
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4253

An Improved Reversible Data Hiding In Encrypted JPEG Bitstreams

Sruthi Suresh1, Dr. Sreela Sreedhar2, Dr.N. Vishwanath3, Saira Varghese4

1PG Student, Dept. Computer Science Engineering, Toc H Institute of Science and Technology, Kerala
2Assoc. Professor & HOD, Dept. Computer Science Engineering, Toc H Institute of Science and Technology, Kerala

3Professor, Dept. Computer Science Engineering, Toc H Institute of Science and Technology, Kerala
4Asst. Professor, Dept. Computer Science Engineering, Toc H Institute of Science and Technology, Kerala

---***--

Abstract - Reversible data hiding can be defined as an
approach where the data can be made hidden in a host media
such as image, audio and video files. It embeds the additional
and secret message into a cover media such as images and
performs reversible procedure to reconstruct the original
message. Since there are great research achievements on
Reversible Data Hiding in Encrypted Images (RDHEI), many of
the jpeg encryption algorithms cannot keep format complaint
to JPEG decoders and have low embedding capacity and
security. The proposed RDHEI framework is designed for
secure storage and transmission of Joint Photographic Experts
Group (JPEG) images. The proposed system provides a JPEG
encryption to encipher a JPEG image and keep the format
applicable to JPEG decoders. The image owner can encrypt a
JPEG bitstream and upload it to the cloud. The cloud server
embeds the additional information into the encrypted
bitstream to generate a marked encrypted bitstream. A
combination of Hamming code and histogram shifting is used
as embedding algorithm during data hiding procedure. The
server extracts additional information from marked encrypted
JPEG bitstream and recovers the original encrypted bitstream
losslessly, when an authorized user requires a download. The
user obtains the original JPEG bitstream by a direct
decryption, after downloading. The proposed system can
provide high embedding capacity and image privacy.
Moreover, it reduces client/user workload where client/user
requires to do no extra tasks except encryption/decryption.

Key Words: Image privacy, RDHEI, JPEG, Hamming code,
Histogram shifting.

1. INTRODUCTION

Data hiding is referred to as a process to hide data, such as
image or text, into cover media. The data hiding process
consists of two sets of data, one is a set of the embedded data
and another is a set of the cover media data. Data hiding
schemes are categorized into two: irreversible and
reversible data hiding schemes. Irreversible data hiding
means once the cover image has embedded on the original
image, the original image is lost i.e, from stego image original
image cannot be recovered in extraction process. Reversible
data hiding allows the user to embed the additional and
secret message into cover media and to perform a reversible
procedure that extracts the hidden secret message and
perfectly reconstructs the original cover content. Many

literature works proposed varieties of reversible data hiding
techniques in which most of them relies on unencrypted
images.

Fig -1: Labelling In Cloud

Reversible Data Hiding in Encrypted Images (RDHEI) was a
new direction of RDH over Encrypted images. Areas where
original image is as important as secret message, like
military and medical fields, any changes on original image
during the transmission can alter the intelligence of original
image and affect the overall results. RDHEI scheme achieves
owner privacy i.e, image privacy. A trusted party is
authorized to insert some additional data such as the origin
information, image notations or authentication data, within
the encrypted image, where the original image content is
unknown to this party. Indeed, the medical images are
encrypted for preserving the patient privacy, and a database
administrator only embeds a few data into the
corresponding encrypted images. For the consistency of a
medical image, it must guarantee that the original content
can be perfectly reconstructed after decryption-then-
extraction of the secret message by the receiver. That is,
RDHEI method not only ensures the accuracy of the
reconstructed cover-image and extracted secret message,
but also preserves the privacy of the cover-image. Since JPEG

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4254

images are widely used over Internet, this paper focuses on
RDHEI in JPEG bitstreams.

