
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4143

Top Big Data Technologies for Data Ingestion

Kannan Sobti1, Prof. Deepika Dash2

1Dept. of Computer Science and Engineering, RV College of Engineering
2Dept. of Computer Science and Engineering, RV College of Engineering

---***---
Abstract - Businesses use data to make decisions. If
analysed effectively, data enables forecasting of trends in
the market, helps businesses understand what customers
need and prefer, and enables a company to create strategy.
But the massive volume of data being generated from
numerous sources is a challenge. Businesses can only take
full advantage of Big Data if all the data being generated is
used to its potential. Today availability of data is not a
problem; the challenge is to effectively handle the incoming
data, and do so swiftly enough so that data retains its
importance, and remains meaningful. This era of Big Data is
about efficient collection, storage and analyses of data,
which needs good tools. But choosing the right tool comes
through updated knowledge of the state-of-the-art in data-
handling technologies. This paper analyses the features of
some cutting-edge Data Ingestion technologies in today’s
market, and can help identify the technology best suited to a
company’s business processes.

Key Words: Data Ingestion, Streaming, Real-time,
Pipelines, Distributed, Throughput, Cluster.

1. DATA INGESTION – AN OVERVIEW

Data can only be properly ‘digested’ if it is properly
‘ingested’. To ensure that data from multiple sources can
be effectively analysed, all data must first be moved to a
common destination. This is done through Data Ingestion
technologies that enable movement of data from multiple
different sources to a centralized location, typically a data
warehouse, which is simply a database designed and built
for efficient data handling and reportage. Data ingestion
tools create a data pipeline to enable import, transfer,
loading and processing of data for later use within the
warehouse, and facilitate data extraction by supporting a
variety of data transport protocols.

Effective data ingestion is a primary requirement for
building a business intelligence strategy based on data
analytics. The data ingestion layer is the mainstay of an
analytics topology. A good analytics system that relies on
downstream reporting must be provided data that is
consistently accessible. Thus design of the data pipeline
will be critical to a business.

The destination for data moving through an ingestion
pipeline would be a data warehouse, or a data
mart/document store. Data sources are widely disparate:
data from SaaS sources, numerous apps, engineering
systems that generate data outputs, and data scraped from
the Internet. Data may be in different formats, including
RDBMS or other databases, S3 buckets, CSVs, or data
streams. Since the ingested data is from varied sources, it

must first be cleansed and transformed for analysis along
with data from other sources.

Data can either be ingested in batches, in real time, or
in a combination of the two methods (the Lambda
Architecture). Data is ingested in batches and is then
imported at scheduled intervals. This is useful for
processes that run on a schedule, e.g., daily reports at a
specified time. Real-time ingestion is used when
information collected is time-sensitive and has to be
monitored and acted upon from moment-to-moment, e.g.,
power grid data. The Lambda Architecture balances the
benefits of batch and real-time modes. It uses batch
processing for scheduled data and real-time processing to
provide views of time-sensitive data [1].

1.1 Batch Ingestion vis-à-vis Streaming Ingestion

Business requirements and the operating environment
decide the structure of the data ingestion layer. A company
will choose the model based on the timeliness at which
data must be accessed for analysis.

Batch processing: In this method, the ingestion layer
collects data periodically, groups it, and sends to the
destination in group-sized batches. Groups can be
processed in any sequence, either using a designated
schedule or when certain triggers are set off. This method
is easy to implement, more affordable, and used when
near/real-time data analysis is not needed.

Real-time data processing (or stream processing/ data
streaming): This is done without the grouping of sourced
data. Data is loaded as soon as it is generated and the data
ingestion layer recognizes it. This technology is used when
information analysis requires data that is extremely
current. This is a more expensive technology, since
systems must constantly read data sources and accept
new information.

A few streaming platforms actually utilize batch
processing technology. E.g., Apache Spark Streaming. In
this method, ingested groups are merely smaller in size, or
are prepared at shorter intervals, but they are still
processed in group batches. This method is called micro-
batching and it is correct to consider it as a distinct data
ingestion category.

1.2 Challenges faced in Data Ingestion

The global data ecosystem is creating varied data
sources, with data volumes exploding. Information can
come from widely different data sources: transactional
databases, SaaS platforms and from mobile phones to IoT
devices. Sources are constantly evolving and new ones

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4144

emerging. This makes it difficult to define and create a
data ingestion technology that can be called future-proof.

Creating an architecture that can ingest a high volume
of widely diverse data is expensive and time-consuming.
Speed is a challenge for the ingestion process and the data
pipeline. As data grows more complex, developing and
maintaining data ingestion pipelines grows even more
arduous, especially for real-time data processing.
Depending on the field requirement, pipelines can have a
slow refresh rate, updating maybe every 10 minutes, or
completely current, like a stock market ticker application
in peak trading hours.

