ISOLATE DOMINATION IN QUASI-TOTAL GRAPHS

J. Jenisha ${ }^{1}$, P. Wilson ${ }^{2}$
${ }^{1}$ M.Phil. Scholar, Department of Mathematics, S.T. Hindu College, Nagercoil, Tamil Nadu, India ${ }^{2}$ Associate Professor, Department of Mathematics, S.T. Hindu College, Nagercoil, Tamil Nadu, India

Abstract

A dominating set S of a graph G is said to be an isolate dominating set of G if induced subgraph on S has at least one isolated vertex. An isolate dominating set S is said to be a minimal isolate dominating set if no proper subset of S is an isolate dominating set. The isolate domination number γ_{0} is defined as the minimum cardinality of an isolate dominating set. In this paper, we investigate the isolate domination number of quasi-total graph of certain classes of graphs.

Key Words: Dominating set, Domination number, Isolate dominating set, Isolate domination number, Quasi- Total graph.

1. INTRODUCTION

By a graph G, we mean a finite, undirected graph with neither loops nor multiple edges. In a graph $G=(V(G), E(G)), V(G)$ is the vertex set and $E(G)$ is the edge set of G. The degree of a vertex v is the number of edges of G incident with v and is denoted by $\operatorname{deg}_{G}(v)$ or $\operatorname{deg} v$. For vertices u and v in a connected graph G, the distance $d(u, v)$ is the length of a shortest $u-v$ path in G. The eccentricity $e(u)$ of a vertex u in G is defined by $e(u)=\max \{d(u, v): v \in$ $V(G)$ \}. The maximum eccentricity among the vertices of G is its diameter which is denoted by $\operatorname{diam}(G)$. A vertex v in a connected graph G is called a peripheral vertex if $e(v)=\operatorname{diam}(G)$. The sub graph induced by a set X of vertices of a graph G is denoted by $\langle X\rangle$ with $V(\langle X\rangle)=X$ and $E(\langle X\rangle)=\{u v \in E(G): u, v \in X\}$. Let u and v be vertices of a graph G. A $u-v$ walk of G is a finite alternating sequence $u=u_{0}, e_{1}, u_{1}, e_{2}, \ldots \ldots$, $e_{n}, u_{n}=v$ of vertices and edges in G beginning with a vertex u and ending with a vertex v such that $e_{i}=u_{i-1} u_{i} ; i=1,2, \ldots ., n$. The number n is called the length of the walk. The walk is said to be open if u and v are distinct vertices; it is closed otherwise. A walk in which all the vertices are distinct is called a
path. A closed walk $u_{0}, u_{1}, u_{2}, \ldots \ldots, u_{n}$ in which $u_{0}, u_{1}, u_{2}, \ldots \ldots, u_{n-1}$ are distinct is called a cycle. A set D of vertices of a graph G is said to be a dominating set if every vertex in $V-D$ is adjacent to a vertex in D. A dominating set D is said to be a minimal dominating set if no proper subset of D is a dominating set. The minimum cardinality of a dominating set of G is called the domination number of G and is denoted by $\gamma(G)$ [2]. A dominating set S of graph G is said to be an isolate dominating set if $\langle S\rangle$ has at least one isolated vertex [2]. An isolate dominating set S is said to be a minimal isolate dominating set if no proper subset of S is an isolate dominating set [2]. The minimum cardinality of an isolate dominating set is called isolate domination number $\gamma_{0}(G)$ for a graph G. The quasi-total graph $\mathrm{P}(\mathrm{G})$ of a graph G is the graph whose vertex set is $\mathrm{V}(\mathrm{G}) \cup \mathrm{E}(\mathrm{G})$ and two vertices are adjacent if and only if they correspond to two nonadjacent vertices of G or two adjacent edges of G or one is a vertex and other is an edge incident with it in G. This concept was introduced in [3].

Domination becomes the most fascinating topic in graph theory due to its application in networking. The study of isolate domination was initiated by Sahul Hamid in 2013 [1]. The study of isolate domination motivated us to introduce isolate domination in quasi-total graphs. Any undefined term or notation in this paper can be found in Harary [4].

