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Abstract - Traditionally, workflow (a sequence of unit 
tasks) progress times have been based on the number of tasks 
completed at any point in time. This paper attempts to look 
into Machine Learning techniques to improve calculation of 
such workflow times. Each workflow is assumed to run on a 
remote server, and each unit task’s time for completion largely 
depends on three important associative variables: past history 
durations, RAM, and network speeds. The paper discusses 
multilayer perceptrons, multilinear regression, and a naive 
approach to address the problem.  
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1. INTRODUCTION  

 
 The problem of predicting task times has useful applications 
in various domains of scientific research. An end user is 
pestered when they have to run a certain workflow on a 
remote server, but are unsure period of time they have to 
wait for before they can carry on with their regular activities. 
Smarter systems for workflow duration prediction are 
definitely the need of the hour, and this paper is an attempt 
to model one such system. 
 

1.1 Services and Components used 
 
Python libraries: The project makes use of the opensource 
Scikit-Learn library, Tensorflow toolkit for regressing/ run 
neural net over sample data collected by running various 
workflows over a number of various systems  
Dockers: The service used to run workflows on remote 
server is one built with the microservice architecture, for 
efficient, quick return turnaround times  
Kubernetes: Container management has been mainly via 
Kubernetes  
HTML, CSS: The UI interface to display the predicted task 
times, and consequently the workflow times, is developed 
using HTML and CSS  
GoLang: The microservices to run workflow on remote 
servers are built in the Go language 
 

1.2 Existing Systems 
 
 Robust systems built upon the microservices architecture 
have already been studied and some even suggest Java or 
Javascript as the clear winner to building such application 

[1]. In one of these extensively researched papers, the 
authors suggest Golang to be a fluid choice to incorporate 
various use cases [2]. The algorithms discussed in this paper 
have been experimented on an industry deliverable, and 
GoLang has been the tool of development of the deliverable.     
 
 Various Machine Learning approaches have been 
thoroughly research upon: multivariate regression [3], 
multiple linear regression [4]. This paper takes a look at 
these approaches to the particular case of predicting 
workflow times modelling the problem in three variables. 
Workflow time prediction, especially on a remote server, is a 
relatively unexplored topic, and the discussed methodologies 
might at the end be of immense use in various other 
industrial deliverables. 
 

1.3 Scope and Motivation 
 
 It is painfully annoying for an end-user to sit and wait until a 
remote server executes their task and return back to them 
their result. The user may have all data pertaining to the 
network speeds at this remote server, its hardware 
capabilities, its past history of executing the same exact task, 
and yet the user in most cases sits through the workflow. In 
extended workflows that take up to hours (installing an OS 
on a remote server is an example), the problem is intensified, 
and a solution to such problems is definitely the need of the 
hour.  
 
 This Machine Learning study takes a look at modelling start 
to finish solutions to the aforementioned problem. The 
proposed system addresses solutions to the problems 
ranging from simple to relatively complex.  
 The proposed solutions can be implemented in any client-
server application/ industrial deliverable to improve wait-
times and help users organize and plan their order of 
execution of workflows accordingly. 
 

2. METHODOLOGY 
 
2.1 Architecture 
 
 The naïve approach, as a precursor to exploring Machine 
Learning algorithms, and as a solution, is a very good 
starting point. We build upon this model to incorporate 
other algorithms.  
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 A task is assigned with an ID and a float property avgTime 
(to hold running average time of the task). A bunch of such 
user defined tasks are woven to construct a workflow, and 
the client now starts a workflow on the server. Parallelly, a 
database is necessary for the main program to regularly 
update the running average for better prediction of 
workflow progress. 
 

2.2 Naïve Learning of the algorithm 
 

 
Fig 2.0: Naïve approach and flow chart 

 
 This approach updates the avgTime in the callback() 
function every once a task is completed. A task may fail, in 
which case, the progress is updated to 100% and the control 
is returned to the server. This naïve approach is based on 
calculating the progress as the average task time over the 
complete workflow time (sum of average times of all tasks 
from the database) 
 

 - (1) 
 
 This solution works better as the number of times the same 
task is executed increases. 
 

2.3 Architecture to make use of recorded data 
 
 A small-scale microservice-architecture based application 
can make use of the methodology previously described. But 
as applications scale up and multiple servers are used to 
execute workflows, it would help to consider task time as 
average variable and identify a bunch of input variables. 
 

