
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 109

DETECTING MALICIOUS CONTROLLER BASED ON THREAT VECTORS IN

SOFTWARE DEFINED NETWORKS

R. Rajalakshmi1, L. Leo Prasanth2, Dr. E. Uma3

1M. Tech, 2Research scholar, Department of IST, CEG(ANNA UNVERSITY), Chennai, TamilNadu, India
3Assistant Professor(SL. Gr), Department of IST, CEG(ANNA UNVERSITY), Chennai, TamilNadu, India.

---***--
Abstract - Software Defined Networks is a developing
field in computer networking. It is a new architecture
that splits the data plane and control plane. Control
plane is a vital part of the SDN design, so it's very
significant to offer proper attention to style any SDN
controller. As an outcome of centralized action of the
control plane, it's far essential to find the presence of
malicious control plane in SDN. Malicious control plane
alludes to the condition where at least one of the
controllers in SDN are compromised through malwares,
bringing about deviation from the ordinary control
plane behavior. Our task is finding an approach to
identify a malicious controller. Dynamic creation of
varied topologies is required to research data modified
in packets. It includes i) Finding four threat vectors that
represent malicious controller. ii) Creating dataset from
data plane packet logs. iii) Six Open Flow features that
capture the threat vectors. iv) Machine - learning based
recognition system for malicious control plane using
random forest and decision tree classifier. Random forest
shows the higher accurateness when compared to
decision tree.

Key Words: malicious controller, machine learning,
open flow, software defined networking, Security.

1. INTRODUCTION

Software Defined Networks is a developing field in
computer networking. It permits network managers to
modify a specified network rendering to changing
client or business needs. It acts as a physical separation
between network control plane and forwarding plane,
wherever a control plane manages multiple devices.

SDN has some issues such as single point failure, the
communication overhead between switches and
controllers, more significant for security and also trust
ability of the network control plane. It is an essential to
find the presence of control plane which is
compromised in SDN because of centralized control
plane. For security concerns, SDN exchanges rules in
firewalls with flow rules at distinct switches and it may
enforce node level security.

The control plane becomes compromised due to the
controller is promised by certain threats, subsequent in
variation from standard control plane's behavior. The
new results are developed for perceiving malicious
controllers due to the absence of legitimate controllers.

The OpenFlow protocol can revolution in network
activities have a subsequent variation in the preceding
switch controller message. Using the OpenFlow
specifications, switches are configured to work with the
comparative outcomes to a legacy switch, without
having to manually reconfigure the switch if the
network varies. The open flow traces are wanted to
find the existence of malicious controllers.

2. EXISTING METHODOLOGY

The existing system has established some security
architecture in SDN. The lack of existing principles in
emerging controller permits even a compromised
switch to interrupt the complete control network. So,
there is a difficult to detect the malicious switches.
Attacks are possible due to the deployment of malicious
controller applications. Due to the result, centralized
way in SDN controllers becomes the actual goals for the
intruders to gain contact the entire system. At least one
controller in SDN are malicious by malwares, bringing
out deviation from the ordinary control plane
performance.

3. PROPOSED METHODOLOGY

3.1 Overview

Detecting malicious controller system provides more
security than detecting compromised data plane
devices. The proposed system is to represent the four
different threat vectors are used to detect the malicious
controllers. The vectors are 1) The malicious controller
application will make the network intentionally slow
down by delay the control plane reply. 2) It can
establish flow rules in switches to diverge packets from
the shortest route. 3) It identifies critical switches and
establishes DROP actions which are from flow rules to
refuse services from that switch. 4) It replicates the
packets and sends them to unexpected destinations.
Open flow packet traces are taken out from data plane

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 110

for a definite time and open flow specific information
are extracted. Malicious controllers are detected using
open flow traffic. The threat vectors are detected using
open flow traffic traces. Six features are drawn from
the open flow traces. The packet-in packet-out
proportion, packet-in packet-out divergence, switches
association index, precedence frequency spike index,
variance of drop action, timeout frequency spike index.
These statistics is moved to a system where learning
and classification are passed out from the Open Flow
traces, FlowMod, packet-in and packet-out types of
packets are filtered to compute six features. The
network samples are classified using random forest
and decision tree classifier as shown in the Figure. 1.
Random forest classifier indicates the high accuracy
when compared to decision tree classifier.