2. Main Results

In this section, we study isolate domination number γ_{0} of quasi-total graphs of complete graphs, complete bipartite graphs, wheels, cycles and paths.

Theorem 2.1. $\gamma_{0}\left(P\left(K_{n}\right)\right)=\left[\frac{n}{2}\right]$ for $n \geq 1$.

Proof. Let $v_{1}, v_{2}, \ldots \ldots, v_{n}$ be the vertices and $e_{1}, e_{2}, \ldots ., e_{\binom{n}{2}}$ be the edges of K_{n}. Then $P\left(K_{n}\right)$ has the vertices $v_{1}, v_{2}, \ldots \ldots ., v_{n}, e_{1}, e_{2}, \ldots ., e_{\binom{n}{2}}$. Hence $\left|V\left(P\left(K_{n}\right)\right)\right|=n+\binom{n}{2}$. Since the edge $e_{i}[1 \leq i \leq$ $\left.\binom{n}{2}\right]$ of K_{n} is adjacent to $2(n-2)$ edges and incident with 2 vertices say, $v_{a}, v_{b}(1 \leq a \neq b \leq n)$ of K_{n}, the vertex $e_{i}\left[1 \leq i \leq\binom{ n}{2}\right]$ of $P\left(K_{n}\right)$ is adjacent to $2 n-2$ vertices of $P\left(K_{n}\right)$. Hence $e_{i}\left[1 \leq i \leq\binom{ n}{2}\right]$ dominates $2 n-1$ vertices including itself in $P\left(K_{n}\right)$.

Therefore, there are $\binom{n-1}{2}$ vertices in $P\left(K_{n}\right)$ which need to be dominated. Let such v_{j} 's $(1 \leq j \neq a \neq b \leq$ $n)$ and e_{k} 's $\left(1 \leq k \neq i \leq\binom{ n}{2}\right)$ belong to $E=\left\{v_{1}, v_{2}, \ldots \ldots . v_{n-2}, e_{1}, e_{2}, \ldots ., e_{\binom{n-2}{2}}\right\}$. Consider a vertex e_{1} belongs to E in $P\left(K_{n}\right)$. Let $e_{1}=\left\{v_{p}, v_{q}\right\}$ in K_{n} where $1 \leq p \neq q \neq a \neq b \leq n$. Since v_{p} and v_{q} are adjacent to all the other vertices in K_{n}, e_{1} is adjacent to $2 n-4$ vertices belonging to E in $P\left(K_{n}\right)$. Hence e_{1} dominates $2 n-3$ vertices belonging to E in $P\left(K_{n}\right)$ including itself.

Of the remaining vertices that are not dominated, Consider a vertex e_{2}. It is adjacent to $2 n-6$ vertices after excluding vertices to e_{1} and already dominated vertices. Hence e_{2} dominates $2 n-5$ vertices including itself. This process continues till $2 n-(2 k-1) \geq n+1, \quad$ where $\quad k=1,2, \ldots \ldots, \frac{n}{2}$ whenever K_{n} is of even n. Also $2 n-(2 k-1) \geq n$, where $k=1,2, \ldots \ldots, \frac{n+1}{2}$ whenever K_{n} is of odd n.

Therefore, $\gamma_{0}\left(P\left(K_{n}\right)\right)=\left\lceil\frac{n}{2}\right\rceil$.

Figure 1: K_{3} and $P\left(K_{3}\right)$

Example 2.2. Consider K_{3} with vertex set $V=\left\{v_{1}, v_{2}, v_{3}\right\}$ and edge set $E=\left\{e_{1}, e_{2}, e_{3}\right\} . P\left(K_{3}\right)$ has vertex set as $V\left(P\left(K_{3}\right)\right)=\left\{e_{1}, e_{2}, e_{3}, v_{1}, v_{2}, v_{3}\right\}$ and $\quad\left|V\left(P\left(K_{3}\right)\right)\right|=6 . \quad e_{1} \quad$ will dominate $\left\{e_{1}, e_{2}, e_{3}, v_{1}, v_{3}\right\}$ and v_{2} will be dominated by itself. Therefore, $S=\left\{e_{1}, v_{2}\right\} .|S|=2$. Hence, $\gamma_{0}\left(P\left(K_{3}\right)\right)=$ $\left[\frac{3}{2}\right]=2$.

