingestion software also 
includes data preparation features to structure and 
organize data enabling it to be analysed either on the fly or 
later by business intelligence and business analytics 
programs [3].  

A fully managed ELT solution can ingest data from all 
sources onto cloud-based data warehouse destinations, 
and the time difference between data ingestion and 

insightful decisions has come down from weeks to 
minutes. 

2. APACHE KAFKA 
 

Kafka is a distributed streaming platform. It is capable 
of building data streaming pipelines and apps. Open-
source, horizontally scalable, fault-tolerant, and one of the 
swiftest in the market, it functions as a messaging agent, 
and provides a unified platform to handle high data 
throughput with fairly low-latencies, which enable it to 
handle real-time data feed. It uses a “distributed, 
partitioned, replicated commit log service” [4].  

Kafka functions as a messaging system but uses a 
unique methodology. Data streams are partitioned and 
spread over a cluster of machines, allowing data streams 
that are larger than the capacity of a single machine to be 
stored without any disruptions. This therefore allows 
clusters of coordinated customers to be handled through a 
single platform. Kafka assigns any one cluster the task of 
acting as the central data backbone for a given client 
organisation. This cluster-based design makes Kafka 
highly fault-tolerant, also enabling it to expand without 
requiring any downtime.  

 Kafka is widely used for requirements such as collection 
of user activity data, device instrumentation, application 
metrics, logs, and stock markets. Kafka ensures high 
availability of streaming large volume data in real-time. 
This data can be flexibly consumed by systems with 
variable requirements: by batch processing systems like 
Hadoop or by data streaming systems that need to 
transform data streams on arrival. 
 
2.1 Design 
 

Kafka enables stream processing, storage and 
messaging. This uncommon combination is necessary for 
Kafka to function as a streaming platform. Kafka is mainly 
used for two types of applications: to build data streaming 
pipelines that move data between systems and 
applications; to build applications that react to and 
transform the incoming data streams [5].  

Some important features of Kafka are: 

● It can be run as a cluster on multiple servers 
straddling across multiple data-centres. 

● Kafka clusters store record streams under various 
categories known as topics. 

● Each record has a key, value, and timestamp [6]. 

Kafka provides five APIs, which are the core of its design: 

● Producer API. Enables applications to publish streams 
of records to one or more topics. 

● Consumer API. Enables applications to subscribe to 
one or more topics and process records to them. 

● Streams API. Allows applications to act as stream 
processors, by imbibing input streams from multiple 
topics and outputting transformed data to multiple 
topics. 
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● Connector API. For building and running of reusable 
producers or consumers so that Kafka topics can be 
connected to existing data applications/systems.  

● Admin API. For management and inspection of topics, 
brokers and other Kafka objects. 

 

 
Fig -1: The Kafka Cluster 

(Source:https://kafka.apache.org/intro.html) 
 
2.2 Communication 
 

Kafka handles communication between clients and 
servers using a language-agnostic TCP protocol. The 
protocol is backward compatible with older versions of 
the product. Though Apache provides a Java client as 
default for Kafka, clients are also available in other 
languages. 
 
2.3 Storage 
 

Static files for batch processing are stored in 
distributed file systems like HDFS. This ensures that 
historical data is available for processing. On the other 
hand, a classic messaging system enables processing of 
future messages, which are yet to arrive at the time the 
client has subscribed. Such applications process data as it 
arrives. Kafka combines both these capabilities, enabling it 
to be used as a platform for both data streaming pipelines 
and streaming applications.  

Streaming applications address past and future data in 
a similar manner, by combining low-latency subscriptions 
with storage facility. Thus the application will start 
processing past data and seamlessly continue onto future 
data as it begins arriving. This approach includes both the 
batch processing and the message driven techniques used 
by stream processing technology [7]. 

An important idea in Kafka is the creation of ‘topics’ for 
record streams. This is nothing but a category to which the 
incoming data stream or records are published [8]. Kafka 
maintains a separate log partition for each topic as 
illustrated below, and topics can be subscribed to by 
multiple consumers. 