Importantly, being able to correctly assess an
organisation’s data pipeline need is crucial for the design
of the data ingestion architecture. A business must choose
a system based on the type of data they need and use. The
value of data depends on the ability to ingest and integrate
it. Data warehouses that operate off the cloud, and can
scale effectively, will maximise the performance of a data
pipeline.

1.3 The Data Ingestion Sequence

Till fairly recently, the data ingestion sequence was
extract, transform, and load (ETL). In this method, data is
taken from the source, manipulated as per properties of
the destination database, and thereafter loaded onto the
destination. With businesses using expensive analytics,
this preparation was needed, which included data
transformation, before the data could be loaded into a data
warehouse.

But today, much has changed. Cloud-based data
warehouse technologies like Microsoft Azure SQL Data
Warehouse, Google BigQuery, Amazon Redshift and
Snowflake provide very cost-effective options to scale up
the compute & storage resources in real-time. This means
that there is no need to preload transformations and the
entire raw data of an organization can be dumped into the
data warehouse or data lake. This data can then be used
while in the data warehouse, with transformations being
defined and run in SQL - directly at query time. Thus
Extract, Transform, Load (ETL) has changed to Extract,
Load, Transform (ELT).

Creating an ETL/ELT platform from scratch requires
writing complex data transformation code for the data
pipeline. Many companies now offer readymade solutions
tailored to work in specific computing environments or
software applications. This allows the data analytics team
to focus on business logic and if a need arises, still develop
ad hoc transformations. This also guarantees higher
accuracy, availability, and consistency [2].

Today, most proprietary data ingestion software also
includes data preparation features to structure and
organize data enabling it to be analysed either on the fly or
later by business intelligence and business analytics
programs [3].

A fully managed ELT solution can ingest data from all
sources onto cloud-based data warehouse destinations,
and the time difference between data ingestion and

insightful decisions has come down from weeks to
minutes.

2. APACHE KAFKA

Kafka is a distributed streaming platform. It is capable
of building data streaming pipelines and apps. Open-
source, horizontally scalable, fault-tolerant, and one of the
swiftest in the market, it functions as a messaging agent,
and provides a unified platform to handle high data
throughput with fairly low-latencies, which enable it to
handle real-time data feed. It uses a “distributed,
partitioned, replicated commit log service” [4].

Kafka functions as a messaging system but uses a
unique methodology. Data streams are partitioned and
spread over a cluster of machines, allowing data streams
that are larger than the capacity of a single machine to be
stored without any disruptions. This therefore allows
clusters of coordinated customers to be handled through a
single platform. Kafka assigns any one cluster the task of
acting as the central data backbone for a given client
organisation. This cluster-based design makes Kafka
highly fault-tolerant, also enabling it to expand without
requiring any downtime.

 Kafka is widely used for requirements such as collection
of user activity data, device instrumentation, application
metrics, logs, and stock markets. Kafka ensures high
availability of streaming large volume data in real-time.
This data can be flexibly consumed by systems with
variable requirements: by batch processing systems like
Hadoop or by data streaming systems that need to
transform data streams on arrival.

2.1 Design

Kafka enables stream processing, storage and
messaging. This uncommon combination is necessary for
Kafka to function as a streaming platform. Kafka is mainly
used for two types of applications: to build data streaming
pipelines that move data between systems and
applications; to build applications that react to and
transform the incoming data streams [5].

Some important features of Kafka are:

● It can be run as a cluster on multiple servers
straddling across multiple data-centres.

● Kafka clusters store record streams under various
categories known as topics.

● Each record has a key, value, and timestamp [6].

Kafka provides five APIs, which are the core of its design:

● Producer API. Enables applications to publish streams
of records to one or more topics.

● Consumer API. Enables applications to subscribe to
one or more topics and process records to them.

● Streams API. Allows applications to act as stream
processors, by imbibing input streams from multiple
topics and outputting transformed data to multiple
topics.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4145

● Connector API. For building and running of reusable
producers or consumers so that Kafka topics can be
connected to existing data applications/systems.

● Admin API. For management and inspection of topics,
brokers and other Kafka objects.

Fig -1: The Kafka Cluster

(Source:https://kafka.apache.org/intro.html)

2.2 Communication

Kafka handles communication between clients and
servers using a language-agnostic TCP protocol. The
protocol is backward compatible with older versions of
the product. Though Apache provides a Java client as
default for Kafka, clients are also available in other
languages.