RDHEI is especially useful for labeling the ciphertext in cloud
storage, as shown in Fig.1. When image owner wants to
protect their privacy, RDHEI first provides a secure
encryption algorithm for the owners to encrypt their images
before uploading. On the cloud side, RDHEI allows the server
to label an encrypted image through data hiding, e.g., hiding
the identities, timestamps, and remarks into the ciphertext
to generate a marked encrypted copy. Therefore, the labels
are attached inside the ciphertext, providing a better
management of files for administrators. On the other hand,
when an authorized user downloads the encrypted image
from the cloud, the original content can be losslessly
recovered after image decryption. The server constructs a
metadata file to record the information of the uploaded
images in traditional systems of file management. The RDH-
EI technique provides an alternative way, which
accommodates additional information of the image inside
the encrypted bitstream. Therefore, no metadata files are
needed anymore for labeling the uploaded images.

RDHEI schemes are applicable in medical and military
purposes. In healthcare social networks (HSN), the patients
can outsource their encrypted health records such as scan
reports including CT scan, MRI scan etc., to cloud storage and
share them with doctors in a secure and efficient manner.
RDH-EI allows the cloud server to label an encrypted image
by data hiding, e.g., hiding the identities, timestamps, and
remarks of patients into the ciphertext to generate a marked
encrypted copy.

This paper presents a cloud application comprises of an
image owner, cloud server and a user. The image owner can
encrypt a jpeg image and upload it. The cloud server acts as
data hider who hides the details of owner in the encrypted
image. When an authorized user requires the image, he can
request the cloud and the cloud will extract the hidden
message and user can download it.

The rest of this paper is organized as follows: Section 2
presents various reversible data hiding methods and related
works. Section 3 describes the proposed framework and
Section 4 analyzes the proposed work based on security and
performance.

2. RELATED WORKS

Many reversible data hiding methods on plaintext images
have been reported in past years. In [1], the host image is
divided into nonoverlapping blocks so that each block
contains n pixels. By counting the frequency of the pixel-
value-array sized n of each divided block, an n-dimensional
histogram is generated. Finally, data embedding is done by
modifying the resulting n- dimensional histogram.

Great researches were done on RDHEI schemes. It was first
realized in uncompressed nature images [2]. First encrypt
the original image using a stream cipher algorithm and then
upload the encrypted image onto the cloud by the content
owner. By flipping three least significant bits (LSB) of half
pixels in each block the cloud server embeds additional bits
into ciphertext. On the recipient end, the authorized user can
decrypt the marked encrypted image and generate two
candidates for each block by flipping LSBs again. Since the
original block of a nature image is smoother than the
interfered block, one hidden bit can be extracted and the
original block can be recovered.

Although the methods in [3]–[7] have good embedding and
recovery capabilities, data extraction must be done after
image decryption. This limitation makes the technique less
useful in cloud storage.

Another type of RDHEI is realized by preprocessing the
original image. Some works require the image owner to
vacate spare rooms in the plaintext image before image
encryption. This additional operation of vacating spare
rooms in plaintext is referred as preprocessing. After that,
the image owner encrypts the processed image and uploads
it onto the server. In methods [8] – [12], the image owner
first reserves enough space on original image and with the
encryption key owner encrypt the image. Now, the data
hider only needs to accommodate data into the spare space
previous emptied out. Then a receiver can extract the
embedded data with the data hiding key and further recover
the original image from the encrypted image according to
the encryption key. In [13], a stream cipher algorithm is
used to encrypt the original image and user upload
ciphertext to a remote server. On server side, combination of
cyclic-shifting and data-swapping is used to embed messages
into the ciphered image. A receiver can extract the hidden
messages and losslessly recover the original image. But data
extraction must be done after image decryption thus less
useful in cloud storage.

The above-mentioned methods are for uncompressed
images thus not applicable in several cases where images
transmitted over Internet are compressed e.g., the popular
JPEG format. As a result, some RDHEI works were proposed
for JPEG bitstreams.

In [14], a histogram shifting-based RDH scheme is used. In
this method non-zero AC coefficients in DCT are represented
by N = (N1, ... ,Nm) Most of the peak points of the AC
coefficient histograms are located at points 1 and -1. Zero
coefficients remain unchanged and only coefficients with
values 1 and −1 are expanded to carry message bits and thus
have a low hiding capacity.

