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Abstract - Permanent magnet synchronous motor (PMSM) 
depend on a 3-phase time-dependent voltage source (3-
Phase AC supply voltages) that generates a magnetic flux in 
the air-gap of the machine. This generated magnetic flux 
interacts with the permanent magnetic flux on the rotor, to 
generate the required torque. The mathematical model of 
this motor is a non-linear time-varying system. To apply 
different control techniques, we transform this model to an 
equivalent linear time-invariant system. These 
transformations not only yield a linear time-varying model, 
but also, reduce the number of states in the model. Classical 
control techniques, such as PI control, can provide a speed 
tracking of this type of motors with some limitations. In 
general, the performance of the motor is limited in term of 
the range of speed and the range of applied load torque. Also, 
the performance is affected by parameter variations or the 
high frequency, un-modeled states. In this paper, a sliding-
mode controller is used due to its insensitivity to the 
variations of the parameters. These types of controllers 
employ sliding surface, passing through the origin on the 
system trajectories plane. The proposed gain in this paper is 
a smooth function, depending on the surface value to 
eliminate the chattering phenomena (soft switching 
mechanism). The primary problem with this design is the 
steady state error when a full-load torque is applied motor. 
This is overcome by designing an observer to estimate the 
load torque. 
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1. INTRODUCTION  
 
Permanent Magnet linear motor (PMLM) is a conversion 
device that does not require any intermediate switching 
mechanism to convert electrical energy into linear motion 
[1]– [4]. Due to its many advantages such as high speed, 
large pushing force, and high precision, PMLM has been 
successfully applied in industry, military, and some other 
motion occasions which require high-speed, low thrust, 
small displacement, and high-precision position control [5], 
[6]. Meanwhile, the study of PMLM has attracted much 
attention from various fields, such as electronic industry, 
control engineering, etc. From the viewpoint of control 
engineering, the model of PMLM is a typical nonlinear 
multivariable system. Furthermore, the control performance 
of PMLM is potentially affected by various nonlinear factors 
such as unknown load and friction. Recently, the control 

issue of PMLM has become an important topic in field of 
PMLM and how to improve the control performance of 
PMLM has obtained certain attention, see [7]–[9] and some 
references therein. To solve the control problem of PMLM, 
many nonlinear control methods have been employed in the 
literature [10]– [16]. The Permanent Magnet Synchronous 
Machines (PMSM) are high-performance electromechanical 
motion devices essentially superseding traditional dc 
servomotors, and fractional horsepower induction machine 
because of their high performance capability [10]. This type 
of device can widely be seen in our daily life; for instance, 
different household machines, vending machines, factories, 
and computers. For such a diverse range of applications, the 
performance requirements necessitate different speed 
and/or angular position specifications to meet designated 
operational goals. The necessity for high performance 
electromechanical systems increases as the demand for 
precision controls increases. Permanent magnet 
synchronous motors (PMSMs) constitute a significant 
electro-mechanical design option in many applications due 
to their high performance, high efficiency, high power 
density, and fast dynamics [2], [16] and [9]. In high 
performance drivers, servos, and power generation systems 
(up to 200 KW), three-phase permanent magnet 
synchronous machines (motors and generators) are the 
preferable choice. In high-power (from hundreds of KW to 
hundreds of MW range) generation systems, conventional 
three phase synchronous generators are used [10]. Given the 
complexity and the nonlinearity of PMSMs, substantial 
research has been reported detailing control and 
performance challenges. The classical proportional integral 
(PI) controller, due to its simplicity of implementation, is still 
the dominant choice in most applications; however, due to 
load disturbances, un-modeled states, parameter variations 
and friction forces, PI controllers are unable provide 
effective solutions to many practical problems [15]. To avoid 
these aforementioned problems, a nonlinear controller is 
used in this thesis. Sliding-mode control (SMC) has the 
striking feature that it is insensitive to modeling uncertainty 
[5]. Also, with the addition of an observer to estimate the 
applied load torque, it has the ability to compensate for load 
torque disturbances. 
 
