
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 974

Privacy-Preserving MLaas on Encrypted Data using Crypten

Dost Arora1, Jibran Mukhtar Mattoo2, Merin Meleet3

1Student, Dept. Information Science and Engineering, R.V. College of Engineering, Karnataka, India
2Student, Dept. Information Science and Engineering, R.V. College of Engineering, Karnataka, India

3Assistant Professor, Dept. Information Science and Engineering, R.V. College of Engineering, Karnataka, India
--***---
Abstract - If one needs to apply any machine learning
approach to a problem that requires some sensitive or
private data such as medical or financial, it becomes
imperative that close attention must be paid to privacy and
security of data apart from its accuracy. This paper focuses
discussion on a machine learning methodology that allows
inference on encrypted data. This allows a data owner to
send their data in an encrypted form to a cloud service that
hosts the network. The encryption ensures that the data
remains confidential since the cloud does not have access to
the keys needed to decrypt it. It is achieved by using the
protocol defined for FHE (Fully Homomorphic Encryption)
and Secure MPC. In this paper, it is demonstrated that
neural networks can be trained with the aid of encrypted
data such that predictions can be retrieved in encrypted
form. The research findings indicate that it provides
appropriate training and classification that not only
preserves privacy but is also efficient.

Key Words: Machine Learning, Privacy, Security,
Homomorphic Encryption, Crytography, Multi-Party
Computation, MLaaS

1.INTRODUCTION

In spite of the growing popularity of machine learning
prediction services in recent years, it is rare that the
privacy of the consumer's information data is regarded as
the top priority in their deployment. However, it is
important to realize that we cannot eliminate this privacy
requirement, whenever they want to apply machine
learning to problems involving sensitive data. An example
of such a case could be in medical applications. Suppose a
hospital decides to accelerate its medical diagnosis using
medical imaging. It could be that the hospital does not
have sufficient labeled data to train statistical models. This
could nevertheless work with a third-party service
provider which would be able to provide these
projections, but in so doing the hospital should satisfy all
the ethical and legal criteria about patient information
sensitivity. This paper discusses an approach that would
allow hospitals to use such a valuable service without
sacrificing patient privacy. In the protocol discussed, any
private information could be encrypted by the hospital
and then sent to the prediction service that operates in the
cloud in an encrypted form. The cloud would then, be able
to process the encrypted data and compute predictions

over it, which would be sent back as results to the hospital
that can decrypted and read by it.

Many machine-learning programmers are accustomed to
using frameworks in Python language like Tensorflow,
Scikit-learn, and PyTorch. These frameworks provide
support for various high-level data types like real vectors,
matrices, and many non-linear functions such as the
logistic function and ReLu. For a modern MPC package, it
becomes almost impossible for any data scientist to
recreate and re-define all these frequently taken-for-grant
primitives that are used with Machine-learning. Also, it is
very expensive for any MPC expert to rewrite all the
algorithms that they may require in a machine learning
application. It is therefore important to design a MPC front
end that is simple and convenient to today's Python and
PyTorch community. In fact, many machine learning
frameworks use Python as a frontend language and offer
Numpy-style array operations to simplify machine
learning.

This paper studies such a framework called CrypTen (by
Facebook) and demonstrates its effectiveness in
protecting the privacy of users by employing techniques of
collaborative machine learning and statistical inference.
We do so by studying various performance metrics
involved in data analysis and inference gathering such as
model accuracy, model training time, the robustness of
encryption, etc. It is further shown that it delivers an
intuitive end-to-end solution that enables various Python
interfaces that are similar to those from PyTorch, one of
the most popular Python packages, as well as a variety of
functions frequently used in machine learning.

2.RELATED WORK

In regard to machine learning, there are also other non-
cryptography-based approaches that preserve privacy. In
[1], Shokri and Shmatikov propose an approach that
allows the neural network model to learn from a
distributed dataset that enables multiple parties to
preserve their privacy by refraining from sharing their
input datasets. The main aim of the paper was to present
an approach that can allow the data to be decentralized so
that various datasets which involve sensitive information
like user’s personal photos, voice recordings are not
required to be uploaded to any central repository for it to
be consumed by a machine learning model. Their idea is
built on differential privacy, where each party uses its data

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 975

to build the model and only shares a minor fraction of the
parameters with other parties. Their key innovation is to
employ selective sharing of the model parameters. Since
the stochastic gradient descent algorithm can be
parallelized and can run asynchronously, it is feasible for
participants who are collaborating in the training stage to
benefit from other participants' models, without sharing
their inputs explicitly.