Figure. 1: Block diagram for detecting malicious
controller

3.2 Features Extraction

1. Packet-in packet-out proportion:

 Controller calculates the forwarding result and

directs a FlowMod message come back to the switch to

avert succeeding packet-in messages. The first packet

goes to the flow is held using a packet-out message

with essential actions.

 A malicious controller make an effort DDoS attack

may purposely delay the administrative process and

also decrease the quality of service. PPP is

characteristics that fraction of the amount of packet-in

received messages per packet-out received message is

calculated using Alg. 1.

Algorithm. 1: Packet-in Packet-out Proportion

Input: open flow Traffic
Output: PPP

 1. Initialize globally, pin=0, pout=0, t=5ms
 2. pcktprocessor method starts
 3. t = 0
 4. Till t arrive at its threshold
 5. for every packet forwarded
 6. pin++
 7. for every packet gets handled and forwarded
 8. pout++
 9. PPP=pin/pout
10. Return PPP
11. pcktprocessor method ends

2. Packet-in Packet-out Divergence:

The controller replies to switch with the suitable

action through packet-out messages. Malicious

controller sends a suitable action along with the initial

packet-out message and then sends another one

packet-out with abnormal actions. PPD’s calculated by

the ratio of extra packet-out message to the total

amount of packet-out messages are computed using

Alg. 2.

Algorithm. 2: Packet-in Packet-out Divergence

Input: open flow traffic
Output: PPD
1. Initialize globally, pin=0, pout=0, t=5ms
 2. pcktprocessor method starts
 3. t = 0
 4. Till t arrive at its threshold
 5. for every packet forwarded
 6. pin++
 7. for every packet gets handled and forwarded
 8. pout++
 9. PPD=pin-pout/pout
10. Return PPD
11. pcktprocessor method ends

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 111

3. Switch Association Index:

The switch forwards packets according to the flow

rules referred by the controller. When a packet comes,

the switch checks for the suitable flow rules in its flow

table. If the packet does not equivalent with any of the

remaining rules, the switch directs a packet-in message

to the controller. The number of flow rules installed is

directly proportional to the number of switches

considered in the network. A switch associated with

the malicious controller usually has a bottleneck.

Therefore, SAI is used as the adjustment of typical

amount of flow rules for every port in a switch. Steps to

compute SAI are given in Alg. 3.

Algorithm. 3: Switch Association Index

 1: pcktprocessor method starts
 2: Get S be the number of switches from topology
 3: For every i in S
 4: Mi = number of flows sent/degree of switch
 5: M= M+Mi

 6: for loop end
 7: M = M/S
 8: for every i in S
 9: SAIi = ((number of flows sent/degree of switch Si) –

M(Si))2
10: SAI = SAI +SAIi

11: for loop end
12: SAI = SAI/S
13: Return SAI and pcktprocessor method ends

4. Variance of drop actions:

The non-responsiveness is understood using flow

rules with drop actions. Packets are dropped by

protocols and firewalls. It recognizes uncommon

differences in amount of DROP actions distributed to

several numbers of switches. In open flow, an unfilled

action field in the message that is FlowMod indicates a

DROP action in flow rule. VDA is computed using Eq.1.

 VDA= (1)

 Ts
 Where, µ=

 Ts

Ts be the total amount of switches from messages that
is FlowMod in packet traces which is open flow and mi

represents the number of messages that is FlowMod
delivered to switch which id is i with DROP action

5. Priority Frequency Spike Index:

 PFSI capture both spikes and frequency dips
detected from the importance standards of the
particular flow rules. Compromised flow rules incline
to operate at higher importance in order to avoid
packets similar with malicious rules. The occurrences
of FlowMod messages remain comparatively low
related to unaffected flows.

PFSI = max((max(nppi)-µ), (µ-min(nppi)))
 Where,

 µ = (2)

 Npp

Npp indicates the number of unique priority
values from FlowMod messages with priority pi is
calculated using the Eq.2.

6. Timeout Frequency Spike Index:

 Malicious flow rules purposes are incline to have a
higher timeout values, such FlowMod messages arise at
decrease frequencies. Malicious controller also set with
the flow rules with lesser timeout values to often
examine the packets via packet-in message. TFSI is
computed using Eq.3.

