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Abstract - If one needs to apply any machine learning 
approach to a problem that requires some sensitive or 
private data such as medical or financial, it becomes 
imperative that close attention must be paid to privacy and 
security of data apart from its accuracy. This paper focuses 
discussion on a machine learning methodology that allows 
inference on encrypted data. This allows a data owner to 
send their data in an encrypted form to a cloud service that 
hosts the network. The encryption ensures that the data 
remains confidential since the cloud does not have access to 
the keys needed to decrypt it. It is achieved by using the 
protocol defined for FHE (Fully Homomorphic Encryption) 
and Secure MPC. In this paper, it is demonstrated that 
neural networks can be trained with the aid of encrypted 
data such that predictions can be retrieved in encrypted 
form. The research findings indicate that it provides 
appropriate training and classification that not only 
preserves privacy but is also efficient.  
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1.INTRODUCTION 
 
In spite of the growing popularity of machine learning 
prediction services in recent years, it is rare that the 
privacy of the consumer's information data is regarded as 
the top priority in their deployment. However, it is 
important to realize that we cannot eliminate this privacy 
requirement, whenever they want to apply machine 
learning to problems involving sensitive data. An example 
of such a case could be in medical applications. Suppose a 
hospital decides to accelerate its medical diagnosis using 
medical imaging. It could be that the hospital does not 
have sufficient labeled data to train statistical models. This 
could nevertheless work with a third-party service 
provider which would be able to provide these 
projections, but in so doing the hospital should satisfy all 
the ethical and legal criteria about patient information 
sensitivity. This paper discusses an approach that would 
allow hospitals to use such a valuable service without 
sacrificing patient privacy. In the protocol discussed, any 
private information could be encrypted by the hospital 
and then sent to the prediction service that operates in the 
cloud in an encrypted form. The cloud would then, be able 
to process the encrypted data and compute predictions 

over it, which would be sent back as results to the hospital 
that can decrypted and read by it. 

Many machine-learning programmers are accustomed to 
using frameworks in Python language like Tensorflow, 
Scikit-learn, and PyTorch. These frameworks provide 
support for various high-level data types like real vectors, 
matrices, and many non-linear functions such as the 
logistic function and ReLu. For a modern MPC package, it 
becomes almost impossible for any data scientist to 
recreate and re-define all these frequently taken-for-grant 
primitives that are used with Machine-learning. Also, it is 
very expensive for any MPC expert to rewrite all the 
algorithms that they may require in a machine learning 
application. It is therefore important to design a MPC front 
end that is simple and convenient to today's Python and 
PyTorch community. In fact, many machine learning 
frameworks use Python as a frontend language and offer 
Numpy-style array operations to simplify machine 
learning. 

This paper studies such a framework called CrypTen (by 
Facebook) and demonstrates its effectiveness in 
protecting the privacy of users by employing techniques of 
collaborative machine learning and statistical inference. 
We do so by studying various performance metrics 
involved in data analysis and inference gathering such as 
model accuracy, model training time, the robustness of 
encryption, etc. It is further shown that it delivers an 
intuitive end-to-end solution that enables various Python 
interfaces that are similar to those from PyTorch, one of 
the most popular Python packages, as well as a variety of 
functions frequently used in machine learning. 
 

2.RELATED WORK 
 
In regard to machine learning, there are also other non-
cryptography-based approaches that preserve privacy. In 
[1], Shokri and Shmatikov propose an approach that 
allows the neural network model to learn from a 
distributed dataset that enables multiple parties to 
preserve their privacy by refraining from sharing their 
input datasets. The main aim of the paper was to present 
an approach that can allow the data to be decentralized so 
that various datasets which involve sensitive information 
like user’s personal photos, voice recordings are not 
required to be uploaded to any central repository for it to 
be consumed by a machine learning model. Their idea is 
built on differential privacy, where each party uses its data 
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to build the model and only shares a minor fraction of the 
parameters with other parties. Their key innovation is to 
employ selective sharing of the model parameters. Since 
the stochastic gradient descent algorithm can be 
parallelized and can run asynchronously, it is feasible for 
participants who are collaborating in the training stage to 
benefit from other participants' models, without sharing 
their inputs explicitly.  