In [2] Abadi et al. propose a framework for differentially
private training of neural networks. This framework
includes a stochastic gradient descent algorithm that is
differentially private in nature and hyperparameter
tuning. In doing so they develop new algorithmic
techniques and implementation strategies using the
TensorFlow library and further provide an analysis of
privacy costs involved within the framework of
differential privacy. It has been observed that differential
privacy-based approaches are required to make a trade-off
between the privacy of the model and its utility which in
turn affects its accuracy. Our model of threat is distinct to
that of differential privacy. The server doesn't really learn
anything at all about the model in our methodology
whereas the server will learn the model in differential
privacy. Reverse engineering cannot be used either,
because the code is encrypted. Since the model is
encrypted, reverse engineering cannot be used either.

In [3], the authors develop a framework that uses a Fully
Homomorphic encryption scheme based on HElib[4]. Such
frameworks seem to be slow because of the Heavy
computation involved. Using this framework they infer
various statistics including Histogram count, k-percentile,
principal component analysis, contingency table, etc. They
perform an empirical analysis of these statistics on various
categories of datasets, including categorical data, ordinal
data, and numerical data, belonging to UCI Machine
Learning Repository [5].

In [6], the authors develop a multi-leveled framework that
exposes various primitives of SEAL [7] to TensorFlow.
Here SEAL serves as the encryption layer and provides
various encryption protocols in the context of Fully
Homomorphic Encryption which includes schemes such as
BFV[9] and CKKS[8]. Such a framework is similar to
CryptoNets[10] model, but the authors are able to improve
the inference time of the machine learning model by
speeding up expensive operations such as squared
activation function by sparsifying the network activations
of the model as described in [11]. The authors also
introduce a novel approach of encrypted transfer learning
that allows the client to query a cloud that can expose
embeddings obtained from variational autoencoder
learning of unlabelled dataset such that it can be
transferred to client downstream.

3.BACKGROUND

MPC has been studied for many decades, but recently
complicated calculations have become feasible because of
newly discovered enhancements in implementation such
as the availability of faster hardware and extremely simple
AES block cipher deployments and the exposure to easy
networking. Circuits can now be evaluated at up to 7
billion gates per second, provided that the measurement is
viewed as a Boolean circuit. MPC as a cryptographic
paradigm allows for computational collaboration.
Nevertheless, MPC suffers from drawbacks for the
purposes discussed in this study, such as, it is still
infeasible to run generic MPC protocols over many remote
parties especially due to high communication costs.

The library used is a PyTorch-based machine learning
platform that allows you to quickly test and create
machine learning methods using safe computer
technology. It offers the ability, along with and similar to
the PyTorch API, to create models when measuring
encrypted data without exposing the sensitive data. It is
ensured that confidential or otherwise private information
stays private while enabling model inferences and training
on encrypted information that can be aggregated between
different organizations or users.

The framework utilizes secure multiparty computation
(MPC) as its cryptographic paradigm. Secure multi-party
computation (MPC) enables users to evaluate a function
without disclosing confidential information other than the
outcome. MPC often uses several cryptographic techniques
with different priorities of efficiency and protection, e.g.
disordered circuits and secret sharing. After more than 30
years of growth, one started seeing real-world data
processing applications start using MPC. Although there
are still some challenges hindering the mainstream use of
efficient computing techniques.

3.1 Secure Multi-Party Computation (MPC)

Assume that there are parties such that each party
holds a private value . The goal is to evaluate a function
 so that each party will learn the result, but
no information about each other’s inputs beyond what
can be inferred from the result. Some MPC techniques are
generic in the sense that they can be applied to a broad
range of functions (such as Boolean circuits), while other
techniques may be designed for a specific set of functions

3.2 Secret Sharing

Secret sharing is designed to allow the storage of data
to be distributed so that no information about each share
can be discovered but that the entire data can be
recovered when combined. For example, assume is a
number in the range . One can pick a random
number uniformly sampled from the same range and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 976

create a secret share such that in one location is
recorded, and in another location is
recorded. Since both r and are uniformly
distributed in , each one of them in isolation does not
reveal any information about . However, having access to
both allows computing the secret . It is easy to see that
two such secret shares can be added to create a secret
share of the sum of the secrets. Therefore, the type of
secret sharing presented here provides an efficient
method to implement an MPC protocol for the addition
function.

