
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4372

Activity Duration Prediction of Workflows and analyses of Various

Machine Learning Approaches

Vijay Ravi1, Dr. Sharvani G. S.2

1Department of Computer Science and Engineering, R.V. College of Engineering, Bengaluru, India
2Associate Professor, Department of Computer Science and Engineering, R.V. College of Engineering,

Bengaluru, India
---***---
Abstract - Traditionally, workflow (a sequence of unit
tasks) progress times have been based on the number of tasks
completed at any point in time. This paper attempts to look
into Machine Learning techniques to improve calculation of
such workflow times. Each workflow is assumed to run on a
remote server, and each unit task’s time for completion largely
depends on three important associative variables: past history
durations, RAM, and network speeds. The paper discusses
multilayer perceptrons, multilinear regression, and a naive
approach to address the problem.

Key Words – workflow, unit task, RAM, multilayer
perceptrons, multilinear regression

1. INTRODUCTION

 The problem of predicting task times has useful applications
in various domains of scientific research. An end user is
pestered when they have to run a certain workflow on a
remote server, but are unsure period of time they have to
wait for before they can carry on with their regular activities.
Smarter systems for workflow duration prediction are
definitely the need of the hour, and this paper is an attempt
to model one such system.

1.1 Services and Components used

Python libraries: The project makes use of the opensource
Scikit-Learn library, Tensorflow toolkit for regressing/ run
neural net over sample data collected by running various
workflows over a number of various systems
Dockers: The service used to run workflows on remote
server is one built with the microservice architecture, for
efficient, quick return turnaround times
Kubernetes: Container management has been mainly via
Kubernetes
HTML, CSS: The UI interface to display the predicted task
times, and consequently the workflow times, is developed
using HTML and CSS
GoLang: The microservices to run workflow on remote
servers are built in the Go language

1.2 Existing Systems

 Robust systems built upon the microservices architecture
have already been studied and some even suggest Java or
Javascript as the clear winner to building such application

[1]. In one of these extensively researched papers, the
authors suggest Golang to be a fluid choice to incorporate
various use cases [2]. The algorithms discussed in this paper
have been experimented on an industry deliverable, and
GoLang has been the tool of development of the deliverable.

 Various Machine Learning approaches have been
thoroughly research upon: multivariate regression [3],
multiple linear regression [4]. This paper takes a look at
these approaches to the particular case of predicting
workflow times modelling the problem in three variables.
Workflow time prediction, especially on a remote server, is a
relatively unexplored topic, and the discussed methodologies
might at the end be of immense use in various other
industrial deliverables.

1.3 Scope and Motivation

 It is painfully annoying for an end-user to sit and wait until a
remote server executes their task and return back to them
their result. The user may have all data pertaining to the
network speeds at this remote server, its hardware
capabilities, its past history of executing the same exact task,
and yet the user in most cases sits through the workflow. In
extended workflows that take up to hours (installing an OS
on a remote server is an example), the problem is intensified,
and a solution to such problems is definitely the need of the
hour.

 This Machine Learning study takes a look at modelling start
to finish solutions to the aforementioned problem. The
proposed system addresses solutions to the problems
ranging from simple to relatively complex.
 The proposed solutions can be implemented in any client-
server application/ industrial deliverable to improve wait-
times and help users organize and plan their order of
execution of workflows accordingly.

2. METHODOLOGY

2.1 Architecture

 The naïve approach, as a precursor to exploring Machine
Learning algorithms, and as a solution, is a very good
starting point. We build upon this model to incorporate
other algorithms.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4373

 A task is assigned with an ID and a float property avgTime
(to hold running average time of the task). A bunch of such
user defined tasks are woven to construct a workflow, and
the client now starts a workflow on the server. Parallelly, a
database is necessary for the main program to regularly
update the running average for better prediction of
workflow progress.

2.2 Naïve Learning of the algorithm

Fig 2.0: Naïve approach and flow chart

 This approach updates the avgTime in the callback()
function every once a task is completed. A task may fail, in
which case, the progress is updated to 100% and the control
is returned to the server. This naïve approach is based on
calculating the progress as the average task time over the
complete workflow time (sum of average times of all tasks
from the database)

 - (1)

 This solution works better as the number of times the same
task is executed increases.

