
          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 05 | May 2020                 www.irjet.net                                                                     p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 4274 
 

A Survey on Conflict and Dependency Analysis in the context of 

Software Development and Release Management 

Guru Rajesh Kaustubh1, Pratiba D2 

1UG Student, Dept. of Computer Science Engineering, RV College of Engineering, Bangalore, Karnataka, India 
2Assistant Professor, Dept. of Computer Science Engineering, RV College of Engineering, Bangalore,  

Karnataka, India  
---------------------------------------------------------------------***----------------------------------------------------------------------

Abstract - The Agile model of Software Engineering is 
widely regarded as the most popular model due to its 
multiple merits, but the adoption of the same to large scale 
software development has proven to be counter-productive 
due to various reasons. With the practice of documentation 
having been abandoned almost completely, we are in need 
of new approaches to keep everyone on the same page, in 
order for large scale enterprises to run smoothly with all of 
its diverse and spread out workforce and resources.  

 
Key Words: Software Development, Software Release, 
Conflict, Dependency, Model, Request for Change, 
Configuration Item  
 

1.  INTRODUCTION  
 
   With enterprises expanding beyond geographic 
boundaries at a rapid rate, thanks to the opportunities 
presented by the onset of the trend of globalization, most 
activities in companies involve multiple functional teams 
communicating across the globe and working hand in 
hand. We focus on two such activities in this paper – 
Software Development and Release Management. 
Software Development is the activity of constructing 
software to satisfy and cater to certain specified needs of 
the market (although the culture of documentation of 
requirements has drastically reduced in recent years due 
to the observed tendency of clients’ requirements to 
constantly change as development progresses). Software 
Development is done by teams which generally have some 
common roles such as Project Manager, Product Owner, 
Development and Testing and so on. Some popular models 
of Software Engineering are Waterfall model, Iterative 
model and Agile model, of which Agile model is the most 
frequently used nowadays.  

   Software Release refers to the completely constructed 
version of a software, that is to be deployed and made 
available to the intended end user. As simple as it may 
sound, it is a complex process that involves many steps 
and sign-offs from multiple teams. A lot of stress testing 
and integration testing is done to make sure that the new 
features and extensions being included in the upcoming 
release do not break the functionalities of the current 
working version of the software. Virtually all companies 
are continuously upgrading and optimizing their products 

and services in order to stay relevant and competent in 
today’s competitive market economy, which is what 
motivated us to probe into this topic and survey the 
research that has been done to deal with the various 
problems faced by Software Development and Release 
Management teams.  

2. CHALLENGES FACED 
2.1 Dependency 
 
   Dependency is a side effect of component-based software 
development. It is a relationship between modules due to 
which one of them cannot function without one or more of 
the other modules. Dependencies in software can get very 
complex as it so happens very often that different 
components are developed by different independent 
organizations, each of which controls the release of newer 
versions of its components [1]. Hence it is important to 
document dependencies, especially in component-based 
development, so that they don’t create unnecessary 
hiccups further in the development process. Dependencies 
create a lot of unpredictability as it increases the 
possibility of future issues and failures during 
development. Dependencies can exist between different 
activities in the development process, between software 
artefacts and across teams and between team members 
[6]. 
 

2.2 Communication Challenges 
 
   This is another side effect of component-based software 
development, when development work is distributed 
among various teams across the globe. There is a limit to 
the amount of improvement in productivity brought about 
by adding more people to a project team, due to the 
increase in coordination costs. Developer teams generally 
prefer to work alone, and often go up to 2-3 months 
without knowing what is happening in the main branch 
[6]. This makes the process of integration very messy, as 
many conflicts pop up. Also, once a developer is done with 
one task, he/she generally prefers to move on to the next 
assigned task, rather than document what he/she did on 
the task which was just finished. This makes it hard for the 
developer’s future replacement to understand parts of the 
code, in case that code needs to be reviewed or 
backtracked (perhaps in order to resolve a conflict). 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 05 | May 2020                 www.irjet.net                                                                     p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 4275 
 

Another important issue that the Communication 
Challenge gives rise to is that of conflicting priorities. It 
often happens that a high priority development 
component of one team is dependent on a component 
which is of a low priority of another team, and possibly in 
its backlog. Knowledge sharing between different teams is 
extremely crucial in order to be aware of and 
communicate technical dependencies. 
 