3.3 Security of MPC

A number of MPC security definitions have been put
forward [12], and they aim to ensure a number of key
security characteristics that are generally sufficient to
capture the most (if not all) multi-party computation
tasks. The most important of these properties are now
defined. In so doing let’s take an example where Alice, Bob,
and Charlie want to find out what their highest wages are
without disclosing their respective wages.

1. Privacy: No party must discover more than its
outcome authorized. In particular, only information
about the inputs of others should be learned from
the output itself. In the above case, where the only
highest pay is reported, it is apparent that all other
wages are lower than the highest. Nonetheless,
nothing more about the other wages should be
known.

2. Correctness: The correct output is assured for each
party. Continuing with the instance of salaries
indicates that the individual with the highest wage
is expected to benefit.

3. Guaranteed Output Delivery: Corrupted parties
cannot stop honest parties from getting their
results. In other words, by performing a DOS attack,
the attacker won't be able to disable the system.

4. Fairness: Corrupted parties should receive their
results only if they receive their results. The
scenario in which a corrupt party gets output and
an honest party should not happen. For eg, in the
event of contract signing, this property can be
crucial. Specifically, the possession of the signed
contract by the dishonest party would be very
problematic if it is not present with an honest party.
Note that guaranteed performance implies fairness
of computation, but not necessarily the converse.

5. Independence of Input: Corrupted parties must
select their input regardless of the honest parties'
input. In scenarios like secured bidding where bids
are held, and parties have to set their bids
independently of others, this property becomes

critical. It should be noted that input independence
does not mean privacy.

The above definition of protection doesn't answer one
very critical aspect: the strength of the adversary targeting
protocol execution. The adversary controls a sub-set of the
parties participating in the protocol as it was said. This
approach takes on the "honest but curious" threat model.
This is sometimes referred to as the adversary's semi-
honest model. The following assumptions are made on the
Threat Model:

1. Every party is following the protocol faithfully: i.e.,
it carries out all of the programs and communicates
the correct results to the parties specified in the
program.

2. The channel of communication is safe: no party can
view any data that is not communicated directly
with it.

3. Every party has access to a private source of
randomness, e.g., a private coin to toss

4. Parties may use any data they have already seen
and perform arbitrary processing to infer
information.

4. TECHNICAL DETAILS OF MPC

To implement the MPC protocol for an honest majority, one
would require a secret sharing protocol as a basic tool. A
secret sharing scheme allows a dealer to share a secret
among the parties so that any subset of parties can
reconstruct the secret from their private shares, yet no
other subset of size less than can learn anything
about the secret. As discussed earlier such a scheme that
fulfils the requirement is called
threshold secret sharing scheme. Shamir’s secret scheme is
such an example.

4.1 Shamir’s Secret Sharing

Shamir’s secret sharing scheme starts by building a
polynomial on a two-dimensional plane. It is known that a
polynomial of degree at most , can be uniquely identified
by pairs of unique coordinates. After obtaining :
 with unique , then it implies that
there exists a unique polynomial such that
 for every . Furthermore, it also implies that it
would be possible to find image of any point defined
with its ordinate as . One way to construct such
polynomial is via Lagrange basis polynomials
 , in which reconstruction is carried out by
computing ∑

 .

Suppose all computations are performed in the finite field
 , for a prime . Now, if a dealer wants to share a

secret , they would have to choose a random polynomial
of degree at most while keeping the constraint that

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 977

 . Specifically, the dealer chooses and
chooses other random coefficients and

sets ∑
 . To distribute it, the dealer would

then provide a share ; to the party for every
 ,. This is the reason why it is required that
 , so that different shares can be given to each party.
If the parties want to reveal the secret share they can do
that by reading the value for . Any parties out of
 can reconstruct the polynomial by simply
interpolating the polynomial, by using their share to
eventually compute . Also, it is shown that any subset
of or fewer parties cannot learn anything about . This is
due to the fact that they at least are needed to
reconstruct a unique polynomial and there exists a
polynomial, going through or fewer points and the point
 for every possible . Furthermore, since the

polynomial was chosen at random, all polynomials are
equally likely, and so all values of are equally

likely.

4.2 Key Sharing Set-Up

In most of the MPC protocols, the primary step to
compute any function is to represent that function as a
circuit, either in Boolean form or in arithmetic, as per the
requirement. These circuits are comprised of primitive
multiplication and addition gates. To perform MPC in an
honest-majority scenario all the arithmetic circuits are
constructed over a finite field with . One should

note that these circuits are Turing-complete, which
implies that in theory any function can be represented
using these circuits. The protocol for semi-honest
adversaries consists of the following phases:

1. Input sharing: In this phase, each party would
utilize Shamir's secret sharing to share their private
input to all other parties. Each party would play as a
dealer for their associated input wire, thereby
sharing the input to all the other parties. In doing
so, not a subset of minority parties will ever be able
to learn anything about the shared values.
Following this step, the parties hold secret shares of
the values on each input wire.