2.3 Storage

Static files for batch processing are stored in
distributed file systems like HDFS. This ensures that
historical data is available for processing. On the other
hand, a classic messaging system enables processing of
future messages, which are yet to arrive at the time the
client has subscribed. Such applications process data as it
arrives. Kafka combines both these capabilities, enabling it
to be used as a platform for both data streaming pipelines
and streaming applications.

Streaming applications address past and future data in
a similar manner, by combining low-latency subscriptions
with storage facility. Thus the application will start
processing past data and seamlessly continue onto future
data as it begins arriving. This approach includes both the
batch processing and the message driven techniques used
by stream processing technology [7].

An important idea in Kafka is the creation of ‘topics’ for
record streams. This is nothing but a category to which the
incoming data stream or records are published [8]. Kafka
maintains a separate log partition for each topic as
illustrated below, and topics can be subscribed to by
multiple consumers.

Every record is entered into a partition and is allotted
an identification number called an ‘offset’ [9]. Thus
partitions are ordered sequences of records to which
successive records are continuously committed. Log

partitions are designed to scale. Topics have multiple
partitions but each partition may reside on a separate
server. This allows logs to scale beyond the size of a single
server. In this way, log partitions also support parallel
computing.

Fig -2: Kafka Partitions
(Source:https://kafka.apache.org/intro.html)

An important idea in Kafka is the creation of ‘topics’ for

record streams. This is nothing but a category to which the
incoming data stream or records are published [8]. Kafka
maintains a separate log partition for each topic as
illustrated below, and topics can be subscribed to by
multiple consumers.

Every record is entered into a partition and is allotted
an identification number called an ‘offset’ [9]. Thus
partitions are ordered sequences of records to which
successive records are continuously committed. Log
partitions are designed to scale. Topics have multiple
partitions but each partition may reside on a separate
server. This allows logs to scale beyond the size of a single
server. In this way, log partitions also support parallel
computing.

Fig -3: The Log Partition

(Source:https://kafka.apache.org/intro.html)

A Kafka cluster will persist only for the period for
which it has been configured, whether it is consumed or
not. After that it gets discarded and frees storage space.
For each consumer only metadata of the offset position id
is maintained in Kafka. A consumer may consume records
in any order, even though this is normally in a linear
sequence. Hence a consumer has the option to reprocess
historical data or simply focus on processing current data.

https://kafka.apache.org/intro.html
https://kafka.apache.org/intro.html
https://kafka.apache.org/intro.html

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4146

2.4 Distribution

 Since log partitions may reside across multiple servers,
for each partition, one server is nominated as the ‘leader’
and the other servers handling the spillover are the
‘followers’. By corollary the leader handles the read-write
requests and the followers duplicate all actions of the
leader mechanically.

 Fault tolerance is handled by replicating each partition on
a different server. If a leader fails, a follower takes over as
the leader. A server may be a leader for one cluster of
partitions and a follower for another cluster. This evens
out the load on each server.

Fig -4: A 2-Server Kafka cluster hosting four partitions
(P0-P3) with two consumer groups. Consumer Group A
has two consumer instances and Group B has four.

(Source:https://kafka.apache.org/intro.html)

2.5 Geo-Replication

 Messages are replicated across multiple data centres in
different geolocations as well as on different cloud regions.
This task is handled by a utility called MirrorMaker, which
also enables the use of replicated data for backup and
recovery and for various other requirements like bringing
the data closer to the user, handling geo-relocation of data
etc.

2.6 Producers and Consumers

Producers publish data, whereas the consumers use
the data. Data is published to a topic and partition of the
producer’s choice, either using a round-robin record
allocation method, or using some semantic triggers.
Consumers allot a group name to themselves and each
record being published is delivered to the consumers that
subscribe to the topic. Of course consumers can be across
different machines, servers and cloud regions. Even if
many consumers are on the same machine or server, the
records may be housed on other machine locations to
ensure load-balancing. This also facilitates scaling and
fault-tolerance. In case there are multiple subscribers for
the same topic, the records are broadcast to each group
simultaneously.

Kafka divides partitions further amongst multiple
consumers, and manages consumer ‘memberships’
dynamically, using a protocol in which new consumers are
reapportioned some segments of partitions already in use
by existing group members; and if a consumer dies, its
partitions are redistributed amongst the existing
members.

 The Kafka streaming algorithm takes a continuous stream
of data from input topics, and pushes the processed data
to output topics. E.g., a business forecasting application
may take an input stream on ‘sales data’ and output a
stream called ‘customer preferences’.

3. APACHE STORM

 Storm is another Apache distributed streaming product,
which processes unbounded data streams and is
compatible with most programming languages [10]. It is
useful for applications like real time analytics and
Internet-based machine learning.