2.3 Changes in Requirements and Time-Plan 
 
   Conflicts that pop up, depending on their severity, often 
cause the developer teams to deviate from their initially 
laid out plan and re-schedule some of their activities in 
order to accommodate the unforeseen activities in the 
timeline, that are now required to be carried out in order 
to resolve the conflict. It also happens many a time, that 
due to an unplanned technical dependency of a component 
on another component in the team’s backlog, the team 
needs to perform that backlogged task earlier than initially 
planned in order to resolve the dependency, or even a task 
that isn’t in the backlog, and this upsets the time-plan [6]. 
 

2.4 The Domino Effect 
 
   As one can understand by reading the previous 
challenges stated, it is evident that the likelihood of 
challenges is largely affected by the presence and 
occurrence of other challenges. They create a vicious cycle, 
aggravating the existing challenges, as well as giving rise 
to new challenges, if not dealt with properly. 
Communication challenges lead to a lack of knowledge 
about technical dependencies, which creates problems 
during the integration of different components. The 
conflicts that arise may then lead to a change in 
requirements and/or re-prioritization of tasks, which then 
invariably results in the upset of the organization’s 
intended plans and schedules. This illustrates the domino 
effect of challenges, which majorly hampers the levels of 
productivity, and causes a delay in deploying the Software 
Release. 
 

3. UNDERSTANDING CONFLICTS 
 
   In the context of software development, conflicts occur 
when two or more parties try to access and modify or 
make changes to a common file or resource. If a change in 
the order of serialization of the different changes results in 
a change of output then it indicates a conflict [8]. In 
collaborative software development, developers access 
the same code asynchronously, and this gives rise to a lot 
of inconsistencies, due to these conflicting concurrent 
changes by the different developers [7]. 

   In the context of software releases, conflicts happen 
when two or more teams or bodies have possibly 
conflicting tasks planned for a common configuration item. 

For example, a few of the changes that are to be executed 
during a release may involve ramping down of a certain 
configuration item, and a few other changes require the 
same configuration item to be functional during the same 
time period. This results in a conflict between the two sets 
of changes that are planned for that release. In both cases, 
it essentially results from a lack of coordination and 
communication between developers and teams, in the 
contexts of software development and software release 
management respectively. 

   Conflict detection is about determining if two sets of 
simultaneous changes are isolated from each other, or if 
they interfere with each other. Most conflicts need to be 
resolved by manual merge operations, which is why it’s 
important to detect conflicts as fine grained as possible. It 
is also important to not lose any information or violate the 
integrity of the model [8]. 

4. APPROACHES EXPLORED 
 
4.1 Model Driven Development 
 

    Models are layouts or abstractions that are used to 
conceptualize and/or represent software systems. They 
serve as the blue prints used to develop software. They are 
helpful in encapsulating the relationships between 
different modules as well. They also serve as interfaces 
through which developers can interact with and interpret 
the model. Thus, one of the main outcomes of this 
approach is to spare the users and developers from the 
complexities of the underlying functioning of the system 
[3]. Thus, having accurate models would be helpful in 
understanding the relationships between modules, and 
highlighting possible dependencies between them, which 
is better than having complications due to the 
dependencies pop up during run time. 

4.2 Autonomic Computing 
 

   Automating the detection of (at least the commonly 
faced) problems and triggering self-healing and self-
optimization mechanisms could greatly reduce the cost of 
human resources, and thus result in increased efficiency. 
There are various degrees of autonomic computing 
depending on the complexities of systems as well as the 
available opportunities for automation, ranging from 
completely manual computing, to partially autonomic 
computing to complete autonomic computing. An 
autonomic computing system should help in dealing with 
RFCs (Request for Change). It should maintain a library 
containing descriptions of common RFC triggers, and refer 
to this library when exceptions or conflicts are thrown, 
and create a suitable RFC. It would also be responsible for 
allotting a priority to the detected RFC, and judge whether 
it is a normal RFC or not. By testing out the RFC and 
making an impact and requirements assessment, it helps 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 05 | May 2020                 www.irjet.net                                                                     p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 4276 
 

in the planning and execution of the RFC, as well as any 
related decision making [4]. 