Every record is entered into a partition and is allotted 
an identification number called an ‘offset’ [9]. Thus 
partitions are ordered sequences of records to which 
successive records are continuously committed. Log 

partitions are designed to scale. Topics have multiple 
partitions but each partition may reside on a separate 
server. This allows logs to scale beyond the size of a single 
server. In this way, log partitions also support parallel 
computing. 

 

 

Fig -2: Kafka Partitions 
(Source:https://kafka.apache.org/intro.html) 

 
An important idea in Kafka is the creation of ‘topics’ for 

record streams. This is nothing but a category to which the 
incoming data stream or records are published [8]. Kafka 
maintains a separate log partition for each topic as 
illustrated below, and topics can be subscribed to by 
multiple consumers. 

Every record is entered into a partition and is allotted 
an identification number called an ‘offset’ [9]. Thus 
partitions are ordered sequences of records to which 
successive records are continuously committed. Log 
partitions are designed to scale. Topics have multiple 
partitions but each partition may reside on a separate 
server. This allows logs to scale beyond the size of a single 
server. In this way, log partitions also support parallel 
computing. 

 

 
Fig -3: The Log Partition 

(Source:https://kafka.apache.org/intro.html) 
 

A Kafka cluster will persist only for the period for 
which it has been configured, whether it is consumed or 
not. After that it gets discarded and frees storage space. 
For each consumer only metadata of the offset position id 
is maintained in Kafka. A consumer may consume records 
in any order, even though this is normally in a linear 
sequence. Hence a consumer has the option to reprocess 
historical data or simply focus on processing current data. 

 
 
 

 

https://kafka.apache.org/intro.html
https://kafka.apache.org/intro.html
https://kafka.apache.org/intro.html
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2.4 Distribution 
 
 Since log partitions may reside across multiple servers, 
for each partition, one server is nominated as the ‘leader’ 
and the other servers handling the spillover are the 
‘followers’. By corollary the leader handles the read-write 
requests and the followers duplicate all actions of the 
leader mechanically. 

 Fault tolerance is handled by replicating each partition on 
a different server. If a leader fails, a follower takes over as 
the leader. A server may be a leader for one cluster of 
partitions and a follower for another cluster. This evens 
out the load on each server.  

 

Fig -4: A 2-Server Kafka cluster hosting four partitions 
(P0-P3) with two consumer groups. Consumer Group A 
has two consumer instances and Group B has four.  

(Source:https://kafka.apache.org/intro.html) 
 
2.5 Geo-Replication 
 
 Messages are replicated across multiple data centres in 
different geolocations as well as on different cloud regions. 
This task is handled by a utility called MirrorMaker, which 
also enables the use of replicated data for backup and 
recovery and for various other requirements like bringing 
the data closer to the user, handling geo-relocation of data 
etc.  
 
2.6 Producers and Consumers  
 

Producers publish data, whereas the consumers use 
the data. Data is published to a topic and partition of the 
producer’s choice, either using a round-robin record 
allocation method, or using some semantic triggers. 
Consumers allot a group name to themselves and each 
record being published is delivered to the consumers that 
subscribe to the topic. Of course consumers can be across 
different machines, servers and cloud regions. Even if 
many consumers are on the same machine or server, the 
records may be housed on other machine locations to 
ensure load-balancing. This also facilitates scaling and 
fault-tolerance. In case there are multiple subscribers for 
the same topic, the records are broadcast to each group 
simultaneously.  

Kafka divides partitions further amongst multiple 
consumers, and manages consumer ‘memberships’ 
dynamically, using a protocol in which new consumers are 
reapportioned some segments of partitions already in use 
by existing group members; and if a consumer dies, its 
partitions are redistributed amongst the existing 
members.  

 The Kafka streaming algorithm takes a continuous stream 
of data from input topics, and pushes the processed data 
to output topics. E.g., a business forecasting application 
may take an input stream on ‘sales data’ and output a 
stream called ‘customer preferences’. 
 