 Storm claims a processing speed of one million tuples per
second per node. It can be integrated with in-use queuing
and database processes. It can handle repartitioning of
streams between stages of computation on an as required
basis.

Fig -5: Storm Dataflow Model
(Source: https://storm.apache.org/)

 Storm covers the gaps that were noticed between the
hardware capability and performance of existing
streaming technologies [11]. Storm’s engine uses a lean
threading model and a lock-free messaging methodology
and backpressure to handle overloading [12]. Storm is a
useful adjunct to Enterprise Hadoop, and YARN & Slider,
adding value to real time analytics capability and machine
learning processes.

3.1 Storm Nodes

 The Nimbus Node, an equivalent of Hadoop’s JobTracker.
Nimbus issues commands to execute code across a Storm
cluster;

 Zookeeper Nodes provide coordinated communication
between the Nimbus Node and Supervisors;

 Supervisor Nodes handles the actual execution through
various ‘workers’ in the cluster.

Fig -6: Storm Nodes
(Source: https://storm.apache.org/)

https://kafka.apache.org/intro.html
https://storm.apache.org/
https://storm.apache.org/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4147

3.2 Common Process Terms in Apache Storm

Tuple: Ordered list of elements. E.g., a 3-tuple might be
[4,7,6].

Stream: Unbounded sequence of Tuples.

Spout: Source from where data streams emanate.

Bolts: Process input streams to produce output streams.
They run functions and filter, aggregate, and join data.
They also talk to databases.

Topologies: The overall network structure of spouts and
bolts represented visually.

Fig -7: Storm Topology
(Source: https://storm.apache.org/)

4. APACHE FLUME

Flume provides a distributed service to collect,
aggregate and move large data using streaming data flows.
Its data model’s extensibility enables it to add analytics
applications [13]. Its In-Memory feature allows data to
spill to the disk, and the Kite API can write data to HBase
and HDFS.

 Using the concept of Configuration Filters, Flume enables
the insertion of sensitive inputs like passwords. Using
Apache log4j, Flume enables Java applications to write
events to HDFS files, and enables the Tail application to
pipe data from local files.

 Flume uses a JVM process with three components: a
Source, a Channel and a Sink. All events are broadcast via
these three channels. Carriage of data between source and
sink is done either on a pre-set schedule or can be
triggered by an event.

Fig -8: Flume Topology
(Source: https://flume.apache.org/)

5. APACHE NIFI

 NiFi automates management of data flow between
systems [14]. It provides a web-based UI to create,
monitor and control data flows. Because of its configurable
design, it can modify data flow processes during runtime.
It is extensible and can handle diverse data flows. NiFi’s
directed graphs help in a clear visualisation of data routing
and transformation.

 Nifi provides a Web-based UI and various configurations
to optimise data flow management:

● Loss Tolerant vs Guaranteed Delivery
● Low Latency vs High Throughput
● Dynamic Prioritization
● Flow modification at runtime
● Buffering & Back Pressure

Fig -9: NiFi Directed Graphs
(Source: https://nifi.apache.org/)

NiFi’s data tracking mechanisms provide consistent
data provenance; its extensible design allows users to
customise and extend processors for better development
and testing effort. NiFi provides security through SSL, SSH,
HTTPS, and encrypted content. It also enables multi-
tenant authorisation through customisable authorisation
and policy management schema. NiFi supports any Java-
run device and is ideal in limited connectivity.

6. OTHER DATA INGESTION TECHNOLOGIES

6.1 Wavefront

Wavefront is a hosted platform designed to ingest,
store, visualise and issue alerts on metric data. It can
ingest a large volume of data points per second. Its stream
processing technique enables it to manipulate large
volumes of data and it provides a 360 degree view across
the IT infrastructure.

6.2 SYNCSORT

Syncsort allows collection, integration, sorting and
distribution of data in a swift timeframe, using minimal
resources. It deploys on Hadoop, Splunk and the cloud. The
data application design needs to be done just once
thereafter it can be deployed on any platform: Windows,
UNIX & Linux, or Hadoop; either on premises or on the
cloud. Ironstream for Splunk enables processing of huge
volumes of machine data streams from the mainframe.

https://storm.apache.org/
https://flume.apache.org/
https://nifi.apache.org/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4148

6.3 DATATORRENT

DataTorrent can handle both streaming and rest data.
It can process many million events per second and can
recover from node outages without any loss of data –
without needing any external human intervention.