Considering the importance of PMLM and the superiority of 
fast TSMC, this paper aims to design a new kind of discrete 
time fast TSMC law for position control of PMLM. 
Specifically, a discrete-time model of PMLM is first obtained 
based on Euler’s discretization. Then, by using traditional 
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linear SMC method, a discrete-time linear SMC law is 
designed and the corresponding stability of closed-loop 
system is addressed. In the case of external disturbances, a 
compound strategy consisting of delayed estimation and 
dynamic compensation is employed to deal with the 
influence of disturbances. By performing rigorous analysis 
on the closed-loop system, the ultimate bounds for the 
sliding mode surface and steady-states are respectively 
obtained. To improve the control precision, based on the 
discrete-time fast TSMC method, an improved digital control 
algorithm, i.e., discrete-time fast TSMC algorithm, for PMLM 
is proposed. It is shown that the improved control algorithm 
can offer a higher control accuracy for sliding mode motion 
and steady-states of the closed-loop system no matter 
whether the disturbances are compensated or not. The main 
contribution of this work is to design a novel nonlinear 
digital control algorithm (i.e., the discrete-time fast TSMC 
algorithm) for the position control system of PMLM such that 
the closed-loop system’s performance can be improved. By 
performing rigorous theoretical analysis, the explicit 
relationship between the ultimate bound for the tracking 
error and the fractional power from the terminal SMC law is 
given, which shows that the higher control accuracy can be 
achieved by choosing appropriate fractional power. 
Simulation and experimental results are finally provided to 
verify the effectiveness of the proposed control method and 
show the advantages of the designed methods by comparing 
with some existing ones. 
 

1.1 Permanent Magnet Synchronous Motor 
 
The motor under the test an 8-poles three-phase Permanent 
Magnet Synchronous Motor (PMSM). On the left, the 
equivalent electric circuit. On the right, the mechanical cross-
section with an attached load. The machine has a permanent 
magnet round rotor, where the magnetic poles are aligned 
axially distributed around the circumference of the solid 
rotor. In synchronous motors, the process of energy 
conversion is accomplished by producing an electromagnetic 
torque from an interaction of a time-varying magnetic field 
developed in the machine air-gap and m the stationary 
magnetic field produced by the permanent magnets 
distributed on the m rotor [10].  
 
In order to achieve a desired speed, the phase voltages must 
be varied as a function of the rotor angular displacement ϴe. 
The angular speed ωe of the synchronous motor tracks the 
supplied voltage frequency to the stator windings [10]. This 
necessitates the measurement or estimation of the angular 
displacement of the rotor, using encoders or estimators. In 
the case of a conventional PMSM, the motor typically 
operates at a fixed speed (synchronous speed), with dynamic 
changes to the operating speed expected by control of the 
source frequency of the 3-phase supply voltages. 
 
 
 

1.2 Control Strategy 
 
The motor supply voltage is a DC source. This voltage will be 
inverted using pulse width modulation (PWM) to provide a 
3-phase AC source. The modulated voltages provide a 
variable amplitude and frequency sinusoidal source for the 
PMSM. 

 
Fig 1: The Detailed Experiment setup View 

2. DESCRIPTION OF SYSTEM MODEL AND CONTROL 

OBJECTIVE 

2.1 Continuous-time model of PMLM 

For a permanent magnet linear motor, the mathematical 
model is usually c approximately described by a second-
order c system and is given in the form of [5]: 

1(t)=x2(t)  

2(t)=  x2(t)  u(t)  

y(t)=x1(t)    (1)  

where x1 is the linear displacement, x2 is the linear velocity, 

u(t) is the control signal, R is the resistance, m is the motor 

mass, kf is the force constant, ke is the back electromotive 

force, and d(t) can be considered as the lumped disturbances 

including the friction and ripple force. 