3. APACHE STORM 

 Storm is another Apache distributed streaming product, 
which processes unbounded data streams and is 
compatible with most programming languages [10]. It is 
useful for applications like real time analytics and 
Internet-based machine learning.  

 Storm claims a processing speed of one million tuples per 
second per node. It can be integrated with in-use queuing 
and database processes. It can handle repartitioning of 
streams between stages of computation on an as required 
basis.  

 

Fig -5: Storm Dataflow Model  
(Source: https://storm.apache.org/) 

 
 Storm covers the gaps that were noticed between the 
hardware capability and performance of existing 
streaming technologies [11]. Storm’s engine uses a lean 
threading model and a lock-free messaging methodology 
and backpressure to handle overloading [12]. Storm is a 
useful adjunct to Enterprise Hadoop, and YARN & Slider, 
adding value to real time analytics capability and machine 
learning processes. 

3.1 Storm Nodes 

 The Nimbus Node, an equivalent of Hadoop’s JobTracker. 
Nimbus issues commands to execute code across a Storm 
cluster;  

 Zookeeper Nodes provide coordinated communication 
between the Nimbus Node and Supervisors;  

 Supervisor Nodes handles the actual execution through 
various ‘workers’ in the cluster. 

 

Fig -6: Storm Nodes 
(Source: https://storm.apache.org/) 

https://kafka.apache.org/intro.html
https://storm.apache.org/
https://storm.apache.org/
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3.2 Common Process Terms in Apache Storm  

Tuple: Ordered list of elements. E.g., a 3-tuple might be 
[4,7,6]. 

Stream: Unbounded sequence of Tuples. 

Spout: Source from where data streams emanate. 

Bolts: Process input streams to produce output streams. 
They run functions and filter, aggregate, and join data. 
They also talk to databases. 

Topologies: The overall network structure of spouts and 
bolts represented visually. 

 

Fig -7: Storm Topology 
(Source: https://storm.apache.org/) 

 
4. APACHE FLUME 
 

Flume provides a distributed service to collect, 
aggregate and move large data using streaming data flows. 
Its data model’s extensibility enables it to add analytics 
applications [13]. Its In-Memory feature allows data to 
spill to the disk, and the Kite API can write data to HBase 
and HDFS.  

 Using the concept of Configuration Filters, Flume enables 
the insertion of sensitive inputs like passwords. Using 
Apache log4j, Flume enables Java applications to write 
events to HDFS files, and enables the Tail application to 
pipe data from local files. 

 Flume uses a JVM process with three components: a 
Source, a Channel and a Sink. All events are broadcast via 
these three channels. Carriage of data between source and 
sink is done either on a pre-set schedule or can be 
triggered by an event. 

 

Fig -8: Flume Topology 
(Source: https://flume.apache.org/) 

5. APACHE NIFI 
 
 NiFi automates management of data flow between 
systems [14]. It provides a web-based UI to create, 
monitor and control data flows. Because of its configurable 
design, it can modify data flow processes during runtime. 
It is extensible and can handle diverse data flows. NiFi’s 
directed graphs help in a clear visualisation of data routing 
and transformation. 

 Nifi provides a Web-based UI and various configurations 
to optimise data flow management:  

● Loss Tolerant vs Guaranteed Delivery 
● Low Latency vs High Throughput 
● Dynamic Prioritization 
● Flow modification at runtime 
● Buffering & Back Pressure  

 

 

Fig -9: NiFi Directed Graphs 
(Source: https://nifi.apache.org/) 

NiFi’s data tracking mechanisms provide consistent 
data provenance; its extensible design allows users to 
customise and extend processors for better development 
and testing effort. NiFi provides security through SSL, SSH, 
HTTPS, and encrypted content. It also enables multi-
tenant authorisation through customisable authorisation 
and policy management schema. NiFi supports any Java-
run device and is ideal in limited connectivity. 