2. Set-Up: The set-up procedure uses the SPDZ
protocol [13]

a. A secret key is chosen globally for all

the parties partaking in collaborative
computation

b. Each party holds a share of global key
such that:

Here all the data will be represented by elements of . If a

dealer wants to share a secret value among the

parties, they can share as follows:

1. Each party will hold a share of data .

2. Furthermore, each party will also hold a share of
“MAC” share

Such that,

From now on, will be used to denote such a sharing of
 . Before any further computations can be performed,
some pre-processing is needed to be performed, therefore
it is said that the protocol works in the pre-processing
model. The result of this preprocessing is independent of
the data on which it will be applied or the function it will
be utilized.

Three triples of shared values are generated: ,
called Beaver Triplets [14]. This is achieved through a
"Resharing Scheme" which involves the implementation of
Fully Homomorphic Encryption Scheme, such that a public
key is shared among parties. For this, any
Homomorphic scheme which uses LWE assumption, such
as Brakerski–Vaikuntanathan scheme [15] can be used.
Each party holds share of the secret key. They can
come together to decrypt any ciphertext ,

 .

The Resharing-Scheme involves when a given ciphertext
 encrypting the value has to be shared so that each
party can obtain , such that ∑ . It involves the
following steps:

1. Party generates a random and transmits

2. All compute ∑

3. Each execute
() to obtain

4. Party sets

5. Party sets

For the generation of and , the following technique
is utilized:

1. Party generates a random and transmits

2. All compute ∑

3. All compute

4. Execute Reshare on so party obtains

For generating , follow:

1. All compute from and

2. Get shares via executing Reshare-Scheme on ;
also obtaining a

3. All compute

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 978

4. Execute Reshare-Scheme so party obtains
 .

4.3 Arithmetic Operations

Here, an interesting concept is employed, that every
operation that needs to be carried out can be expressed by
gates of addition and multiplication. In other words and
 are a set of Universal Gates over . The inputs from a

party are shared using the above-discussed scheme.

1. Addition:
Suppose two values and are shared. And one

needs to perform an additional operation to get the
result . To do so, the parties will do execute the
following individually:

1.

2.

 ∑ ∑ (∑) (∑)

 ∑ ∑() ()

From the above result, it is evident that any linear
function can be computed. Example:

Given constants , and shared values and
one can compute

These values will be used to evaluate multiplication
results.

1. Multiplication:

Note: Partially opening a share means revealing
 but not the MAC share.

Suppose one needs to evaluate from and :

1. Choose a new triple (, ,) from the
precomputed list.

2. Partially open – to obtain
3. Partially open – to obtain

4. Now compute the following function locally:

Note: Each multiplication requires interaction. If is
random then is one-time pad encryption of .

5. METHODOLOGY

We will go through these 3 categories of use-cases for the
framework being discussed.

1. Feature Aggregation:
In the first case, several parties have different

feature sets and want the joint feature set to be
measured without data sharing. For example, various
providers of health care may each have a medical
history but want to use the entire medical history of
the patient to make accurate decisions while also
safeguarding patient privacy.

2. Data Labeling:
There, one party holds feature data, while another

party holds the correct labels, and all the parties want
to learn a relationship without exchanging data. This is
similar to the addition of features except that one party
has labels rather than other features. Suppose, for
example, that one healthcare provider had access to
clinical results data in previous healthcare cases, while
other individuals had access to health apps. The parties
may want to build a model that predicts health
outcomes based on characteristics without disclosing
any information on health between parties.

3. Model Hiding:
One party has access to a trained model in this

scenario, whilst another party wants to use that model
for its data. The data and model must, however, be kept
private. This can happen when a model is proprietary,
costly to manufacture, and/or vulnerable to white-box
attacks but has value for more than one party. In the
past, the second party has had to send the data to the
first to implement the model, but privacy-preserving
methods can be used if the data is required to be kept
safe and not exposedWe tested the ML models on the
MNIST dataset

This dataset consists of 60,000 images of handwritten
digits. Each image is a pixel array having dimensions of
28x28. Here each pixel is represented by a number in
range 0-255 denoting its grey level. 50,000 images were
used as the training part of the dataset, 10,000 images for
testing.