2.3 Architecture to make use of recorded data

 A small-scale microservice-architecture based application
can make use of the methodology previously described. But
as applications scale up and multiple servers are used to
execute workflows, it would help to consider task time as
average variable and identify a bunch of input variables.

Fig 2.1: Flow Chart for model with an http API for ML

inputs
 Average time of the task, Random Access Memory of the
server, and network speed of the connection to the internet
at the server, can be chosen as input variables to model the
solution. It is practical to use a server (a microservice that

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4374

consults the model given the value of these variables at the
server end) that returns the expected time for task
completion.

 The Machine Learning model can be a simple Multiple
Regression fit or a multilayer perceptron fit. The biases and
activation functions are chosen to minimize aberrations.
Once the model is sufficiently trained with existing data, the
model now takes input from remote servers and returns
predicted times of tasks of the workflow.

2.4 Perceptron Model

Fig 2.2: Perceptron model for a task of a workflow

 A perceptron architecture to predict task times has been
shown in the figure above. Three hidden layers with 8x8
connections have been chosen to tackle the problem.
Industry deliverables usually have only a limited number of
tasks that are ordered in various ways to form numerous
workflows. So, it makes sense to have a perceptron designed
for every task.

 The predicted time is POSTed via http API back to the
microservice that made the request in the first place, and the
progress is thus calculated.

2.5 Multiple Linear Regression

 Another possible architecture to solve the problem is to
regress the problem over the three variables, instead of
feeding it to a perceptron. The result is, in this case, for all
intents and purposes equal to the perceptron way of tacking
the problem – for all the three variables seem to be linearly
related to the predicted time.

3. IMPLEMENTATION

3.1 Technology Stack

 Our system uses an efficient tool stack that has been carefully

chosen for full-on delivery and minimal delay.

Fig 3.0: Tool Stack for the microservice based solution

 Two microservices and a user-interface to control the
workflow initiation and termination on the server were
designed. The communication between the three entities
were largely over the http protocol.

3.2 Naïve Approach

Four tasks were taken for the experiment, and these tasks
were stitched into a workflow (a task is a user-defined json
input; a workflow is a parsed collation of the json – in
Golang). The docker image of the service now runs on the
server.

Fig 3.1: Each ping command is a task that will execute on a
remote server, the 4 tasks form a cmd-command workflow

 Workflow initiation initializes the avgTime of all the four
tasks to 0s. Upon sending a http post to the server via the
user interface, the workflow (list of cmd commands) is run,
and the progress of completion is easily measured using
equation 1.

 The first time the workflow is run, a 25% progress is seen as
each task completes. When executed for a second time, one
would expect task A to show a smaller progress when
completed, and this is exactly what happens. The naïve
approach improves as the number of times the task is run
increases.

Fig 3.2: avgTime and runCount as properties of a new task

 The MongoDB database holds the average time of execution
of all the tasks. The same workflow was executed repeatedly
on the server. As expected, the progress values plateaued at

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4375

4%, 33%, 13%, and 50% respectively after executing the
workflow for five times.

Fig 3.3: UI progress bar showing 35% progress post
execution of task 2

3.3 Multiple Linear Regression

 A sample of 15 datapoints were taken for each of the four
tasks, and the data was regressed over the three previously
discussed variables.

Fig 3.4: Datapoints for Task 1 collected by running the

task on various sample servers

 Each of the four tasks are now regressed (post normalizing)
and a model is fit as shown below.

Fig 3.5: Model for task 1 to fit data with normalized RAM
and network speeds on the x and y axes respectively: red

datapoints lie above the model, white ones, below, and blue
ones, on the plane; z-axis gives the predicted time

 Post logging into the user interface, the server is claimed and
the workflow is initiated. The server now queries with its
data the microservice that holds the drained ML model. The
ML model parses the information sent from the server, and
returns the z-coordinates according to the plane that it had
regressed.

 A similar model can be trained with a neural network, and
this was also essayed.

Fig 3.6: A similar model is trained using a 3 x 8 x 8 x 8 x 1
NN in keras

 The parsed values are used to predict the estimated time, as
in the case of multiple linear regression, and output is sent to
the requesting microservice.