 

2.2 Control objective 
 
The control objective of this paper to design a position 
tracking controller for PMLM such that the reference 
position trajectory can be tracked. Without loss of generality, 
assume that the reference signal is xr(t), whose first-order 
and second order derivatives are bounded. 
For the brevity, denote 

a=-    ,b= , f(t)=                 (2) 

under which the equation (1) is rewritten as: 

1(t) =x1(t) 
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2(t) =-a x2(t) + b u(t) 

          = -f(t) 

y (t)= x1(t)    (3) 

Define, 

e1(t)=xr(t)-x1(t) 

e2(t)=    r(t)-x2(t)                                (4) 

as the tracking errors for linear displacement and linear 
velocity signal, where xr(t) is the reference linear 
displacement,  r(t) is the reference linear velocity. It can be 

obtained from (3) that the dynamical equation for the 
tracking errors has the following form: 
 

1(t)=e2(t) 

2(t)=-ae2(t)-bu+F(t)+a r(t)+ r(t)  (5) 

 
Based on the error equation, the control objective is to 
design a control law such that the tracking errors converge 
to zero. Although there have been some results on designing 
the position control laws for PMLM by using SMC method, 
see e.g., [15], [21], these designs are mainly based on 
continuous time SMC theory. Different from these results, in 
this paper, it is assumed that the control law u(t) is digitally 
implemented through a zero-order-holder (ZOH), i.e., u(t) = 
u(kh) over the time interval [kh, (k + 1)h) with h being the 
sampling period, where k 2 {0, 1, 2, · · · , } = Z+ S{0}. In other 
words, the main objective of this paper is to design a 
discrete-time SMC law for PMLM, which is more appropriate 
to digital implementation. 
 
Before moving on, the following two assumptions on 
disturbances and one lemma are presented which will be 
used in the subsequent analysis. 
 
Assumption 2.1: The disturbance F(t) is assumed to be 
bounded, i.e., |F(t)| _ d *with a constant d *. 
Assumption 2.2: The derivative of disturbance is assumed 
to be bounded, i.e., | ˙F(t)| δ* with a constant δ*. 

Lemma 2.1: [29] Consider a scalar dynamical system 
z(k + 1) = z(k) − lz(k) + g(k).                      (6) 
If |l| < 1 and |g(k)|  γ, γ > 0, then the state z(k) is always 

bounded and there is a finite number K_ > 0 such that |z(k)|  

γ/|l|, ∀k  K*. 

 
2.3 Design of Discrete-Time SMC Law for PMLM 
In this section, we will employ the method of discrete-time 
SMC to design a digital control algorithm for PMLM. Firstly, 
the method of Euler discretization is employed to obtain the 
discrete-time model of system (5), which is given as: 
e1(k+1)=e1(k)+he2(k), 

e2(k+1)=e2(k)- hbu(k)- hae2(k)   

+h[a r(k) + r(k)]+hF(k),  (7) 

where h is the sampling period. Based on the discrete-time 
model, we first design a traditional linear discrete-time SMC 

law and then propose an improved fast discrete-time 
terminal SMC law. 
 
2.3.1 Designing a traditional linear discrete-time SMC 
law 
For discrete-time system (7), by using the traditional 
discrete-time SMC method, the sliding mode surface is linear 
and is chosen as: 

s(k)= Ce(k)=e2(k)+ c1e1(k), (8) 

with 0 < hc1 < 1. As that in [28], by using an equivalent 
control method and directly solving 

s(k+1)=0,   (9) 

We get, 

e2(k)-hbu(k)-hae2(k)+h[a r(k)+ r(k)]+hF(k) 

+c1[e1(k)+he2(k)]=0  (10) 

As a result, the equivalent control-based discrete-time SMC 
law is obtained as follows: 

u(t)= [(1+c1h-ha)e2(k)+c1e1(k) 

        +h[a r(k)+ r(k)]+hF(k)]     (11) 

 
1) Case 1: Assumption 2.1 is satisfied and the disturbance 
is not compensated: In this case, since the disturbance 
information F(k) is unavailable, the final available controller 
should be 

u(k)= [(1+c1h-ha)e2(k)+c1e1(k) 

         +h[a r(k)+ r(k)]]   (12) 

which results in the dynamical behavior of sliding mode 
state 
as 

s(k+1)=Ce(k+1) 

           =hF(k)    (13) 

Under Assumption 2.1, the sliding mode state s(k) is 
bounded 
by1 

|s(k)|≤ d*h = O(h), ∀kЄ Z+   (14)  

which means that the sliding mode state s(k) has an O(h) 

boundary layer. 