In [15], here for the JPEG bitstream encryption, a new JPEG
bitstream is constructed by selecting a portion of blocks
from the whole image. Bitstreams of rest of blocks are

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4255

encrypted and hidden in the JPEG header. With a
compression algorithm, some bits of the encrypted JPEG
bitstream are compressed to accommodate additional bits in
server side. On the receiver side, it uses an iterative
algorithm to recover the original JPEG bitstream. Even
though the encryption is format compliant, recipient must do
a recovery task after decryption.

In [16], the proposed system uses “reserving-room-before-
encryption (RRBE)” framework. Before encrypting the JPEG
bitstream, content owner first reserves space on original
JPEG bitstream and encrypts modified JPEG bitstream.
Server embeds secret data using data hiding key and
receiver can extract the secret data by the data-hiding key
and can recover the original JPEG bitstream by the
encryption key. Here, the owner required to do pre-
processing, i.e., generating spare rooms before encryption
and also JPEG encryption is not format complaint.

In [17], it proposes an RDHEI method for jpeg images. Even if

the jpeg encryption algorithm maintains the structure of the

jpeg after encryption, the embedding procedure is little

complex. Embedding procedure includes two stages: code

mapping-based embedding and ordered embedding.

This paper proposes a new JPEG RDHEI framework to
develop a client/user burden free application where
client/user requires to do no extra works except
encryption/decryption. Also, to incorporate a JPEG
encryption algorithm [17] that is format complaint to JPEG
decoders with data hiding technique [18]. Compared to
previous techniques it can achieve a larger embedding
payload during data hiding in encrypted jpeg image and to
recover the original content losslessly after image
decryption.

3. PROPOSED SYSTEM

The proposed RDH-EI framework consists of three parties,
the image owner, the cloud server and the authorized user.
The owner can encrypt a JPEG bitstream and uploads it to
the cloud. The cloud server can embed additional
information into the encrypted bitstream to generate a
marked encrypted bitstream. When an authorized user
requires a downloading operation, the server extracts
hidden information from the marked encrypted bitstream
and recovers the original encrypted bitstream. After
decryption, the user obtains the original JPEG image. The
proposed framework is shown in Fig. 2.

Fig -2: Proposed System

A JPEG bitstream consists of a marker of start-of-image, a
JPEG header, the entropy encoded data, and an end-of-image
marker as shown in Fig. 3

Fig -3: Syntax of JPEG Baseline

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4256

The section of entropy encoded data is constructed by
entropy-coded segments of all blocks. Each ECS includes one
code of DC coefficient (DCC), several codes of the AC
coefficients (ACC), and an end-of-block marker. The DCC part
consists of a DC Huffman code (DCH) and DC appended bits
(DCA), and each ACC part consists of AC Huffman codes
(ACH) and AC appended bits (ACA). Therefore, a JPEG
bitstream J can be represented by

J = {SOI, JH, ECS1, ..., ECSN, EOI}

Table -1: Acronyms Used

Acronyms Terms

SOI start-of- image

EOI end-of-image

EOB end-of-block

JH JPEG header

ECS entropy coded segments

DCC code of a DC coefficient

DCH Huffman code in a DCC

DCA appended bits in a DCC

ACC code of an AC coefficient

ACH Huffman code in an ACC

ACA appended bits in a ACC

There are N entropy-coded segments when an H × W image
is compressed into a JPEG bitstream, where N =[H/8] ·[W/8].
and denoted as ECSi, i =1,2,...,N. According to the JPEG syntax,
each segment can be represented by

ECSi ={DCC
<i>

, ACC
<i,1>

, ACC
<i,2>

, ..., EOB}

 ={[DCH
<i>

, DCA
<i>

], [ACH
<i,1>

, ACA
<i,1>

],

[ACH
<i,2>

, ACA
<i,2>

],..., EOB}

The proposed framework includes a four-phase procedure
for this application. First phase is the JPEG Encryption
algorithm that encrypts the jpeg image from user. Second
phase is Data Embedding that embeds the user details in
jpeg image using Hamming code and Histogram shifting.
Third phase is Data Extraction and Bitstream Recovery that
extracts the original information from stego image. Fourth
phase is JPEG Decryption that the user can decrypt the jpeg
image and download it.