 
Fig 2.1: Flow Chart for model with an http API for ML 

inputs 
 Average time of the task, Random Access Memory of the 
server, and network speed of the connection to the internet 
at the server, can be chosen as input variables to model the 
solution. It is practical to use a server (a microservice that 
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consults the model given the value of these variables at the 
server end) that returns the expected time for task 
completion.  
  
 The Machine Learning model can be a simple Multiple 
Regression fit or a multilayer perceptron fit. The biases and 
activation functions are chosen to minimize aberrations. 
Once the model is sufficiently trained with existing data, the 
model now takes input from remote servers and returns 
predicted times of tasks of the workflow. 
 

2.4 Perceptron Model 
 

 
Fig 2.2: Perceptron model for a task of a workflow 

 
 A perceptron architecture to predict task times has been 
shown in the figure above. Three hidden layers with 8x8 
connections have been chosen to tackle the problem. 
Industry deliverables usually have only a limited number of 
tasks that are ordered in various ways to form numerous 
workflows. So, it makes sense to have a perceptron designed 
for every task.  
 
 The predicted time is POSTed via http API back to the 
microservice that made the request in the first place, and the 
progress is thus calculated. 
 

2.5 Multiple Linear Regression 
 
 Another possible architecture to solve the problem is to 
regress the problem over the three variables, instead of 
feeding it to a perceptron. The result is, in this case, for all 
intents and purposes equal to the perceptron way of tacking 
the problem – for all the three variables seem to be linearly 
related to the predicted time. 
 

3. IMPLEMENTATION 
 

3.1 Technology Stack 
 
 Our system uses an efficient tool stack that has been carefully 

chosen for full-on delivery and minimal delay.  

 

Fig 3.0: Tool Stack for the microservice based solution 

 
 Two microservices and a user-interface to control the 
workflow initiation and termination on the server were 
designed. The communication between the three entities 
were largely over the http protocol. 

3.2 Naïve Approach 
 
Four tasks were taken for the experiment, and these tasks 
were stitched into a workflow (a task is a user-defined json 
input; a workflow is a parsed collation of the json – in 
Golang). The docker image of the service now runs on the 
server. 

 

Fig 3.1: Each ping command is a task that will execute on a 
remote server, the 4 tasks form a cmd-command workflow 
 
 Workflow initiation initializes the avgTime of all the four 
tasks to 0s. Upon sending a http post to the server via the 
user interface, the workflow (list of cmd commands) is run, 
and the progress of completion is easily measured using 
equation 1. 

 The first time the workflow is run, a 25% progress is seen as 
each task completes. When executed for a second time, one 
would expect task A to show a smaller progress when 
completed, and this is exactly what happens. The naïve 
approach improves as the number of times the task is run 
increases. 

 

Fig 3.2: avgTime and runCount as properties of a new task 
 

 The MongoDB database holds the average time of execution 
of all the tasks. The same workflow was executed repeatedly 
on the server. As expected, the progress values plateaued at 
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4%, 33%, 13%, and 50% respectively after executing the 
workflow for five times. 
 

 

 

Fig 3.3: UI progress bar showing 35% progress post 
execution of task 2 

3.3 Multiple Linear Regression 
 
 A sample of 15 datapoints were taken for each of the four 
tasks, and the data was regressed over the three previously 
discussed variables. 
 

 
Fig 3.4: Datapoints for Task 1 collected by running the 

task on various sample servers 
 

 Each of the four tasks are now regressed (post normalizing) 
and a model is fit as shown below. 

 
 

Fig 3.5: Model for task 1 to fit data with normalized RAM 
and network speeds on the x and y axes respectively: red 

datapoints lie above the model, white ones, below, and blue 
ones, on the plane; z-axis gives the predicted time 

 Post logging into the user interface, the server is claimed and 
the workflow is initiated. The server now queries with its 
data the microservice that holds the drained ML model. The 
ML model parses the information sent from the server, and 
returns the z-coordinates according to the plane that it had 
regressed.  

 A similar model can be trained with a neural network, and 
this was also essayed. 

 

Fig 3.6: A similar model is trained using a 3 x 8 x 8 x 8 x 1 
NN in keras 

 The parsed values are used to predict the estimated time, as 
in the case of multiple linear regression, and output is sent to 
the requesting microservice. 