Theorem 2.3. $\gamma_{0}\left(P\left(K_{m, n}\right)\right)=\left\{\begin{array}{c}n \text { if } m=n \\ n+1 \text { if } m>n \geq 1\end{array}\right.$
Proof. Let $V_{1}=\left\{v_{1}, v_{2}, \ldots \ldots, v_{m}\right\}$ and $V_{2}=$ $\left\{v_{1}{ }^{\prime}, v_{2}{ }^{\prime}, \ldots . ., v_{n}{ }^{\prime}\right\}$ be the two bipartites of $V\left(K_{m, n}\right)$. Let $e_{1}, e_{2}, \ldots \ldots, e_{m n}$ be the edges of $K_{m, n}$. Hence $\left|V\left(P\left(K_{m, n}\right)\right)\right|=m+n+m n$. Since an edge e_{1} of $K_{m, n}$ is incident with 2 vertices and adjacent to $m-1+n-1$ edges of $K_{m, n}$, the vertex e_{1} of $P\left(K_{m, n}\right)$ is adjacent to $m+n$ vertices of $P\left(K_{m, n}\right)$. Hence e_{1} dominates $m+n+1$ vertices including itself in $P\left(K_{m, n}\right)$.

Therefore, there are $m n-1$ vertices in $P\left(K_{m, n}\right)$ need to be dominated. Let $e_{1}=\left\{v_{a}, v_{b}\right\}$ in $K_{m, n}$ where $1 \leq a \leq m$ and $1 \leq b \leq n$. Consider a vertex e_{2} of $P\left(K_{m, n}\right)$ which is not dominated by e_{1}. Let $e_{2}=\left(v_{c}, v_{d}\right) \quad$ where $\quad 1 \leq a \neq c \leq m \quad$ and $1 \leq b \neq d \leq n$. Clearly e_{2} is incident with two vertices and $m+n-2$ edges of $K_{m, n}$. Since the vertices $v_{a}, v_{d}{ }^{\prime}$ and $v_{c}, v_{b}{ }^{\prime}$ are adjacent in $K_{m, n}, e_{2}$ dominates $m+n-2$ vertices of $P\left(K_{m, n}\right)$ after excluding vertices to e_{1}. Hence e_{2} dominates $m+n-1$ vertices of $P\left(K_{m, n}\right)$ including itself.

Therefore, there are $m n-(m+n-1)-1$ vertices of $P\left(K_{m, n}\right)$ which need to be dominated. Consider a
vertex e_{3} of $P\left(K_{m, n}\right)$ which is not dominated by e_{1} and e_{2}. Clearly, e_{3} dominates $m+n-3$ vertices of $P\left(K_{m, n}\right)$ including itself. Therefore, there are $m n-2(m+n-2)-1$ vertices of $P\left(K_{m, n}\right)$ which need to be dominated. Continuing like this, we finally get a vertex e_{n} of $P\left(K_{m, n}\right)$ dominates $m-n-(n-$ 1) vertices of $P\left(K_{m, n}\right)$ including itself. Therefore, there are $m-n$ vertices of $P\left(K_{m, n}\right)$ which need to be dominated.

If $m=n$, then all the vertices of $P\left(K_{m, n}\right)$ are dominated by the set $S=\left\{e_{1}, e_{2}, \ldots . ., e_{n}\right\}$. Hence, $\gamma_{0}\left(P\left(K_{m, n}\right)\right)=n$.

If $m>n$, then $m-n$ vertices are remaining to dominate. Clearly, these $m-n$ vertices are adjacent with each other. Hence, $\gamma_{0}\left(P\left(K_{m, n}\right)\right)=n+1$.