In the sequel, we will analyze the dynamical behavior of 
output tracking error e1(k). It follows from (7)-(8) that 
e1(k+1)=e1(k)+h[s(k)-c1e1(k)] 

             =(1-hc1)e1(k)+hs(k)   (15) 

By Lemma 2.1, it can be concluded that the state e1(k) is 
always bounded and the steady-state of tracking error e1 
will be bounded by 

| e1(∞)|≤ ≤   =O(h)   (16) 

That is to say that the system output tracking error e1(k) has 
an accuracy with O(h). 
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2) Case 2: Assumption 2.1 and Assumption 2.2 are satisfied 
and the disturbance is compensated: Since the disturbance 
information F(k) is unavailable, under Assumption 2.2, it can 
be estimated by using delayed estimation method as that in 
[28], i.e., 

(k)=F(k-1) 

        = [e2(k)-e2(k-1)]+bu(k-1)+ae2(k-1) 

          -[a r(k-1)+ r(k-1)]    (17) 

Then the state F(k) in the controller (11) can be substituted 
by the estimated value ˆF(k), which leads to the available 
controller as follows 

u(k)= [(1+c1h-ha)e2(k)+c1e1(k) 

        +h[a r(k)+ r(k)]+h (k)]  (18) 

 
Under the discrete-time controller (18), the dynamical 
behavior of sliding mode state is given by  
s(k+1)=ce(k+1) 

           =h[F(k)- (k)] 

          =h[F(k)- F(k-1)]   (19) 

Throughout of this paper, the big O notation is referred to 
that function f (h) is said to be of order g(h) as h 0 and 

denoted as f (h) = O(g(h)), if there exist δ > 0 and M > 0 such 
that | f (h)| < M|g(h)| for |h| < δ. 

which is bounded by 
|s(k)|≤δ*h2=O(h2),   ∀ kЄ Z+  (20) 

That is to say that the sliding mode state s(k) has an O(h2) 
boundary layer. By a similar proof as that in Case 1, the 
system output tracking error e1(k) has also an accuracy with 
O(h2). 
 
Remark 3.1: From the previous analysis, it can be found that 
the ultimate bound for the system steady output tracking 
error is determined by both the steady state of sliding mode 
state and the structure of sliding mode surface. Motivated by 
this observation, in the next subsection, we will employ a 
nonlinear sliding mode surface to improve the control 
accuracy. 
 
2.3.2 Designing an improved discrete-time FTSMC law 
In this section, an improved discrete-time fast terminal SMC 
law will be designed to improve the accuracy of the system 
output tracking error. At the first step, the discrete-time fast 
terminal sliding mode surface is chosen as 
S(k)=e2(k)+c1e1(k)+c2sigα (e1(k)),   (21) 

Where sigα (e1(k)) = sgn (e1(k)) · |e1(k)|α, 0 <  hc1 < 1, c2  > 0, 0 

< α < 1. 

As that in the previous subsection, based on the equivalent 
control method, directly solving 

S(k+1)=0,   (22) 

leads to 

u(k)= [(1+c1h-ha)e2(k)+c1e1(k) 

      +h[a r(k)+ r(k)]   

      +hF(k)+c2sigα(e1(k)+he2(k))]  (23) 

Similarly, the following two cases are respectively 
considered. 
 
1) Case 1: Assumption 2.1 is satisfied and the disturbance is 
not compensated: In this case, the equivalent control-based 
discrete-time fast TSMC law is 

u(k)= [(1+c1h-ha)e2(k)+c1e1(k) 

        +h[a r(k)+ r(k)] 

        +(k)+c2sigα(e1(k)+he2(k))]  (24) 

Under Assumption 2.1, the sliding mode state s(k) is 
bounded 
By 

|s(k)|≤λ=d*h=O(h), kϵ Z+    (25) 

Next, the dynamical behavior of output tracking error e1(k) 
will be considered. It follows from (7) and (21) that 
e1(k+1)= e1(k)+h[s(k)-c1 e1(k)-c2sig δe1(k)] 
            =(1-hc1)e1(k)-hc2sig δe1(k)+hs(k) (26) 
To analyze the stability of system (26), the following lemma 
is needed. 
Lemma 3.1: [30] Consider the scalar dynamical system 
Z(k+1)=z(k)-l1sig δz(k)-l2 z(k)+g(k)  (27) 
where l1 > 0, 0 < l2 < 1, and 0 < γ < 1. If |g(k)| γ ,  > 0, 
then the state z(k) is always bounded and there is a finite 
number  K* > 0 such that 

|z(k)| ≤ψ(α)·max{( )1/α , ( },  ∀ kЄ k* 
 (28) 

where function ψ (α) is defined as 
 

ψ (α)= 1+  -      (29) 