4. APPLICATION OF PROGRESS PREDICTING SYSTEMS IN
REAL WORLD

 In this paper, we have thus far discussed a number of
possible solutions. Incorporating these methodologies for
workflow-progress prediction in real-life applications can be
of huge benefits.

 Whether it is a train-booking portal for tickets, or an e-
commerce website for checkouts, or a social media platform
for content uploads, or a bank website that processes
transactions, activities, workflows, and tasks are inherent
features.

 The following diagram describes a possible sequence of
events to incorporating the discussed solutions with real-
world applications. The numbers to go with, in the diagram
describe the sequence of events to model such a system. The
application backend is assumed to be hosted on AWS, a query
is further sent to a remote server for workflow execution. The
server consequently queries the ML microservice (the model
developed) for the estimated time of a particular task in the
workflow posted. The ML service returns an expected time
back to the server. The server waits until the task is complete
and then asks the application to display an update on the
User Interface. The User is now informed about the progress
of the workflow they initially POSTed. This cycle continues
until all the tasks in the POSTed workflow definition are
complete.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4376

Fig 4.1: Datapoints for Task 1 collected by running the
task on various sample servers

5. CONCLUSION

5.1 Unit-Testing

 The solutions were put to test to predict task times and
progress in various server conditions. The naïve approach
was tested by executing different task sequences repeatedly
on the same server. The Regression approach, meanwhile,
was tested by running workflows on servers with different
network speeds and RAM.

Fig 5.0: Data compiled over executing workflows for 30

times

 The User Interface was tested by creating all possible
sequences of workflows, and the resulting changes of the
progress bar were recorded.

5.2 Future Work / Add-Ons

 The dataset that the study bases its results can be
broadened. Other solutions like random forests and
recurrent neural networks can be explored upon to improve
the performance of the algorithms.

6. ACKNOWLEDGEMENT

 We would like to acknowledge the support provided by
Teaching and Non-Teaching staff of Department of Computer
Science & Engineering, RV College of Engineering through
required assistance during the research work.

7. REFERENCES

[01] Markos Viggiato, Ricardo Terra, Henrique Rocha,
Marco Tulio Valente, Eduardo Figueiredo,
“Microservices in Practice: A Survey Study” 6th
Brazilian Workshop on Software Visualization,
Evolution and Maintenance.

[02] Biradar Sangam. M, R. Shekhar “Building Minimal
Docker Container Using Golang”, IJERCSE Vol5,
Issue 3, March 2018.

[03] E C Alexopoulus, “Introduction to Multivariate
Regression Analysis”, Hippokratia, 2010 Dec;
14(Suppl 1): 23-28.

[04] Gülden Kaya Uyanik, Nese Güler, “A Study on
Multiple Linear Regression Analysis”, Procedia –
Social and Behavioral Sciences 106:234—240,
December 2013

[05] Robert Heinrich, André van Hoorn, “Performance
Engineering for Microservices: Research Challenges
and Directions” 8th ACM/SPEC International
Conference on Performance Engineering (ICPE
2017)

[06] Babak Bashari Rad, Harrison John Bhatti,
Mohammad Ahmadi, “An Introduction to Docker
and Analysis of its Performance”, IJCSNS, VOL.17
No.3, March 2017.

[07] M.R.M. Veera Manickam, M. Mohanapriya, Sandip A
Kale, “Research study on applications of artificial
neural networks and e-learning personalization”,
International Journal of Civil Engineering and
Technology 8(8):1422-1432, August 2018

[08] Flask framework (open source)
https://flask.palletsprojects.com/en/1.1.x/

[09] Tensorflow framework (open source)
https://www.tensorflow.org/

[10] Golang framework (open source)
https://golang.org/

[11] Dockers (open source)
https://www.docker.com/

[12] Kubernetes (open source)
https://kubernetes.io/

../../../../../sneha.ramachander/Downloads/Images/3.bmp
../../../../../sneha.ramachander/Downloads/Images/8.bmp
https://flask.palletsprojects.com/en/1.1.x/
https://www.tensorflow.org/
https://golang.org/
https://www.docker.com/
https://kubernetes.io/