Therefore, $\gamma_{0}\left(P\left(K_{m, n}\right)\right)=\left\{\begin{array}{c}n \text { if } m=n \\ n+1 \text { if } m>n \geq 1\end{array}\right.$

Figure 2: $K_{2,2}$ and $P\left(K_{2,2}\right)$
Example 2.4. Consider $K_{2,2}$ with vertex set $V=\left\{v_{1}, v_{2}, v_{1}^{\prime}, v_{2}\right\}$ and edge set $E=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. Then $P\left(K_{2,2}\right)$ has vertex set as $V\left(P\left(K_{2,2}\right)\right)=$ $\left\{e_{1}, e_{2}, e_{3}, e_{4}, v_{1}, v_{2}, v_{1}{ }^{\prime}, v_{2}\right\}$. Here e_{1} will dominate
$\left\{e_{1}, e_{2}, e_{3}, v_{1}, v_{1}\right\} \quad$ and e_{4} will dominate $\left\{e_{2}, e_{3}, e_{4}, v_{2}, v_{2}\right\}$. Therefore, $S=\left\{e_{1}, e_{4}\right\} . \quad|S|=2$. Hence $\gamma_{0}\left(P\left(K_{2,2}\right)\right)=2$.

Theorem 2.5. $\gamma_{0}\left(P\left(W_{n}\right)\right)=\left\lceil\frac{n-5}{3}\right\rceil+3$ for $n \geq 4$.
Proof. Let $v_{1}, v_{2}, \ldots \ldots, v_{n+1}$ be the vertices of the wheel W_{n}, where v_{1} is the centre vertex of W_{n}. Let $e_{1}, e_{2}, \ldots \ldots, e_{2 n}$ be the edges of W_{n}. Let $e_{1}, e_{2}, \ldots \ldots, e_{n}$ be the edges with end vertices as peripheral vertices and $e_{n+1}, e_{n+2}, \ldots . ., e_{2 n}$ the edges with v_{1} as one end vertex and other end vertex to be $v_{2}, v_{3}, \ldots \ldots, v_{n+1}$ respectively. Hence total number of vertices in $P\left(W_{n}\right)$ is $\left|V\left(P\left(W_{n}\right)\right)\right|=3 n+1$. Let $e_{i}(n+1 \leq i \leq 2 n)$ be one of the edges with v_{1} as a one end vertex and other end vertex to be one of $v_{2}, v_{3}, \ldots \ldots . v_{n+1}$ of W_{n}. Clearly $e_{i}(n+1 \leq i \leq 2 n)$ is adjacent to all the other e_{j} 's $(n+1 \leq i \neq j \leq 2 n)$ and exactly two vertices and two edges which are adjacent to the peripheral vertices in W_{n}. Hence $e_{i}(n+1 \leq i \leq 2 n)$ is adjacent to $n+3$ vertices in $P\left(W_{n}\right)$. Hence $e_{i}(n+1 \leq i \leq 2 n)$ dominates $n+4$ vertices including itself in $P\left(W_{n}\right)$.

Therefore, there are $2 n-3$ vertices need to be dominated in $P\left(W_{n}\right)$. Among these $2 n-3$ vertices, $n-2$ are edges and $n-1$ are vertices in W_{n}. Consider an end vertex among these $n-1$ vertices of W_{n} which need to be dominated in $P\left(W_{n}\right)$. Clearly it is adjacent to remaining $n-3$ vertices and one edge of W_{n} in $P\left(W_{n}\right)$ which are not dominated before. Therefore, there are $n-3$ edges and a single vertex of W_{n} which are need to dominate in $P\left(W_{n}\right)$. Consider an edge e_{i} of W_{n} which is adjacent to a remaining vertex v_{j} of W_{n} in $P\left(W_{n}\right)$. Clearly e_{i} is adjacent to another edge e_{j} of W_{n} which is not already dominated in $P\left(W_{n}\right)$. Hence there are $n-5$ edges of W_{n} which are need to dominate in $P\left(W_{n}\right)$. Let such vertices of $P\left(W_{n}\right)$ be $e_{1}, e_{2}, \ldots ., e_{n-5}$

Clearly, each $e_{i}(1 \leq i \leq n-5)$ is adjacent to two e_{j} 's incident on its vertices in W_{n}. Hence e_{i} dominates 3 vertices including itself in $P\left(W_{n}\right)$. Therefore, $\left\lceil\frac{n-5}{3}\right\rceil$ number of vertices require to dominate remaining $n-5$ vertices in $P\left(W_{n}\right)$.