In [2] Abadi et al. propose a framework for differentially 
private training of neural networks. This framework 
includes a stochastic gradient descent algorithm that is 
differentially private in nature and hyperparameter 
tuning. In doing so they develop new algorithmic 
techniques and implementation strategies using the 
TensorFlow library and further provide an analysis of 
privacy costs involved within the framework of 
differential privacy. It has been observed that differential 
privacy-based approaches are required to make a trade-off 
between the privacy of the model and its utility which in 
turn affects its accuracy. Our model of threat is distinct to 
that of differential privacy. The server doesn't really learn 
anything at all about the model in our methodology 
whereas the server will learn the model in differential 
privacy. Reverse engineering cannot be used either, 
because the code is encrypted. Since the model is 
encrypted, reverse engineering cannot be used either. 

In [3], the authors develop a framework that uses a Fully 
Homomorphic encryption scheme based on HElib[4]. Such 
frameworks seem to be slow because of the Heavy 
computation involved. Using this framework they infer 
various statistics including Histogram count, k-percentile, 
principal component analysis, contingency table, etc. They 
perform an empirical analysis of these statistics on various 
categories of datasets, including categorical data, ordinal 
data, and numerical data, belonging to UCI Machine 
Learning Repository [5]. 

In [6], the authors develop a multi-leveled framework that 
exposes various primitives of SEAL [7] to TensorFlow. 
Here SEAL serves as the encryption layer and provides 
various encryption protocols in the context of Fully 
Homomorphic Encryption which includes schemes such as 
BFV[9] and CKKS[8]. Such a framework is similar to 
CryptoNets[10] model, but the authors are able to improve 
the inference time of the machine learning model by 
speeding up expensive operations such as squared 
activation function by sparsifying the network activations 
of the model as described in [11]. The authors also 
introduce a novel approach of encrypted transfer learning 
that allows the client to query a cloud that can expose 
embeddings obtained from variational autoencoder 
learning of unlabelled dataset such that it can be 
transferred to client downstream. 
 
 
 

3.BACKGROUND 

MPC has been studied for many decades, but recently 
complicated calculations have become feasible because of 
newly discovered enhancements in implementation such 
as the availability of faster hardware and extremely simple 
AES block cipher deployments and the exposure to easy 
networking. Circuits can now be evaluated at up to 7 
billion gates per second, provided that the measurement is 
viewed as a Boolean circuit. MPC as a cryptographic 
paradigm allows for computational collaboration. 
Nevertheless, MPC suffers from drawbacks for the 
purposes discussed in this study, such as, it is still 
infeasible to run generic MPC protocols over many remote 
parties especially due to high communication costs. 

The library used is a PyTorch-based machine learning 
platform that allows you to quickly test and create 
machine learning methods using safe computer 
technology. It offers the ability, along with and similar to 
the PyTorch API, to create models when measuring 
encrypted data without exposing the sensitive data. It is 
ensured that confidential or otherwise private information 
stays private while enabling model inferences and training 
on encrypted information that can be aggregated between 
different organizations or users. 

The framework utilizes secure multiparty computation 
(MPC) as its cryptographic paradigm. Secure multi-party 
computation (MPC) enables users to evaluate a function 
without disclosing confidential information other than the 
outcome. MPC often uses several cryptographic techniques 
with different priorities of efficiency and protection, e.g. 
disordered circuits and secret sharing. After more than 30 
years of growth, one started seeing real-world data 
processing applications start using MPC. Although there 
are still some challenges hindering the mainstream use of 
efficient computing techniques. 
 

3.1 Secure Multi-Party Computation (MPC) 
 

Assume that there are   parties such that each party   
holds a private value   . The goal is to evaluate a function 
              so that each party will learn the result, but 
no information about each other’s inputs    beyond what 
can be inferred from the result. Some MPC techniques are 
generic in the sense that they can be applied to a broad 
range of functions (such as Boolean circuits), while other 
techniques may be designed for a specific set of functions 

 

3.2 Secret Sharing 
 

Secret sharing is designed to allow the storage of data 
to be distributed so that no information about each share 
can be discovered but that the entire data can be 
recovered when combined. For example, assume   is a 
number in the range      . One can pick a random 
number   uniformly sampled from the same range and 
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create a secret share such that in one location   is 
recorded, and in another location             is 
recorded. Since both r and       are uniformly 
distributed in      , each one of them in isolation does not 
reveal any information about  . However, having access to 
both allows computing the secret  . It is easy to see that 
two such secret shares can be added to create a secret 
share of the sum of the secrets. Therefore, the type of 
secret sharing presented here provides an efficient 
method to implement an MPC protocol for the addition 
function. 
 