TFSI = max((max(ntti)-µ), (µ-min(ntti))) (3)
In which,
 µ =

 Ntt

Ntt is the total amount of distinctive timeout
values determined from FlowMod messages and ntti is
the total amount of FlowMod messages with timeout ti.

4. IMPLEMENTATION

Simulation set-up:

Mininet test system has been utilized to make SDN

environment comprising of end hosts, switches, SDN

controllers and controller applications. Mininet is made

to run on ubuntu 18.04 working framework with

various topologies. Switches are moved up to

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 112

OpenvSwitch and are arranged to utilize open flow

v1.3.

Traffic is created using ping command indicating

source, destination, number of packets and type of

traffic. And also, using Iperf utility generate the traffic.

In this system the RYU controllers are used for

selecting controller design. Mininet is controlled the

RYU controller.

4.1. Topology Creation

During this topology creation phase, creating the

realistic virtual networks for organizing switches,

controllers and hosts using Mininet. It is an open

source software tool that is used to simulate an SDN

and its well-suited controllers, switches and hosts.

It also supports for variation of topologies and

confirms the accessibility of custom topologies. The

custom topology is created as in Figure 2.

Figure.2: Topology Creation using Mininet

4.2. Controllers Design:

 The dataset is generated for designing the SDN

controllers that achieve malicious actions. The

networks are administered by controllers that are

arbitrarily chosen from the following controllers: i)

Malicious controller, ii) Non-malicious controller. Using

pyscript both compromised and non-compromised

controllers are connected to the mininet as shown in

the Figure 3.

Figure.3: Connecting Controllers and Switch

4.3. Traffic Generation:

 The traffic patterns are used for dataset

generation. Ping-all traffic or randomized traffic

pattern are generated only the mininet is being

initialized. In Ping all traffic each host using utility

command are used to interconnect with the other

hosts.

Switches are run on TCP and UDP servers by using

Iperf efficacy only in randomized traffic as in Figure. 4

Figure.4: Traffic Generation

 4.4. Creating Data Plane Packet Logs:

 The generated dataset contains data plane packet

logs are in Figure. 5. These logs are comprised by the

both malicious and non-malicious controller. The

dataset is created in the method of even number

dataset are malicious and odd number dataset are

non-malicious. The packets are captured in Wireshark

as in Figure.5.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 113

Figure 5: Generating Dataset

Wireshark is the network traffic analyzer and a

vital tool for any security specialized or systems

manager. It is permitted software to analyze

network traffic in real time and also the finest tool

for troubleshooting issues in network. All data

packets are stored in the form of pcap file.

4.5. OpenFlow Feature Extraction:

A packet log contains different types of packets. All

packets are captured through wireshark. From the

pcap file, open flow information is only extracted by

using pyshark. Figure.6 shows that the open flow

packet flows are extracted.

 Figure.6: Data plane Packet Capture

The six features are extracted from the open flow

packet flows. They are packet-in packet-out

proportion, packet-in packet-out divergence, switch

association index, precedence frequency spike index,

variance of drop action, timeout frequency spike index

is extracted from the open flow traces.

Figure.7: Open Flow Packet Extraction

4.6. Classification:

 The above features are given into algorithms, which

is machine learning concepts to categorize the network

samples by benign or malicious. The random forest and

the decision tree classifiers are used to categorize the

network samples.

Figure.8: Open Flow Features Extraction Using

Pyshark

The decision tree generates a tree over the take-out

feature space and do not incline to specify over the

data.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 114

Figure.9: Random Forest Classifier output

 Additionally, decision trees detect high

correlation that occurs among numerous features and

make the algorithm appropriate for the OpenFlow data

traces.

 Figure.10: Decision Tree Classifier output

 Decision tree gives 72 percent accuracy and RF

gives 91 percent accuracy. Random forest shows the

higher accuracy when related to decision tree. The

results are shown in the Figure.9 and Figure.10.