Therefore, $\gamma_{0}\left(P\left(W_{n}\right)\right)=\left\lceil\frac{n-5}{3}\right\rceil+3$

Figure 3: W_{4} and $P\left(W_{4}\right)$

Example 2.6. Consider W_{4} with vertex set $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and edge set $E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}\right\}$. Then $V\left(P\left(W_{4}\right)\right)=$ $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}\right\}$. Here e_{5} dominates $\left\{v_{1}, v_{2}, e_{1}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}\right\}, e_{3}$ dominates $\left\{v_{4}, v_{5}, e_{2}, e_{3}, e_{4}, e_{7}, e_{8}\right\}$ and remaining v_{3} is dominated by v_{3}. Therefore, $S=\left\{e_{3}, e_{5}, v_{3}\right\}$ and $|S|=3$. Hence $\gamma_{0}\left(P\left(W_{4}\right)\right)=\left\lceil\frac{4-5}{3}\right\rceil+3=3$.

Theorem 2.7. $\gamma_{0}\left(P\left(C_{n}\right)\right)=\left\lceil\frac{n-3}{3}\right\rceil+2$ for $n \geq 5$.
Proof. Let $v_{1}, v_{2}, \ldots \ldots, v_{n}$ be the vertices and $e_{1}, e_{2}, \ldots . ., e_{n}$ be the edges of C_{n}. Then $P\left(C_{n}\right)$ has the vertices $\quad v_{1}, v_{2}, \ldots \ldots, v_{n}, e_{1}, e_{2}, \ldots . ., e_{n}$. Hence $\left|V\left(P\left(C_{n}\right)\right)\right|=2 n$. Clearly each $v_{i}(1 \leq i \leq n)$ of C_{n} is adjacent to two vertices and two edges of C_{n}. Hence each $v_{i}(1 \leq i \leq n)$ is adjacent to $n-1$ vertices of $P\left(C_{n}\right)$. Hence $\quad v_{i}(1 \leq i \leq n)$ dominates n vertices including itself in $P\left(C_{n}\right)$.

Therefore there are n vertices in $P\left(C_{n}\right)$ which need to be dominated. Among these n vertices, $n-2$ are
edges and two are vertices in C_{n}. Consider a vertex among these 2 vertices of C_{n} which need to be dominated in $P\left(C_{n}\right)$. Clearly it is adjacent to remaining one vertex and one edge of C_{n} in $P\left(C_{n}\right)$ which are not dominated before. Therefore, there are $n-3$ vertices of $P\left(C_{n}\right)$ which are need to dominate. Let such vertices of $P\left(C_{n}\right)$ be $e_{1}, e_{2}, \ldots . ., e_{n-3}$.

Clearly, each $e_{i}(1 \leq i \leq n-3)$ is adjacent to two e_{j} 's incident on its vertices in C_{n}. Hence e_{i} dominates 3 vertices including itself in $P\left(C_{n}\right)$. Therefore, $\left\lceil\frac{n-3}{3}\right\rceil$ number of vertices require to dominate remaining $n-3$ vertices in $P\left(C_{n}\right)$.

Therefore, $\gamma_{0}\left(P\left(C_{n}\right)\right)=\left\lceil\frac{n-3}{3}\right\rceil+2$

Figure 4: C_{5} and $P\left(C_{5}\right)$
Example 2.8. Consider C_{5} with vertex set $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and edge set $E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\} . \quad$ Then $V\left(P\left(C_{5}\right)\right)=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$. Here e_{1} dominates $\quad\left\{e_{1}, e_{2}, e_{5}, v_{1}, v_{2}\right\}, \quad e_{3} \quad$ dominates
$\left\{v_{3}, v_{4}, e_{2}, e_{3}, e_{4}\right\}$ and remaining v_{5} is dominated by v_{5}. Therefore, $S=\left\{e_{1}, e_{3}, v_{5}\right\}$ and $|S|=3$. Hence $\gamma_{0}\left(P\left(C_{5}\right)\right)=\left\lceil\frac{5-3}{3}\right\rceil+2=3$.