3.3 Security of MPC 
 

A number of MPC security definitions have been put 
forward [12], and they aim to ensure a number of key 
security characteristics that are generally sufficient to 
capture the most (if not all) multi-party computation 
tasks. The most important of these properties are now 
defined. In so doing let’s take an example where Alice, Bob, 
and Charlie want to find out what their highest wages are 
without disclosing their respective wages. 

1. Privacy: No party must discover more than its 
outcome authorized. In particular, only information 
about the inputs of others should be learned from 
the output itself. In the above case, where the only 
highest pay is reported, it is apparent that all other 
wages are lower than the highest. Nonetheless, 
nothing more about the other wages should be 
known. 

2. Correctness: The correct output is assured for each 
party. Continuing with the instance of salaries 
indicates that the individual with the highest wage 
is expected to benefit. 

3. Guaranteed Output Delivery: Corrupted parties 
cannot stop honest parties from getting their 
results. In other words, by performing a DOS attack, 
the attacker won't be able to disable the system. 

4. Fairness: Corrupted parties should receive their 
results only if they receive their results. The 
scenario in which a corrupt party gets output and 
an honest party should not happen. For eg, in the 
event of contract signing, this property can be 
crucial. Specifically, the possession of the signed 
contract by the dishonest party would be very 
problematic if it is not present with an honest party. 
Note that guaranteed performance implies fairness 
of computation, but not necessarily the converse. 

5. Independence of Input: Corrupted parties must 
select their input regardless of the honest parties' 
input. In scenarios like secured bidding where bids 
are held, and parties have to set their bids 
independently of others, this property becomes 

critical. It should be noted that input independence 
does not mean privacy. 

The above definition of protection doesn't answer one 
very critical aspect: the strength of the adversary targeting 
protocol execution. The adversary controls a sub-set of the 
parties participating in the protocol as it was said. This 
approach takes on the "honest but curious" threat model. 
This is sometimes referred to as the adversary's semi-
honest model. The following assumptions are made on the 
Threat Model: 

1. Every party is following the protocol faithfully: i.e., 
it carries out all of the programs and communicates 
the correct results to the parties specified in the 
program. 

2. The channel of communication is safe: no party can 
view any data that is not communicated directly 
with it. 

3. Every party has access to a private source of 
randomness, e.g., a private coin to toss 

4. Parties may use any data they have already seen 
and perform arbitrary processing to infer 
information. 

 

4. TECHNICAL DETAILS OF MPC 
 
To implement the MPC protocol for an honest majority, one 
would require a secret sharing protocol as a basic tool. A 
secret sharing scheme allows a dealer to share a secret   
among the parties so that any subset of      parties can 
reconstruct the secret from their private shares, yet no 
other subset of size less than      can learn anything 
about the secret. As discussed earlier such a scheme that 
fulfils the requirement is called                
threshold secret sharing scheme. Shamir’s secret scheme is 
such an example. 
 

4.1 Shamir’s Secret Sharing 
 

Shamir’s secret sharing scheme starts by building a 
polynomial on a two-dimensional plane. It is known that a 
polynomial of degree at most  , can be uniquely identified 
by   pairs of unique coordinates. After obtaining     : 
                    with unique    , then it implies that 
there exists a unique polynomial      such that 
           for every  . Furthermore, it also implies that it 
would be possible to find image      of any point defined 
with its ordinate as  . One way to construct such 
polynomial is via  Lagrange basis polynomials 
               , in which reconstruction is carried out by 
computing       ∑          

      .  
 