5. CONCLUSION

 The proposed system identifies the various types

of threat vectors that characterize the malicious

controllers in SDN. The presence of compromised

controllers in control plane is detected using open flow

traces. Any change in Open Flow protocol network

performance has an equivalent change in the earlier

switch and controller statement. Six SDN exact

characteristics are filtered from Open Flow traces that

are then provided to algorithms that are comes under

machine learning concepts to identify the existence of

malicious controller.

The random forest and decision tree classifiers

used to classify the network samples. Random Forest

classifier shows the higher accuracy. The additional

features can improve the location and categorize the

exact compromised controller and also find the nature

of that attack. Furthermore, attacks will be generated,

different strategy were planned to implement to detect

the nature of controller.

About References

 Wang projected a scheme Sample Flow (sFlow)

[2] to ensure networks against DDoS attacks. sFlow

captures the causes of DDoS, tags such flows, and

subsequently drops the malicious flow packets. SDN

architecture was recommended by Varadharajan et al.

in [3] to implement security policies at switches

through the addition of flow-rules. Such a policy-based

method permits us to project security schemes based

on dissimilar characteristics such as position, operator,

host machine, and routing route. A prolonged modular

architecture for controller design was planned by

Polezhae et al. preserves the packets in order to

diminish the cases of compromised controller [4]. An

approach called AVANT-GUARD [5] was proposed by

Yegneswaran et al. to stop DDoS resulting from SYN

flood messages. A migration component was planned at

Open Flow switches to reply TCP connection requests

in its place of forwarding them to the destination node.

It creates a connection, the switch forwards unaffected

messages and drops out malicious counterparts.

References

[1] N. Anand, B. S. Sarath Babu, Manoj, “On detecting
compromised controller in software defined
networks,” Computer Networks in the Journal of
Elsevier, Vol. no. 137, pp. no. 107-118, 2018.

[2] Y. Lu, M. Wang, “An Easy Defense Mechanism
against Botnet-based DDoS Flooding Attack
Originated in SDN Environment Using sFlow,” in:
Proceedings of the 11th International Conference
on Future Internet Technologies, CFI ’16, ACM, New
York, NY, USA, pp. 14–20,2016.

[3] K. Karmakar, V. Varadharajan, U. Tupakula, M.
Hitchens, “Policy Based Security Architecture for
Software Defined Networks,” in: Proceedings of the
31st Annual ACM Symposium on Applied

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 115

Computing, SAC ’16, ACM, New York, NY, USA, pp.
658–663,2016.

[4] A. Shukhman, P. Polezhaev, Y. Ushakov, L.
Legashev, V. Tarasov, N. Bakhareva, “Development
of Network Security Tools for Enterprise Software-
defined Networks,” in: Proceedings of the 8th
International Conference on Security of
Information and Networks, SIN ’15, ACM, New
York, NY, US, pp. 224–228, 2015.

[5] S. Shin, V. Yegneswaran, P. Porras, G. Gu, “AVANT-
GUARD: Scalable and Vigilant Switch Flow
Management in Software-defined Networks,” in:
Proceedings of the 2013 ACM SIGSAC Conference
on Computer &’38; Communications Security, CCS
’13, ACM, New York, NY, USA, pp. 413–424, 2013.

[6] C. Yoon, S. Lee, H. Kang, T. Park, S. Shin, P. Porras, G.
Gu, “Flow wars: systemizing the attack surface and
defenses in software-defined networks,” IEEE/ACM
Trans. Netw. 25 (6),3514–3530, 2017.

[7] J Systems and Networks Lab, OpenSDNDataset,
2017. https:// github.com/iist-
sysnet/OpenSDNDataset.

[8] Tcpdump/libpcap public repository repository,
2017, http://www.tcpdump.org/, (Accessed on
07/26/2017).

[9] NLANR/DAST : Iperf - the TCP/UDP bandwidth
measurement tool, 2005. http:
//dast.nlanr.net/Projects/Iperf/ (November
2005).

[10] Open vSwitch, 2017, http://openvswitch.org/ ,
(Accessed on 07/25/2017)

[11] Ryu SDN framework, 2017,
https://osrg.github.io/ryu/, (Accessed on
07/27/2017).

[12] NLANR/DAST: Iperf - the TCP/UDP bandwidth
measurement tool, 2005. http:
//dast.nlanr.net/Projects/Iperf/ (November 2005

http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.tcpdump.org/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/