4.3 Design Structure and Domain Mapping 
Matrices 
 

   Quantifying the quality of the architecture with some 
measurable criteria can provide many insights which 
could be valuable for guiding engineering decisions, as 
well as evaluation of the development work carried out. 
Reference [5] explores a few such metrics that help in 
analyzing the quality of architectures, and also in bringing 
out other insightful trends. A Design Structure Matrix 
maps the dependencies between items in a particular 
domain. It is a square matrix as shown in Figure 1, with 
the list of items on both axes. For example, say there is an 
entry ‘1’ in a particular cell, it indicates the presence of a 
dependency between the items in the row and column 
corresponding to that cell. 

   Depending on the nature of the directions of the 
dependencies, the resulting matrix could either be 
symmetric (in case of bidirectional dependency) or 
asymmetric (in case of unidirectional dependency). When 
dependencies occur across different domains, they are 
mapped using Domain Mapping Matrices. If two domains 
are largely interdependent, this relationship can be 
identified by clusters of entries in the Domain Mapping 
matrix. Design Structure Matrices and Domain Mapping 
Matrices are combined in order to study the intra-domain 
and inter-domain dependencies in the context of two 
related domains. 
 

 
Fig-1: Design Structure Matrix 

 
   Representing the dependencies helps in assessing the 
total impact on the system when certain changes are 
made, as some changes have a cascading effect due the 
dependencies between items. The cost of Propagation, 
denoted by   , is a metric which helps us quantify the 
potential extent of the impact of a change made to a 
randomly selected item. It is calculated as the density of 
the mapping matrix [5] 

 

   
∑   
 

  
 

 
Where    are the cells of the matrix having an entry, and n 
is the size of the matrix.  
 
   The total cost    of a Release Event n, is the summation 
of two components: the Implementation cost   , which is 
the cost of adding new elements to the system in the 
release, and the Rework cost   , which refers to the cost of 
modifying the existing architecture in order to 
accommodate the new components which are being added 
to it during the release.  

 

         

This metric is used to estimate the costs which are 
expected to be incurred in a Release Event n.  

5. CONCLUSIONS 
 
 As systems and their development keep scaling up, the 
management and unification of the different teams and 
components involved pose a huge difficulty due to the 
friction caused by conflicts in processes and decisions, and 
the roadblocks that dependencies cause. It is thus critical 
to develop systems and practices that promote 
communication and knowledge sharing, and help keep 
track of development and release related activities, in 
order to help keep all the concerned teams on the same 
page.    
    
 It is also important to develop analytical tools that 
represent dependencies in models, and help identify 
trends as well as assess the impact of potential conflicts. 
 

ACKNOWLEDGEMENT  
 
I would like to personally thank my guide Ms. Pratiba D 
and the Department of Computer Science and Engineering 
of RV College of Engineering for guiding me through the 
process of writing this paper, with their valuable 
suggestions and insights. 
 

REFERENCES 
 
[1] M. Ramakrishnan, “Software Release Management”, 
Bell Labs Technical Journal 9(1), 205-210 (2004)   

[2] Par Carlshamre and Bjorn Regnel, “Requirements 
Lifecycle Management and Release Planning in Market-
Driven Requirements Engineering Process ”, 2000 IEEE 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 05 | May 2020                 www.irjet.net                                                                     p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 4277 
 

[3] R. France, B. Rumpe, “Model-Driven Development of 
Complex Software: A Research Roadmap”, Future of 
Software Engineering (FOSE’07), 2007 IEEE 

[4] S. Chen, H. Jiang, “Integrating Change and Release 
Management towards Autonomic Computing”, 2008 IEEE 

[5] N. Brown, R. L. Nord, I. Ozkaya, M. Pais, “Analysis and 
Management of Architectural Dependencies in Iterative 
Release Planning”, Proceedings of the Ninth Working 
IEEE/IFIP Conference on Software Architecture (WICSA) 
2011 

[6] N. Sekitoleko, F. Evbota, E. Knauss, A. Sandberg, M. 
Chaudron, H. H. Olsson, “Technical Dependency Challenges 
in Large-Scale Agile Software Development”, G. Cantone 
and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 46-61, 
2014 

[7] P. Dewan, R. Hegde, “Semi-Synchronous Conflict 
Detection and Resolution in Asynchronous Software 
Development”, ECSCW’07: Proceedings of the Tenth 
European Conference on Computer Supported 
Cooperative Work, 24-28 September 2007 

[8] M. Koegel, J. Helming, S. Seyboth, “Operation-based 
conflict detection and resolution”, CVSM’09, May17, 2009 

 

 