Suppose all computations are performed in the finite field 
  , for a prime      . Now, if a dealer wants to share a 

secret  , they would have to choose a random polynomial 
of degree at most   while keeping the constraint that 
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        . Specifically, the dealer chooses        and 
chooses other random coefficients                 and 

sets       ∑     
      . To distribute it, the dealer would 

then provide a share          ; to the      party for every 
           ,. This is the reason why it is required that 
     , so that different shares can be given to each party. 
If the parties want to reveal the secret share they can do 
that by reading the value for     . Any   parties out of 
     can reconstruct the polynomial by simply 
interpolating the polynomial, by using their share to 
eventually compute     . Also, it is shown that any subset 
of   or fewer parties cannot learn anything about  . This is 
due to the fact that they at least   are needed to 
reconstruct a unique polynomial and there exists a 
polynomial, going through   or fewer points and the point 
      for every possible       . Furthermore, since the 

polynomial was chosen at random, all polynomials are 
equally likely, and so all values of        are equally 

likely. 
 

4.2 Key Sharing Set-Up 
 

In most of the MPC protocols, the primary step to 
compute any function is to represent that function as a 
circuit, either in Boolean form or in arithmetic, as per the 
requirement. These circuits are comprised of primitive 
multiplication and addition gates. To perform MPC in an 
honest-majority scenario all the arithmetic circuits are 
constructed over a finite field    with      . One should 

note that these circuits are Turing-complete, which 
implies that in theory any function can be represented 
using these circuits. The protocol for semi-honest 
adversaries consists of the following phases: 

1. Input sharing: In this phase, each party would 
utilize Shamir's secret sharing to share their private 
input to all other parties. Each party would play as a 
dealer for their associated input wire, thereby 
sharing the input to all the other parties. In doing 
so, not a subset of minority parties will ever be able 
to learn anything about the shared values. 
Following this step, the parties hold secret shares of 
the values on each input wire. 

2. Set-Up: The set-up procedure uses the SPDZ 
protocol [13] 

a. A secret key        is chosen globally for all 

the   parties partaking in collaborative 
computation 

b. Each party holds a share    of global key   
such that: 

             

Here all the data will be represented by elements of   . If a 

dealer wants to share a secret value        among the 

parties, they can share as follows: 

1. Each party   will hold a share of data   . 

2. Furthermore, each party   will also hold a share of 
“MAC” share       

Such that,  
            

                    

From now on,     will be used to denote such a sharing of 
 . Before any further computations can be performed, 
some pre-processing is needed to be performed, therefore 
it is said that the protocol works in the pre-processing 
model. The result of this preprocessing is independent of 
the data on which it will be applied or the function it will 
be utilized.  

Three triples of shared values are generated:            , 
called Beaver Triplets [14]. This is achieved through a 
"Resharing Scheme" which involves the implementation of 
Fully Homomorphic Encryption Scheme, such that a public 
key    is shared among parties. For this, any 
Homomorphic scheme which uses LWE assumption, such 
as Brakerski–Vaikuntanathan scheme [15] can be used. 
Each party   holds share     of the secret key. They can 
come together to decrypt any ciphertext   , 
           

    .  

The Resharing-Scheme involves when a given ciphertext 
   encrypting the value   has to be shared so that each 
party can obtain   , such that    ∑  . It involves the 
following steps:  

1. Party   generates a random    and transmits 
    

            

2. All compute           ∑     
 

3. Each execute            
(     ) to obtain     

4. Party   sets              

5. Party     sets         
 
For the generation of     and    , the following technique 
is utilized: 

1. Party   generates a random    and transmits 
    

            

2. All compute      ∑     
 

3. All compute                

4. Execute Reshare on       so party   obtains       
 
For generating    , follow: 

1. All compute     from     and     

2. Get shares    via executing Reshare-Scheme on    ; 
also obtaining a    

  

3. All compute                
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4. Execute Reshare-Scheme       so party   obtains 
     . 

4.3 Arithmetic Operations 
 

Here, an interesting concept is employed, that every 
operation that needs to be carried out can be expressed by 
gates of addition and multiplication. In other words   and 
  are a set of Universal Gates over   . The inputs from a 

party are shared using the above-discussed scheme. 

1. Addition: 
Suppose two values     and     are shared. And one 

needs to perform an additional operation to get the 
result    . To do so, the parties will do execute the 
following individually: 

1.            