6.4 Amazon KINESIS

Kinesis is a cloud-based service designed to handle
real-time distributed data streams. It can handle multiple
data types and sources like website clickstreams, financial
transactions, social media feeds, IT logs, and location-
tracking events. A fully managed service, it serves web
applications, mobile devices, wearables, and industrial
sensors.

6.5 Apache SAMZA

Samza provides distributed streaming processing. It
uses Apache Kafka for messaging and Hadoop YARN for
fault handling, processor isolation, security and resource
management. Samza handles restoration of a stream
processor’s state from outage using snapshotting, i.e.,
whenever a processor is re-started, it is restored to a
consistent snapshot state. If a machine within the cluster
fails, Samza uses YARN to migrate tasks to another
machine.

6.6 GOBBLIN

Gobblin is a data ingestion framework designed to handle
multiple data sources like rest APIs, FTP/SFTP servers and
filers, and load these onto Hadoop. Gobblin ingests data
from different sources in the same execution framework.

6.7 Apache SQOOP

Named from SQL+Hadoop, Sqoop transfers bulk data
between Apache Hadoop and structured data repositories
like RDBs. It can handle incremental loading of a table or a
free form SQL query. It saves jobs, which can then be run
multiple times to import updates made to a database since
the last import. These imports can be used to populate
tables in Hive or HBase.

6.8 FLUENTD

Fluentd is an open source technology designed for data
collection. It unifies data collection with consumption. The
platform offers features like community-driven support,
ruby gems installation and self-service configuration. It
supports C and Ruby language and 650 plugins.

7. CONCLUSION

Apart from gathering, integrating and processing data,
data ingestion tools help companies modify and format
their data for analytics and storage purposes. With these
tools, users can ingest data in batches or stream it in real
time. Real-time data ingestion implies importing the data

as it is produced by a source. Batch ingestion implies the
importing of discrete chunks of data at intervals.

Companies that use data ingestion tools need to prioritise
data sources, validate each file, and dispatch data items to
the correct data repository/destination to ensure an
effective ingestion process. Although some companies do
develop their own data ingestion tools, most companies
use data ingestion tools developed by experts in data
integration. These are definitely more user friendly and
cost effective.

Professionally developed expert tools provide
numerous advantages; e.g. the freedom to use different
transport protocols to collect, integrate, process and
deliver data. Data flow visualisation tools allow users to
see the dataflow, simplify its complexity if necessary.
Expert tools also provide a high level of scalability, which
is critical for Big Data.

Professional ingestion tools also provide multi-
platform support and integration, enabling extraction of
data from different types of databases and operating
systems, without impacting the performance of the
system. Finally, security, a necessary part of any solution,
is well taken care of by the expert tools.

REFERENCES

[1] G. Alley, “What is Data Ingestion?” Alooma Blog, ETL

https://www.alooma.com/blog/what-is-data-
ingestion

[2] “Data Ingestion: The First Step to a Sound Data
Strategy,” https://www.stitchdata.com/resources/data-
ingestion/

[3] M. Rouse, “Data Ingestion,” TechTarget
https://whatis.techtarget.com

[4] Apache Kafka Introduction,
https://kafka.apache.org/intro.html

[5] Apache Kafka Introduction,
https://kafka.apache.org/intro.html

[6] Apache Kafka Introduction,
https://kafka.apache.org/intro.html

[7] Apache Kafka Introduction,
https://kafka.apache.org/intro.html

[8] Apache Kafka Introduction,
https://kafka.apache.org/intro.html

[9] Apache Kafka Introduction,
https://kafka.apache.org/intro.html

[10] “Why use Apache Storm?” https://storm.apache.org/

[11] R. Naik, “Apache Storm 2.0 : Rearchitecture and
Performance,”
https://storm.apache.org/talksAndVideos.html

[12] P. Taylor Goetz, “The Future of Apache Storm
https://storm.apache.org/talksAndVideos.html

[13] Blog Apache Flume, https://flume.apache.org/

[14] Blog Apache NiFi, https://nifi.apache.org/

https://www.alooma.com/blog/what-is-data-ingestion
https://www.alooma.com/blog/what-is-data-ingestion
https://www.stitchdata.com/resources/data-ingestion/
https://www.stitchdata.com/resources/data-ingestion/
https://whatis.techtarget.com/definition/data-ingestion
https://kafka.apache.org/intro.html
https://kafka.apache.org/intro.html
https://kafka.apache.org/intro.html
https://kafka.apache.org/intro.html
https://kafka.apache.org/intro.html
https://kafka.apache.org/intro.html
https://storm.apache.org/
https://storm.apache.org/talksAndVideos.html
https://storm.apache.org/talksAndVideos.html
https://flume.apache.org/
https://nifi.apache.org/