 
Theorem 3.1: For the error dynamical system (7) under the 
discrete-time fast TSMC law (24), if Assumption 2.1 holds, 
then the closed-loop system is stable and the ultimate bound 
for the output tracking error e1(k) could be of the order 
O(h2). 
Proof: First, with the help of Lemma 3.1, it can be concluded 
from (26) that the state e1(k) is always bounded. In addition, 
it follows from (21) that 
e2(k)=s(k)-c1e1(k)-c2sig δ(e1(k))  (30) 
Since e1(k) is bounded and s(k) is bounded from (25), then 
the state e2(k) is always bounded. That is to say that the 
stability of the closed-loop system can be guaranteed. 
Second, as for the steady output tracking error, it follows 
from Lemma 3.1 that e1 is bounded by 
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Clearly, to get an optimal accuracy for the steady output 
tracking error, it is better to choose α= 1/2 such that 

= =2,    (32) 

which results in 

|e1(∞)|≤ᵨ=O(h2)      (33) 

Hence, compared with the linear sliding mode surface, the 
proposed fast terminal sliding mode surface can improve the 
accuracy of the steady output tracking error. 
Next, we will consider the case when the disturbance can be 
compensated. 
2) Case 2: Assumption 2.1 and Assumption 2.2 are satisfied and 
the disturbance is compensated: As shown in subsection 
III-A, the disturbance can be estimated and compensated by 
using delayed estimation method, which leads to the 
equivalent control-based discrete-time fast TSMC law. 

u(k)= [(1+c1h-ha)e2(k)+c1e1(k) 

       +h[a r(k)+ r(k)]+h (k) 

        +c2sigᾱ(e1(k)+he2(k)]   (34) 

Theorem 3.2: For the error dynamical system (7) under the 
discrete-time fast TSMC law (34), if Assumption 2.1 and 
Assumption 2.2 hold, then the closed-loop system is stable 
and the ultimate bound for the output tracking error e1(k) 
could be in the order of O(h3). 
Proof: Under Assumptions 2.1-2.2, by following a same proof 
as previous case, it can be concluded that the sliding mode 
state s(k) is bounded by 
|s(k)|  δ*h2=Ο(h2),      ∀kϵ Z+  (35) 

By using some similar statements as those employed in 
proving the stability of the closed-loop system in Theorem 
3.1, the stability of the closed-loop system can be proved 
where the detailed proof is omitted for brevity. Let us 
analyze the dynamical behavior of output tracking error e1. It 
follows from (26) and Lemma 3.1 that the steady output 
tracking error e1 is bounded by 

|e1(∞)|  р =ѱ(α). max{  )1/α,( )1/1- α} 

 = ѱ(α). max{  )1/α,( )1/1- α} 

 =ѱ(α). max{ (O(h) )2/α,( O(h))1/1- α}   (36) 

Similarly, the optimal choice for the fractional power is α= 
2/3, which results in 

2/α=1/(1- α)=3,                    (37) 

which results in 

|e1(∞)| р Ο(h3)    (38) 

The above analysis indicates that the FTSMC method can 
offer a higher control accuracy than that of LSMC method if 
the disturbance can be estimated and compensated. 

Remark 3.2: Note that in Theorem 3.1 and Theorem 3.2, 
only the steady-state performance of the closed-loop system 
is discussed. Actually, for the dynamic performance of the 
closed-loop system, since the fast terminal sliding mode 
surface, i.e., (21), is employed, a faster dynamic response can 
still be guaranteed when the system state is close to the 
equilibrium point. The rigorous theoretical analysis about 
this issue for continuous-time FTSMC has been given in [23]. 
However, for the discrete-time FTSMC, it is very hard to give 
a qualitative conclusion about the dynamic performance of 
the closed loop system. In the simulation section, the 
corresponding comparisons (i.e., Table III) are given to 
demonstrate that the discrete-time FTSMC can also offer a 
good dynamic performance. 
 