2.                     

  ∑    ∑        (∑   )  (∑  )

     

    ∑      ∑(     )  (     )

                 

From the above result, it is evident that any linear 
function can be computed. Example: 

Given constants      ,    and shared values     and     
one can compute  

                             
These values will be used to evaluate multiplication 
results. 

 
1. Multiplication: 

Note: Partially opening a share     means revealing 
   but not the MAC share. 

Suppose one needs to evaluate     from     and    : 

1. Choose a new triple (   ,    ,    ) from the 
precomputed list. 

2. Partially open     –     to obtain       
3. Partially open     –     to obtain       

4. Now compute the following function locally: 
                        

Note: Each multiplication requires interaction. If   is 
random then   is one-time pad encryption of  . 

                   
                    
            

                               
              
     

 
 
 

5. METHODOLOGY 
 
We will go through these 3 categories of use-cases for the 
framework being discussed. 

1. Feature Aggregation:  
In the first case, several parties have different 

feature sets and want the joint feature set to be 
measured without data sharing. For example, various 
providers of health care may each have a medical 
history but want to use the entire medical history of 
the patient to make accurate decisions while also 
safeguarding patient privacy. 

2. Data Labeling:  
There, one party holds feature data, while another 

party holds the correct labels, and all the parties want 
to learn a relationship without exchanging data. This is 
similar to the addition of features except that one party 
has labels rather than other features. Suppose, for 
example, that one healthcare provider had access to 
clinical results data in previous healthcare cases, while 
other individuals had access to health apps. The parties 
may want to build a model that predicts health 
outcomes based on characteristics without disclosing 
any information on health between parties. 

3. Model Hiding:  
One party has access to a trained model in this 

scenario, whilst another party wants to use that model 
for its data. The data and model must, however, be kept 
private. This can happen when a model is proprietary, 
costly to manufacture, and/or vulnerable to white-box 
attacks but has value for more than one party. In the 
past, the second party has had to send the data to the 
first to implement the model, but privacy-preserving 
methods can be used if the data is required to be kept 
safe and not exposedWe tested the ML models on the 
MNIST dataset  

This dataset consists of 60,000 images of handwritten 
digits. Each image is a pixel array having dimensions of 
28x28. Here each pixel is represented by a number in 
range 0-255 denoting its grey level. 50,000 images were 
used as the training part of the dataset, 10,000 images for 
testing. 
 

5.1 Feature Aggregation & Data Labelling 
 

For the use-case of feature aggregation and data 
labeling, a neural network was built that distinguishes 
between zero and non-zero number images. Here the 
feature dataset was split in such a way, that it results in 
Alice having the first 28 x 20 features and Bob having the 
last 28 x 8 features. One way to think of this split is that 
Alice has the (roughly) top 2/3rds of each image, while 
Bob has the bottom 1/3rd of each image. Alice and bob 
collaborate in training on the dataset by establishing a 
communication channel through MPI. This interface is 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 07 Issue: 07 | July 2020                 www.irjet.net                                                                     p-ISSN: 2395-0072 

 

© 2020, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 979 
 

needed for the framework to communicate among the 
parties. Consequently, the world-size parameter for MPI 
has been kept as 2. The training is run for 10 epochs, each 
for Alice & Bob. Here the batch size is kept as 16. The 
learning rate was kept as 0.001. The network summary is 
as follows: 
 

 
 

Fig-1: Model Architecture 
 
1. Convolution Layer: The input image is 28 * 28. 

The convolution has windows, or kernels, of size 5 
* 5, and a padding of 0. 

2. ReLu Activation Function: This layer applies the 
ReLu function to each of the incoming values from 
the previous layer. 

3. Max-Pooling: Performs a max-pooling and 
reduces the size from 24 * 24 to 12 *12 

4. Linear Layer 1: Applies a linear transformation to 
the incoming data of batch size 16, each of 
dimension 12 * 12 and produces an output of 
dimension 100. 

5. Linear Layer 1: Applies a linear transformation to 
the incoming data of batch size 16, each of 
dimension 1*100 and produces an output of 
dimension 2. 

An accuracy of 93% was achieved. 
 