5.1 Feature Aggregation & Data Labelling

For the use-case of feature aggregation and data
labeling, a neural network was built that distinguishes
between zero and non-zero number images. Here the
feature dataset was split in such a way, that it results in
Alice having the first 28 x 20 features and Bob having the
last 28 x 8 features. One way to think of this split is that
Alice has the (roughly) top 2/3rds of each image, while
Bob has the bottom 1/3rd of each image. Alice and bob
collaborate in training on the dataset by establishing a
communication channel through MPI. This interface is

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 979

needed for the framework to communicate among the
parties. Consequently, the world-size parameter for MPI
has been kept as 2. The training is run for 10 epochs, each
for Alice & Bob. Here the batch size is kept as 16. The
learning rate was kept as 0.001. The network summary is
as follows:

Fig-1: Model Architecture

1. Convolution Layer: The input image is 28 * 28.

The convolution has windows, or kernels, of size 5
* 5, and a padding of 0.

2. ReLu Activation Function: This layer applies the
ReLu function to each of the incoming values from
the previous layer.

3. Max-Pooling: Performs a max-pooling and
reduces the size from 24 * 24 to 12 *12

4. Linear Layer 1: Applies a linear transformation to
the incoming data of batch size 16, each of
dimension 12 * 12 and produces an output of
dimension 100.

5. Linear Layer 1: Applies a linear transformation to
the incoming data of batch size 16, each of
dimension 1*100 and produces an output of
dimension 2.

An accuracy of 93% was achieved.

5.2 Model Hiding

In this scenario, Alice is having a pre-trained model
with all its weights and biases stored in the disk. Bob
would like to perform classification on the MNIST dataset,
without revealing the dataset to Alice. The approach here
would be to encrypt the weight and biases on Alice, along
with Bob also encrypting his dataset tensor. Let’s start
with a simple neural network with the following
architecture.

Fig-2: Model Architecture

This model serves as a dummy model for Alice, into which
the pre-trained model can be initialized. Loading a model
will assert the correctness of the model architecture
provided against the model loaded. A dummy input would
also be needed, which should have the same shape as the
model expects the input tensor to have. Here the dummy
input is chosen as a tensor of shape . The
framework allows the dummy input to seep through every
layer of the model and encrypt all the weights and biases
that it comes across. This results in a yield of output
tensor whose values have been encrypted, with a size of
 . Furthermore, an accuracy of 96% is achieved.

6. BENCHMARKING

6.1 Runtimes

Here, various runtimes of mathematical functions are

studied. As discussed, the MPC can perform any
computation that can be represented by a series of
multiplication and addition. In other words, and
multiplication forms the set of universal gates for .

Therefore, every complicated mathematical function has
to be represented in addition or multiplication. For
instance, the square root function can be implemented
using Newton-Raphson's method of approximation.
Following observations are madebench.

1. Function runtimes are averaged over 10 runs
using a random tensor of size .

2. and are excluded as they take
considerably longer

Fig-3: Crypten Mathematical Function Runtimes

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 980

Fig-4: Crypten vs Plaintext Runtimes

6.2 Errors

1. Function errors are over the domain with
step size 0.01

2. , , and are over the domain with
step size 0.001

Fig-5: Crypten Mathematical Function Absolute Errors

Fig-6: Crypten Mathematical Function Relative Errors

6.2 Models

We trained the models on Gaussian clusters for binary
classification. It Uses SGD with 5k samples, 20 features,
over 20 epochs, and 0.1 learning rate. The Feedforward
has three hidden layers with intermediary RELU and final
sigmoid activation.

As we can observe in the result, that model training time is
considerably high, with as far going to 14 times, but the
real advantage lies in training it on encrypted dataset. This
inference on encrypted dataset yields an accuracy that is
similar to that of plaintext.

Fig-7: Crypten Model Training Time

Fig-8: Crypten Model Accuracy

It can be concluded here that, although Crypten makes
relative errors in computation, most prominently in
trigonometric approximations of and , these errors
get diluted in the overall inference of the model, thereby
maintaining a similar accuracy as plaintext models.