Remark 3.3: Note that the work [32] has studied the 
continuous-time FTSMC for position control problem of 
PMLM. However, the main differences of the design of 
FTSMC in continuous-time case and discrete-time case lie in 
two aspects. 1) In practice, more and more controllers are 
implemented based on digital computers in practice, e.g., the 
implementation of the proposed control algorithm in this 
paper is based on the digital signal processor (DSP, 
TMS320F2812). Thus, the designed discrete-time fast 
terminal SMC law in this paper can be directly implemented. 
2) Although the continuous-time FTSMC law can be digital 
implementation through different discretization methods 
(such as Euler’s discretization), the stability analysis for the 
closed-loop system (i.e., the control plant is continuous-time 
but the controller is in the form of discrete-time) is not 
provided in most of cases (actually, the stability analysis is 
extremely difficult in this case, see for example, [33]). In this 
paper, the design of discrete-time FTSMC law is based on the 
discrete-time model and the corresponding stability analysis 
is successfully provided by developing new analysis methods 
for discrete-time systems. 
 
The detailed design procedure for designing a discrete-time 
FTSMC algorithm for PMLM is summarized as follows: 
 
• Step 1: Obtain a discrete-time model of PMLM by using 
some discretization techniques. 
• Step 2: Choose a discrete-time fast terminal sliding mode 
surface in the form of (21). 
• Step 3: Design a discrete-time FTSMC algorithm in the 
form of: 
(24), without disturbance compensation; 
(34) with (17), with disturbance compensation. 
 
Fig. 2 shows the block diagram of the discrete-time FTSMC 
for PMLM with disturbance compensation. 
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Fig. 2: The block diagram of the discrete-time FTSMC for 

PMLM. 

 
4. SIMULATION RESULTS AND EXPERIMENTAL 
RESULTS 
 
In this section, numerical simulations and experimental 
results are given to verify the effectiveness of the proposed 
control methods. 
 

4.1 Simulation results 
The system’s parameters of PMLM considered in simulations 
are given in Table I. 
 

Table I. System’s parameters 
Descriptions  Parameters 

 
motor mass m = 5.4 kg 
Resistance R = 16.8 ohms 
force constant Kf = 130 N/A 

 
back electromotive force ke = 123 V/m/s 

 

The disturbance is composed of two parts, i.e., friction force 
and ripple force. Specifically, let 
d = Ff ric + Fripple,           (39)  
where Ff ric is the friction force and Fripple is ripple force. 
The friction force is defined as: 
Ff ric = [ fc + ( fs − fc)e−( ˙x ˙xs )2+ fv ),]sign( ),     (40) 

where fc = 10 N is the Coulomb friction coefficient, fs = 20 N 
is the static friction coefficient, fv = 10 N is the static friction 
coefficient and ˙xs = 0.1 is the lubricant parameter. The 
ripple force is given as: 
Ff ipple = A1 sin(ωx) + A2 sin(3ω x) + A3 sin(5ωx), (41) 
with A1 = 8.5, A2 = 4.25, A3 = 2.0 and ω = 314 rad/s. 
In this section, a step signal with an amplitude of 200 mm 
and a sinusoidal signal with an amplitude of 5 mm and the 
frequency of 1 rad/s, i.e., xr = 5 sin(t) are respectively 
considered as the desired displacement. 
To achieve the position tracking control, three kinds of 
control algorithms are employed, i.e., the proposed discrete-
time FTSMC, LSMC, and standard PID control. In simulations 
the sample period h is chosen as 0.005(sec) to be consistent 
with the experiment. To make a relatively fair comparison, 

the control parameters of three kinds of control algorithms 
are repeatedly tested to obtain optimal parameters such that 
there is a good tradeoff between the dynamic performance 
and the steady-state performance of the closed-loop system. 
The controllers’ parameters are given in Table II. 
 