Remark 2.9. $\gamma_{0}\left(P\left(C_{3}\right)\right)=2$ and $\gamma_{0}\left(P\left(C_{4}\right)\right)=2$
Theorem 2.10. $\gamma_{0}\left(P\left(P_{n}\right)\right)=2+\left\lceil\frac{n-4}{3}\right\rceil$ for $n \geq 3$.
Proof. Let $v_{1}, v_{2}, \ldots \ldots, v_{n}$ be the vertices and $e_{1}, e_{2}, \ldots ., e_{n-1}$ be the edges of P_{n}. Then $P\left(P_{n}\right)$ has the vertices $v_{1}, v_{2}, \ldots \ldots, v_{n}, e_{1}, e_{2}, \ldots . ., e_{n-1}$. Hence $\left|V\left(P\left(P_{n}\right)\right)\right|=2 n-1$. Clearly each $v_{i}(i=1, n)$ of P_{n} is adjacent to $(n-2) v_{j}$'s and an edge of P_{n} in $P\left(P_{n}\right)$. Hence $v_{i}(i=1, n)$ dominates n vertices including itself in $P\left(P_{n}\right)$.

Therefore, there are $n-1$ vertices in $P\left(P_{n}\right)$ which need to be dominated. Among these $n-1$ vertices, $n-2$ are edges and one is a vertex in P_{n}. Consider an edge e_{j} of P_{n} adjacent to v_{j} where $i \neq j$. Clearly e_{j} dominates v_{j} and one more edge of P_{n} which is not already dominated. Hence e_{j} dominates 3 vertices including itself in $P\left(P_{n}\right)$.

Therefore, there are $n-4$ vertices in $P\left(P_{n}\right)$ which need to be dominated. Since each e_{i} has two e_{j} 's incident on its vertices in P_{n}, e_{i} dominates 3 vertices including itself in $P\left(P_{n}\right)$. Therefore, $\left\lceil\frac{n-4}{3}\right\rceil$ number of vertices require to dominate remaining vertices in $P\left(P_{n}\right)$.

Hence, $\gamma_{0}\left(P\left(P_{n}\right)\right)=2+\left\lceil\frac{n-4}{3}\right\rceil$.

Figure 5: P_{3} and $P\left(P_{3}\right)$

Example 2.11. Consider P_{3} with vertex set $V=\left\{v_{1}, v_{2}, v_{3}\right\}$ and edge set $E=\left\{e_{1}, e_{2},\right\}$. Then $V\left(P\left(P_{3}\right)\right)=\left\{e_{1}, e_{2}, e_{3}, v_{1}, v_{2}, v_{3}\right\}$. Here e_{1} dominates $\left\{e_{1}, e_{2}, v_{1}, v_{2}\right\}$ and the remaining v_{3} is dominated by v_{3}. Therefore, $S=\left\{e_{1}, v_{3}\right\}$ and $|S|=2$. Hence $\gamma_{0}\left(P\left(C_{5}\right)\right)=2+\left\lceil\frac{3-4}{3}\right\rceil=2$.

Remark 2.12. $\gamma_{0}\left(P\left(P_{2}\right)\right)=1$

3. CONCLUSION

In this paper, we have discussed isolate domination in line graphs of complete graphs, complete bipartite graphs, wheels, cycles and paths. In future, our focus will be on doing study of isolate domination in middle graphs.

REFERENCES

[1] Balamurugan and Sahul Hamid, "Isolate" Domination Number and Maximum Degree," Bulletin of the International Mathematical Virtual Institute, vol. 3, 2013, pp. 127-133.
[2] Balamurugan and Sahul Hamid, "Isolate Domination in graphs," Arab Journal of Mathematical Science, vol. 22, 2016, pp. 232-241.
[3] D.V.S Sastry and B. Syam Prasad Raju, "Graph equations for Line graphs, Total graphs, Middle graphs and Quasi-Total graphs," Discrete Mathematics, vol. 48, 1984, pp. 113-119.
[4] F. Harary, "Graph Theory," Addision- Wesley, 1969.