7. CONCLUSION

Cloud computing introduces a new approach to
information management and retrieval. The cloud
comprises a massive, elastic, powerful pool of computer
networks. Cloud services include software as a service
(Saas), platform as a service (Paas), and infrastructure as
a service (Iaas). Services offered by cloud providers
include: These cloud-based computing infrastructures
offer such machine-to-deep learning solutions as services
that enable systems to be scalable, accessible, and
maintained. Unfortunately, such an approach involves the
treatment of sensitive data, e.g. personal images or videos,
medical diagnosis, and data that may reveal ethnic
backgrounds and political opinions but also genetic,
biometric and health data.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 981

The protection of consumer data privacy in the machine-
learning as-a-service computing environment includes the
use of encryption mechanisms such as homomorphic
encryption and MPC, allowing users to work with
encrypted data. Users would locally encrypt their data
using a public key in such a way that they can send them
to an appropriate Cloud-based machine learning provider
and receiver of the authenticated computing results that
are decrypted locally through their private key.
Specifically, such architecture enables encryption and
decryption phases performed on the user device from the
processing performed by the Cloud-based computing
infrastructure to be decoupled. Such a HE centralized
architecture protects data protection while maintaining
scalability, flexibility, and high efficiency of a Cloud-based
system.

8. REFERENCES

[1] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-

Preserving Deep Learning. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and
Communications Security (CCS ’15). Association for
Computing Machinery, New York, NY, USA, 1310–
1321.
DOI:https://doi.org/10.1145/2810103.2813687.

[2] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
2016. Deep Learning with Differential Privacy. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’16).
Association for Computing Machinery, New York, NY,
USA, 308–318.
DOI:https://doi.org/10.1145/2976749.2978318

[3] LU, W., KAWASAKI, S., AND SAKUMA, J. Using fully
homomorphic encryption for statistical analysis of
categorical, ordinal and numerical data. IACR
Cryptology ePrint Archive 2016 (2016), 1163

[4] Halevi S., Shoup V. (2014) Algorithms in HElib. In:
Garay J.A., Gennaro R. (eds) Advances in Cryptology –
CRYPTO 2014. CRYPTO 2014. Lecture Notes in
Computer Science, vol 8616. Springer, Berlin,
Heidelberg

[5] M. Lichman, “UCI machine learning repository,” 2013.
[Online]. Available: http://archive.ics.uci.edu/ml

[6] van Elsloo, T., Patrini, G., & Ivey-Law, H. (2019).
SEALion: a Framework for Neural Network Inference
on Encrypted Data. arXiv preprint arXiv:1904.12840.

[7] Laine, K., & Player, R. (2016). Simple encrypted
arithmetic library-seal. Technical report, Technical
report.

[8] Cheon J.H., Kim A., Kim M., Song Y. (2017)
Homomorphic Encryption for Arithmetic of
Approximate Numbers. In: Takagi T., Peyrin T. (eds)
Advances in Cryptology – ASIACRYPT 2017.
ASIACRYPT 2017. Lecture Notes in Computer Science,
vol 10624. Springer, Cham

[9] Fan, J., & Vercauteren, F. (2012). Somewhat Practical
Fully Homomorphic Encryption. IACR Cryptology
ePrint Archive, 2012, 144.

[10] Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.,
Naehrig, M., & Wernsing, J. (2016, June). Cryptonets:

Applying neural networks to encrypted data with high
throughput and accuracy. In International Conference
on Machine Learning (pp. 201-210).

[11] Louizos, C., Welling, M., & Kingma, D. P. (2017).
Learning Sparse Neural Networks through
Regularization. arXiv preprint arXiv:1712.01312.

[12] Lindell, Yehuda. “Secure Multiparty Computation
(MPC).” IACR Cryptol. EPrint Arch., vol. 2020, 2020, p.
300.

[13] Damgård I., Pastro V., Smart N., Zakarias S. (2012)
Multiparty Computation from Somewhat
Homomorphic Encryption. In: Safavi-Naini R., Canetti
R. (eds) Advances in Cryptology – CRYPTO 2012.
CRYPTO 2012. Lecture Notes in Computer Science, vol
7417. Springer, Berlin, Heidelberg

[14] Beaver D. (1992) Efficient Multiparty Protocols Using
Circuit Randomization. In: Feigenbaum J. (eds)
Advances in Cryptology — CRYPTO ’91. CRYPTO 1991.
Lecture Notes in Computer Science, vol 576. Springer,
Berlin, Heidelberg

[15] Brakerski Z., Vaikuntanathan V. (2011) Fully
Homomorphic Encryption from Ring-LWE and
Security for Key Dependent Messages. In: Rogaway P.
(eds) Advances in Cryptology – CRYPTO 2011.
CRYPTO 2011. Lecture Notes in Computer Science, vol
6841. Springer, Berlin, Heidelberg