Table II. Controllers’ parameters 
Control algorithm Control gains 
PID kp = 300, ki = 50, kd = 2 
LSMC   c1 = 3 
FTSMC   c1 = 1.5, c2 = 1.5 

 
 
Case 1: the disturbance is not compensated 
 
In this case, assume that the disturbance satisfies 
Assumption 2.1, but it cannot be estimated and 
compensated. In addition, the fraction power α of proposed 
FTSMC law (24) is chosen as α = 1/2. 
 
1) Step response: the amplitude of step signal is chosen s 200 
mm. It can be found that the proposed discrete-time FTSMC 
can offer a faster dynamic response and a smaller steady-
state tracking error. 
2) Tracking a sinusoid signal: a sinusoidal signal with 
amplitude of 5 mm and frequency of 1rad/s is considered. 
Under the three kinds of control methods, the response 
curves are given in Fig. 3. In this case, it can be found that the 
proposed discrete-time FTSMC can significantly reduce the 
steady-state error. 
 
Case 2: the disturbance is estimated and compensated 
 
It is assumed that the disturbance satisfies Assumption 
2.1and Assumption 2.2. Hence, we can use the delay 
estimation method provided in (17) to estimate and 
compensate the disturbance. More specifically, the discrete-
time LSMC (18) and the proposed discrete-time FTSMC (34) 
with α = 2/3 are employed to solve the position tracking 
problem of PMLM. 
 
1) Step response: the step signal is selected the same as that 
in Case 1 and the response curves of PMLM’s displacement 
are plotted in Fig. 5. By comparing with Fig. 2, it can be found 
from Fig. 4 that the disturbance compensation strategy is 
effective. Furthermore, it can be seen from the numerical 
simulations that the improved discrete-time FTSMC 
algorithm 
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Fig. 3: The response curves for PMLM’s displacement 

under step response in the absence of disturbance 
compensation. 

 
Fig. 4: The response curves for tracking a sinusoidal signal 

In the absence of disturbance compensation 
 

2) Tracking a sinusoid signal: in the presence of disturbance 
compensation, the response curves of PMLM’s displacement 
for tracking a sinusoid signal under different control 
algorithms are provided in Fig. 5. On one hand, by comparing 
with Fig. 4, it can be found that the disturbance 
compensation strategy is effective. On the other hand, the 
proposed discrete time FTSMC can significantly reduce 
steady-state error by comparing with the other two control 
algorithms. For the convenience to compare the dynamic 
performance of the closed-loop system under different 
control algorithms, Table III gives the detailed dynamic 
performance index (i.e., the rise time tr(s) and settling time 
ts(s)) under step response. 

 
Fig. 4: The response curves for PMLM’s displacement 
under step response in the presence of disturbance 

compensation 

 

 
 

Fig. 6: The response curves for tracking a sinusoidal signal 
in the presence of disturbance compensation, (a) 

displacement, (b) Displacement error. 
 

From Table III, it can be found that the proposed discrete 
time FTSMC algorithm can offer a good dynamic 
performance whether the disturbance is compensated or 
not. 
 

Table III. The comparisons of dynamic performance of 
closed-loop system under the step response. 

 
Algorithms Rise time 

(sec) 
Settling 
time (sec) 

Case 1 PID 0.892 1.515 
LSMC 0.790 1.460 
FTSMC 0.653 1.112 

Case 2 PID 0.892   1.515 
LSMC 0.741 1.305 
FTSMC 0.487 0.800 

       

5. CONCLUSIONS 
 
This paper has investigated the position tracking problem 
for PMLM via an improved discrete-time SMC method. By 
employing a nonlinear discrete-time sliding mode surface 
(i.e., discrete-time terminal sliding mode surface) instead of 
the traditional linear sliding mode surface, it has been shown 
that the steady-state performance for the closed-loop system 
can be improved. In addition, the explicit relationship 
between the ultimate bound for the tracking error and the 
fractional power from the terminal SMC law is theoretically 
given, which provides guidance on how to choose the 
optimal fractional power in practice. Simulation and 
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experimental results have been performed to verify the 
theoretical analysis results and show the advantages of the 
present method over some existing ones as traditional linear 
SMC approach and PID method. Although only the position 
control problem of PMLM is considered in this paper, the 
developed nonlinear control algorithm is applicable for 
analysis and control of some other practical systems which 
can be modeled as second-order systems. 
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