 
6. OTHER DATA INGESTION TECHNOLOGIES 
 
6.1 Wavefront 

Wavefront is a hosted platform designed to ingest, 
store, visualise and issue alerts on metric data. It can 
ingest a large volume of data points per second. Its stream 
processing technique enables it to manipulate large 
volumes of data and it provides a 360 degree view across 
the IT infrastructure.  
 
6.2 SYNCSORT 
 

Syncsort allows collection, integration, sorting and 
distribution of data in a swift timeframe, using minimal 
resources. It deploys on Hadoop, Splunk and the cloud. The 
data application design needs to be done just once 
thereafter it can be deployed on any platform: Windows, 
UNIX & Linux, or Hadoop; either on premises or on the 
cloud. Ironstream for Splunk enables processing of huge 
volumes of machine data streams from the mainframe.  

https://storm.apache.org/
https://flume.apache.org/
https://nifi.apache.org/
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6.3 DATATORRENT 
 

DataTorrent can handle both streaming and rest data. 
It can process many million events per second and can 
recover from node outages without any loss of data – 
without needing any external human intervention.  

6.4 Amazon KINESIS 
 

Kinesis is a cloud-based service designed to handle 
real-time distributed data streams. It can handle multiple 
data types and sources like website clickstreams, financial 
transactions, social media feeds, IT logs, and location-
tracking events. A fully managed service, it serves web 
applications, mobile devices, wearables, and industrial 
sensors.  
 
6.5 Apache SAMZA 
 

Samza provides distributed streaming processing. It 
uses Apache Kafka for messaging and Hadoop YARN for 
fault handling, processor isolation, security and resource 
management. Samza handles restoration of a stream 
processor’s state from outage using snapshotting, i.e., 
whenever a processor is re-started, it is restored to a 
consistent snapshot state. If a machine within the cluster 
fails, Samza uses YARN to migrate tasks to another 
machine.  
 
6.6 GOBBLIN 
 
Gobblin is a data ingestion framework designed to handle 
multiple data sources like rest APIs, FTP/SFTP servers and 
filers, and load these onto Hadoop. Gobblin ingests data 
from different sources in the same execution framework.  
 
6.7 Apache SQOOP 
 

Named from SQL+Hadoop, Sqoop transfers bulk data 
between Apache Hadoop and structured data repositories 
like RDBs. It can handle incremental loading of a table or a 
free form SQL query. It saves jobs, which can then be run 
multiple times to import updates made to a database since 
the last import. These imports can be used to populate 
tables in Hive or HBase.  
 
6.8 FLUENTD 
 

Fluentd is an open source technology designed for data 
collection. It unifies data collection with consumption. The 
platform offers features like community-driven support, 
ruby gems installation and self-service configuration. It 
supports C and Ruby language and 650 plugins. 
 
7. CONCLUSION 
 

Apart from gathering, integrating and processing data, 
data ingestion tools help companies modify and format 
their data for analytics and storage purposes. With these 
tools, users can ingest data in batches or stream it in real 
time. Real-time data ingestion implies importing the data 

as it is produced by a source. Batch ingestion implies the 
importing of discrete chunks of data at intervals.  

Companies that use data ingestion tools need to prioritise 
data sources, validate each file, and dispatch data items to 
the correct data repository/destination to ensure an 
effective ingestion process. Although some companies do 
develop their own data ingestion tools, most companies 
use data ingestion tools developed by experts in data 
integration. These are definitely more user friendly and 
cost effective.  

Professionally developed expert tools provide 
numerous advantages; e.g. the freedom to use different 
transport protocols to collect, integrate, process and 
deliver data. Data flow visualisation tools allow users to 
see the dataflow, simplify its complexity if necessary. 
Expert tools also provide a high level of scalability, which 
is critical for Big Data. 

Professional ingestion tools also provide multi-
platform support and integration, enabling extraction of 
data from different types of databases and operating 
systems, without impacting the performance of the 
system. Finally, security, a necessary part of any solution, 
is well taken care of by the expert tools. 
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