
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1008

Android Vulnerability Analysis and Approach of Malware Detection

Hemesh Sawakar1, Prof. Kiran K. Joshi2

1M. Tech Student, Dept of Computer Engineering and IT, VJTI, Mumbai, Maharashtra, India

2Assistant Professor, Dept of Computer Engineering and IT, VJTI, Mumbai, Maharashtra, India

---***--
Abstract – Android, google’s open source operating system
of smartphone devices, tablets, TVs is the most popular one
and widely used around the globe. Google play store hosting
many android applications cannot check for all vulnerabilities
in applications which leaves the risk of those being exploited
by malwares. Most android users with excitement for sake of
getting things done by using app do not bother to correlate the
functions of app with app permissions or rather are unaware
of how the user’s data will be used by an app from given
allowed permission. Also, on android devices before version
Marshmallow If one wants to download an app then (s)he has
to accept all permission even if some look unacceptable.
Majority of android devices have newer operating system with
enhanced security, and permission control which follows
request on access need of component. Still many data leak
incidents are reported which is a growing concern. There is no
easy way than careful inspection and analysis from security
experts and researchers to know if user’s privacy sensitive
information is being leaked or safe.

In this paper, we are presenting some literature work
happened in this area so far which addresses such problems
with their concepts, own approaches and techniques. Also from
our understanding we are proposing generic architecture to
term an app as data leaking, vulnerable/ malware infected.

Key Word: Android, vulnerability, malware, Information

flow, repackaging, obfuscation, reverse engineering,

sandboxing, static analysis, dynamic analysis

1. INTRODUCTION

 The next generation of open operating systems won’t be on
desktops or mainframes but on the small mobile devices we
carry every day [5]. As said we see it happening. Many new
android versions are released every year by google. The
openness of these new environments is leading to new
applications on play store that has enabled greater
integration. Android smartphones come with stock androids
which have native apps pre-installed. Apart from that user
can download third part apps available on playstore by
accepting permissions to use data such as contact
information, phone status and identity, pictures, audios,
videos, accounts, location. There was no partial permission
acceptance concept to download an app, earlier. Either
accept all and install; or do not, even If one permission is
unacceptable. With enhancements it changed but it is user
who are most of the times do not know or fail to realise
relation between app functionality and asked permissions.

Some of such permissions leak user private data. It can be
sold to companies collecting data or advertising sites. It is a
growing concern since data in today’s time is one of the
valuable asset which should not be getting used for
spamming, or harming one’s reputation.

Leaking user data can be done by changing information flow
control by injecting malwares in android applications. While
playstore applications considered as malware free, but there
can be some apps which are not hosted on playstore provide
unique features; or some with same basic functionality as
their official playstore counterpart but some additional
functionality which attracts user to download them.
applications developers of such applications can have malice
intents. In some countries playstore is not available due to
laws and regulations. There are several vulnerabilities found
in android OS which can lead to exploitations. Common
vulnerabilities and exposure details can be found on CVE
[11] site with CVE ID, type, CVSS score, access type and
complexity. As per their data, results are as shown in
following charts.

Chart 1: Type and count of vulnerabilities

Chart 2: Type and % count of vulnerabilities

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1009

Out of these, one or more vulnerabilities can lead to leakage
of user sensitive information by changing information flow.
Benign applications can be injected with malwares to steal
the information by doing modification in source code of
application and intelligently hiding malware by making
malware code unintelligible by a process called obfuscation.
Hence, it is necessary to perform analyses of android
applications to prove their benignity.

2. LITERATURE REVIEW

Theoretically, app stores have the potential to screen the
published apps which contain unsafe code, bug or malware.
However, practically they fail to run thorough checks to
detect information disclosure and dangerous misuse of
permissions and Android APIs. No app store performs
runtime tests, nor do they exclude apps signed with the same
key corresponding to different developer [8]. An automated
full proof mechanism is necessary which can screen apps
awaiting publish. Apps on google playstore are not approved
manually, unlike apple store. Google play protect has its
malware scanners which to certain extent perform some
levels of security screenings. But they are not enough.
Harmful apps may bypass it and get published. There is need
of constant checking of published apps for hidden malwares
and data breach. Currently, it is being done manually by
researchers, security experts, organizations and labs
working in cyber security areas. various kinds of security
analyses techniques are performed in this mainly, static or
dynamic code analysis.

2.1 Information Flow Control

Information flow Control is an essential and precise
mechanism for tracking of information throughout a system
such that information is handled safely and with regard to
security triads. There are usually Implicit flows and explicit
flows of information. Explicit flow is when there happens
direct transfer, copying data or rather in terms of sensitive
information we call transfer of secret between variables of
different security labels. This is more of a data flow. In
implicit flow there are certain conditional statements such as
if-else. Condition results in change of control flow which in
turn decides data flow. In android, flow analysis greatly
differs from conventional control flow and data flow graphs.
Flow graphs are fragmented in android ecosystem. The
reason behind is component-based nature of android apps.
Inter component communication (ICC) between independent
components such as activities, services, content providers
through intent passing allows arbitrary ordered execution of
components depending on user interactions and order of
system events taking place [9].