4. APPLICATION OF PROGRESS PREDICTING SYSTEMS IN 
REAL WORLD 

 In this paper, we have thus far discussed a number of 
possible solutions. Incorporating these methodologies for 
workflow-progress prediction in real-life applications can be 
of huge benefits.  

 Whether it is a train-booking portal for tickets, or an e-
commerce website for checkouts, or a social media platform 
for content uploads, or a bank website that processes 
transactions, activities, workflows, and tasks are inherent 
features.  

 The following diagram describes a possible sequence of 
events to incorporating the discussed solutions with real-
world applications. The numbers to go with, in the diagram 
describe the sequence of events to model such a system. The 
application backend is assumed to be hosted on AWS, a query 
is further sent to a remote server for workflow execution. The 
server consequently queries the ML microservice (the model 
developed) for the estimated time of a particular task in the 
workflow posted. The ML service returns an expected time 
back to the server. The server waits until the task is complete 
and then asks the application to display an update on the 
User Interface. The User is now informed about the progress 
of the workflow they initially POSTed. This cycle continues 
until all the tasks in the POSTed workflow definition are 
complete. 
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Fig 4.1: Datapoints for Task 1 collected by running the 
task on various sample servers 

 

5. CONCLUSION 
 
5.1 Unit-Testing 
 
 The solutions were put to test to predict task times and 
progress in various server conditions. The naïve approach 
was tested by executing different task sequences repeatedly 
on the same server. The Regression approach, meanwhile, 
was tested by running workflows on servers with different 
network speeds and RAM. 
 

 
Fig 5.0: Data compiled over executing workflows for 30 

times 
 
 The User Interface was tested by creating all possible 
sequences of workflows, and the resulting changes of the 
progress bar were recorded. 
 

5.2 Future Work / Add-Ons 
 
 The dataset that the study bases its results can be 
broadened. Other solutions like random forests and 
recurrent neural networks can be explored upon to improve 
the performance of the algorithms. 
 

6. ACKNOWLEDGEMENT 
 
 We would like to acknowledge the support provided by 
Teaching and Non-Teaching staff of Department of Computer 
Science & Engineering, RV College of Engineering through 
required assistance during the research work. 

7. REFERENCES 
 

[01] Markos Viggiato, Ricardo Terra, Henrique Rocha, 
Marco Tulio Valente, Eduardo Figueiredo, 
“Microservices in Practice: A Survey Study” 6th 
Brazilian Workshop on Software Visualization, 
Evolution and Maintenance. 

[02] Biradar Sangam. M, R. Shekhar “Building Minimal 
Docker Container Using Golang”, IJERCSE Vol5, 
Issue 3, March 2018. 

[03] E C Alexopoulus, “Introduction to Multivariate 
Regression Analysis”, Hippokratia, 2010 Dec; 
14(Suppl 1): 23-28. 

[04] Gülden Kaya Uyanik, Nese Güler, “A Study on 
Multiple Linear Regression Analysis”, Procedia – 
Social and Behavioral Sciences 106:234—240, 
December 2013  

[05] Robert Heinrich, André van Hoorn, “Performance 
Engineering for Microservices: Research Challenges 
and Directions” 8th ACM/SPEC International 
Conference on Performance Engineering (ICPE 
2017) 

[06] Babak Bashari Rad, Harrison John Bhatti, 
Mohammad Ahmadi, “An Introduction to Docker 
and Analysis of its Performance”, IJCSNS, VOL.17 
No.3, March 2017. 

[07] M.R.M. Veera Manickam, M. Mohanapriya, Sandip A 
Kale, “Research study on applications of artificial 
neural networks and e-learning personalization”, 
International Journal of Civil Engineering and 
Technology 8(8):1422-1432, August 2018 

[08] Flask framework (open source) 
https://flask.palletsprojects.com/en/1.1.x/  

[09] Tensorflow framework (open source) 
https://www.tensorflow.org/ 

[10] Golang framework (open source) 
https://golang.org/ 

[11] Dockers (open source) 
https://www.docker.com/ 

[12] Kubernetes (open source)  
https://kubernetes.io/ 

 

../../../../../sneha.ramachander/Downloads/Images/3.bmp
../../../../../sneha.ramachander/Downloads/Images/8.bmp
https://flask.palletsprojects.com/en/1.1.x/
https://www.tensorflow.org/
https://golang.org/
https://www.docker.com/
https://kubernetes.io/