5.2 Model Hiding 
 

In this scenario, Alice is having a pre-trained model 
with all its weights and biases stored in the disk. Bob 
would like to perform classification on the MNIST dataset, 
without revealing the dataset to Alice. The approach here 
would be to encrypt the weight and biases on Alice, along 
with Bob also encrypting his dataset tensor. Let’s start 
with a simple neural network with the following 
architecture. 
 

 
Fig-2: Model Architecture 

 
This model serves as a dummy model for Alice, into which 
the pre-trained model can be initialized. Loading a model 
will assert the correctness of the model architecture 
provided against the model loaded. A dummy input would 
also be needed, which should have the same shape as the 
model expects the input tensor to have. Here the dummy 
input is chosen as a tensor of shape        . The 
framework allows the dummy input to seep through every 
layer of the model and encrypt all the weights and biases 
that it comes across.  This results in a yield of output 
tensor whose values have been encrypted, with a size of 
          . Furthermore, an accuracy of 96% is achieved. 
 

6. BENCHMARKING 
 
6.1 Runtimes 

 
Here, various runtimes of mathematical functions are 

studied. As discussed, the MPC can perform any 
computation that can be represented by a series of 
multiplication and addition. In other words,   and   
multiplication forms the set of universal gates for   . 

Therefore, every complicated mathematical function has 
to be represented in addition or multiplication. For 
instance, the square root function can be implemented 
using Newton-Raphson's method of approximation. 
Following observations are madebench. 

1. Function runtimes are averaged over 10 runs 
using a random tensor of size          . 

2.     and        are excluded as they take 
considerably longer 

 

 
Fig-3: Crypten Mathematical Function Runtimes 
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Fig-4: Crypten vs Plaintext Runtimes 

 

6.2 Errors 
 

1. Function errors are over the domain         with 
step size 0.01 

2.    ,    , and     are over the domain        with 
step size 0.001 

 

 
Fig-5: Crypten Mathematical Function Absolute Errors 

 

 
Fig-6: Crypten Mathematical Function Relative Errors 

 

6.2 Models 
 

We trained the models on Gaussian clusters for binary 
classification. It Uses SGD with 5k samples, 20 features, 
over 20 epochs, and 0.1 learning rate. The Feedforward 
has three hidden layers with intermediary RELU and final 
sigmoid activation. 
 

As we can observe in the result, that model training time is 
considerably high, with as far going to 14 times, but the 
real advantage lies in training it on encrypted dataset. This 
inference on encrypted dataset yields an accuracy that is 
similar to that of plaintext. 
 

 
Fig-7: Crypten Model Training Time 

 

 
Fig-8: Crypten Model Accuracy 

 
It can be concluded here that, although Crypten makes 
relative errors in computation, most prominently in 
trigonometric approximations of     and    , these errors 
get diluted in the overall inference of the model, thereby 
maintaining a similar accuracy as plaintext models. 
 

7. CONCLUSION 
 
Cloud computing introduces a new approach to 
information management and retrieval. The cloud 
comprises a massive, elastic, powerful pool of computer 
networks. Cloud services include software as a service 
(Saas), platform as a service (Paas ), and infrastructure as 
a service ( Iaas). Services offered by cloud providers 
include: These cloud-based computing infrastructures 
offer such machine-to-deep learning solutions as services 
that enable systems to be scalable, accessible, and 
maintained. Unfortunately, such an approach involves the 
treatment of sensitive data, e.g. personal images or videos, 
medical diagnosis, and data that may reveal ethnic 
backgrounds and political opinions but also genetic, 
biometric and health data. 
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The protection of consumer data privacy in the machine-
learning as-a-service computing environment includes the 
use of encryption mechanisms such as homomorphic 
encryption and MPC, allowing users to work with 
encrypted data. Users would locally encrypt their data 
using a public key in such a way that they can send them 
to an appropriate Cloud-based machine learning provider 
and receiver of the authenticated computing results that 
are decrypted locally through their private key. 
Specifically, such architecture enables encryption and 
decryption phases performed on the user device from the 
processing performed by the Cloud-based computing 
infrastructure to be decoupled. Such a HE centralized 
architecture protects data protection while maintaining 
scalability, flexibility, and high efficiency of a Cloud-based 
system. 
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