Control flow and data flow analysis are the methods of
formal static analysis. Static analysis is analysis performed
on still code which is not under execution. It provides the
large coverage of flows. But in real setting all of those flows

might not occur when code is under execution. In dynamic
analysis, apps are executed/emulated in a sandboxed
environment, in order to keep monitoring their activities via
generated log information and identify anomalous
behaviours, that are difficult with static analysis otherwise
[1].

2.2 Repackaging

Repackaging is a process of rebuilding an android
applications package file (.apk) file, signing it using tool such
as keytool ,jarsigner. and optimising it using obfuscation
tools. To do this all, one needs to decompile android
applications package file (.apk) using tool such as apktool.
and then reverse engineer decompiled file to obtain java
source code using tools such as dex2jar. At this part,
malware code can be inserted in source code using malware
injection techniques and a new apk can be obtained using
repackaging. The developers of DVmap, the first android
malware with code injection; injected malicious Trojan code
in system libraries at run-time. They bypassed the playstore
security checks by uploading clean app on playstore. Then
updated it with malicious version five times over period of
month. At the end of the same day of upload, they would take
down malicious version and reupload clean one. App was
downloaded more than 50,000 times [12].

2.3 Obfuscation

Obfuscation is an intentional process of making source code
hard to understand. It is used to protect code/algorithm
from reverse engineering. Malware developers use malware
obfuscation method to help malicious code go unnoticed.
There are many tools such as ProGuard and DexGuard which
can obfuscate and optimise code.

2.3 Application Sandboxing

Application Sandboxing is process of separating the
application from rest and run it in a custom emulated
protected environment. It is also known as containerization.
It is an isolation used for protecting benign part of code,
application from suspicious or dangerous application or
code. [10] SELinux is a sandbox used in android. Potentially
harmful, suspicious looking part of code is tested in
sandboxed environment.

2.3 Analyses methods

Static analysis tools analyse the decompiled application code
structure and they are faster since they analyse the code
without running it. It analyses the code structure,
instructions, information flow and generates Control Flow
Graph (CFG) which can be used to determine valid flow.
One such tool is [3] Amandroid which generates point to
point analysis of components and builds highly accurate
inter- procedural control flow graphs (ICFG), which are both

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1010

flow and context sensitive. Using every ICFG, it is also
capable of building each component’s data flow graph (DFG)
and data dependence graph (DDG) from DFG.

Steven artz designed [4] Flowdroid is another tool. It
statically analyses and computes data flow in android apps.
It is based on IFDS framework, creates dummy main method
and perform static taint analysis based on selected flow
algorithms, by identifying sources and sinks. It reduces the
code to intermediate graph representation to efficiently
track data flows by modelling each android component’s life
cycles.

Dynamic analysis tools analyse the applications by running
them in a sandboxed environment. They are slow in
execution compared to static analysis tools. But, they are
better at dealing with false positives in which static analysis
tools fail. It has a concept of taint analysis. Taint is a label tag
given to privacy sensitive information. So such analysis is
also known as ‘dynamic taint analysis’ or ‘taint tracking’.

At the taint source Sensitive information is first identified
where it is assigned an information type. This is called as
marking a taint. In Dynamic taint analysis information flows
are tracked for how labelled data is tainting other data in a
way called ‘taint propagation’ tracked at file, message
method, variable, message granularity levels that might leak
the original sensitive information. Often, at machine level
instructions taint tracking is performed. At last, data leaving
out of system is identified as leak at taint sink. (more often
times, network interface) [2].

Some of the tools are DexMonitor and TaintDroid.

[6] DexMonitor is a proposed prototype, used for
dynamically analysing and monitoring obfuscated android
applications. It systematically analyses android bytecode.
[2] TaintDroid, an efficient, system-wide dynamic taint
tracking and analysis system capable of simultaneously
tracking multiple sources of sensitive data with contexts.
TaintDroid last release was long ago for android 4.3 version,
thereafter no updates have been released. TaintDroid
enabled real-time analysis by leveraging Android’s
virtualized execution environment which was DVM back
then. It was replaced completely by Android Runtime (ART)
in subsequent release of android versions. TaintDroid
successfully found major leaks in top android apps back then
with only 32% incurred performance overhead on CPU-
bound micro benchmark and negligible overhead on third-
party applications.

Other than this there is all in one framework, mobile security
framework (MobSF) which is a pen testing, security
assessment, malware analysing tool capable of performing
both static and dynamic analysis. Apk file when uploaded is
scanned for vulnerabilities in code and files then a detailed
report is generated along with vulnerability indicators and

scores. Dynamic analysis module of mobsf is used for live
behaviour analysis using penetration testing scripts such as
Frida.

3. PROPOSED SYSTEM

We propose a general system architecture as shown in
figure.

Fig. 1: Analysis process for Vulnerability or Malware
detection

Android applications which are to be tested for benignity are
unpacked from apk file using decompilation tool. The source
code is can be obtained using reverse engineering tools.
Once source code is available it is de-obfuscated to obtain
redundancy free code. The code undergoes through static
and dynamic analysis phases. Static analysis tools will
analyse the code for its structure, meta data, instructions and
generate control glow graphs (CFG) and analyse information
flow. If vulnerabilities or malwares are found they will be
reported and fixed. Similar procedures will take place in
dynamic analysis but with difference that application code
will be executed in sandboxed environment. Taint analysis
tools will monitor the information flow from taint source to
taint sink. The app behaviour with respect to system calls,
power consumption rate, network logs will also be
monitored to trace the signs of possible malwares.

few tools are stated in our study however there are many
tools which can be used for analyses. Each have their unique
characteristic and speciality discussed in [7] very detailed.
Malware detection techniques can be performed to declare
the type of detected malware. Techniques for anomaly based
and signature based malware detection can be applied
further.

4. CONCLUSION

In this paper, we discussed on popularity of android OS and
growing security concerns about leakage of user privacy

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1011

sensitive information by vulnerable android apps. Then past
survey literature knowledge is presented which consists of
important techniques of application decompilation, reverse
engineering, execution in protected environment, code
obscureness, analysis methods, tools and frameworks.

We proposed a general architecture based on what we
understood from study of our reference literature. Using all
these studied techniques we will unwrap the application apk
files for in detail metadata and code analysis using static and
dynamic analysis methods. We are going to generate call and
control flow graphs and trace every possible path for data
leak and malware detection. It is an approach for securing
user data from suspicious data privacy breaching apps by
tracking information flow control and bringing evidences in
light so that users can be aware while using such
applications.

The proposed architecture will get more refined as one
starts with implementation. Furthermore, research can be
performed on how could the vulnerabilities and malwares be
mitigated. The use of machine learning along with hybrid
analysis tools is suggested which take up best of every
analysis tool to make analyses faster, efficient and precise.

REFERENCES

[1] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay
Ganmoor, Manoj Singh Gaur, Mauro Conti, Senior
Member, IEEE, and Muttukrishnan Rajarajan “Android
Security: A Survey of Issues, Malware Penetration, and
Defenses” IEEE communication surveys & tutorials, vol.
17, no. 2, second quarter 2015

[2] William Enck, Peter Gilbert, Seungyeop Han, Vasant
Tendulkar, Byung-gon chun, Landon P. Cox, Jaeyeon
Jung, Patrick Mcdaniel, Anmol N. Sheth “TaintDroid: An
Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones” ACM Transactions on
Computer Systems, Vol. 32, No. 2, Article 5, Publication
date: June 2014.

[3] Fengguo Fei, Sankardas Roy, Xinming Ou, Robby
“Amandroid: A Precise and General Inter-Component
Data Flow Analysis Framework for Security Vetting of
Android Apps” ACM Transactions on Privacy and
Security, Vol. 21, No. 3, Article 14. Publication date: April
2018.

[4] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric
Bodden, Alexandre Bartel, Jacques Klein, Damien Octeau,
Patrick McDaniel, and Yves Le Traon, “Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for android apps” Department of
Computer Science and Engineering, 2014.

[5] W. Enck, M. Ongtang and P. McDaniel, "Understanding
Android Security," in IEEE Security & Privacy, vol. 7, no.
1, pp. 50-57, Jan.-Feb. 2009, doi: 10.1109/MSP.2009.26.

[6] Haehyun cho, Jeong Hyun Yi, (member, ieee) and Gail-
joon Ahn(Senior Member, IEEE) ”DexMonitor:

Dynamically Analyzing and Monitoring Obfuscated
Android Applications” volume 6,2018 IEEE Access.

[7] Rashidi, Bahman and Carol J. Fung. “A Survey of Android
Security Threats and Defenses.” J. Wirel. Mob. Networks
Ubiquitous Comput. Dependable Appl. 6 (2015): 3-35.

[8] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel and M.
Smith, "SoK: Lessons Learned from Android Security
Research for Appified Software Platforms," 2016 IEEE
Symposium on Security and Privacy (SP), San Jose, CA,
2016, pp. 433-451, doi: 10.1109/SP.2016.33.

[9] kimberly tam, ali feizollah, nor badrul anuar, and rosli
salleh, lorenzo cavallaro “The Evolution of Android
Malware and Android Analysis Techniques” ACM
Computing Surveys, Vol. 49, No. 4, Article 76, Publication
date: January 2017.

[10] A. N. Narvekar and K. K. Joshi, "Security sandbox model
for modern web environment," 2017 International
Conference on Nascent Technologies in Engineering
(ICNTE), Navi Mumbai, 2017, pp. 1-6, doi:
10.1109/ICNTE.2017.7947885.

[11] https://www.cvedetails.com/product/19997/Google-
Android.html?vendor_id=1224

[12] https://securelist.com/dvmap-the-first-android-
malware-with-code-injection/78648/