3.1 JPEG Encryption

On the image owner side, an owner can register the
application using his username and password. And the
owner can login using his valid credentials. After successfully
logged in, the owner can browse for the jpeg image he wants
to encrypt. After selecting the jpeg image, the owner can
perform the jpeg encryption on the selected image. Finally,
owner can upload the encrypted jpeg image to the server.

Fig -4: JPEG Encryption

The encryption procedure is divided into six steps:

(1) After selecting the jpeg image to be encrypted,
using encryption key K the image owner pseudo-
randomly selects n entropy encoded segments
from the original jpeg bitstream, ECSs(i), where
i=1, 2..,n & 1<n<N. Let the remaining segments be
ECSr(j), where j= 1,2,..N-n.

(2) Owner encrypts the remaining N-n segments by
stream cipher RC4 using the encryption key K.

(3) Using two positive integers h and w, the owner
reconstructs the new jpeg image of size h x w.

(4) The encrypted bits, along with the values of H and
W, are then embedded into the reserved
application segments marked with APPn in JPEG
header.

(5) Also, owner specifies the new image size as h × w
in modified header.

(6) By decoding the DC Huffman code and the
appended bits, the owner extracts the DC
coefficient from n selected segments ECSs(i)
i.e.,[DCH<s(i)>, DCA<s(i)>], to {ds(1), ds(2),...,ds(n)}.

(7) The owner generates the differential values
{d’s(1), d’s(2),...,d’s(n)}. of these coefficients where

 (1)

(8) These are further encoded by Huffman codes to
generate [DCH*, DCA*].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4257

(9) Then owner replaces all ECSs(i) in the new
entropy encoded data with ECS*s(i), where ECS*s(i)
stands for the encrypted segments.

(10) Finally, the owner constructs the encrypted JPEG
bitstream J* shown in Fig.5. as ,

J* = {SOI, JH*, ECS*s(1),..., ECS*s(n), EOI}

Fig -5: Structure of Encrypted JPEG Bitstream

3.2 Data Embedding

The embedding algorithm comprises of (7,4) Hamming code

and Histogram shifting methods. (7, 4) Hamming code-based

RDH scheme rearranges the seven cover bits from their

normal form of R= (C1, C2 , D1, C3,D2, D3, D4) to R= (D1, D2, D3,

D4, C1, C2, C3), where the first four bits consist of four data

bits (D1, D2, D3, D4) and the last three bits consist of the

parity check bits. For a given stream with seven bits, R=

(R1,R2,R3,R4,R5,R6,R7); if the calculated three-bit vector

defined in eq.(2), Y(R) = (y1,y2,y3) is equal to (0, 0, 0), then

the bit stream R is classified as a perfect stream.

 y1 = r1⊕ r2⊕ r4

Y(R) = y2 = r1⊕ r3⊕ r4 (2)

 y3 = r2⊕ r3⊕ r4

Table -2: Relationship between Error Location and Y(R’)

Error Location Y(R’)

error free 000

1 110

2 101

3 011

4 111

5 100

6 010

7 001

A new bit stream R’ is generated by flipping only one bit of

the stream R, will generate another three-bit vector Y(R’).

The location of the flipped bit is referred to as the error

location. The relationship between the error location and the

corresponding vector of Y(R’) is shown in Table 2.

In Histogram Shifting method, all non-zero AC coefficients in

DCT are represented by N = (N1, N2, …, Nm-1, Nm), where m

represents the number of all nonzero AC coefficients in the

JPEG image. Most of the peak points of the AC coefficient

histograms are considered to be located at points 1 and -1.

The embedding algorithm is described as:

Ni' = Ni + sign(Ni)*s if |Ni|=1
Ni' = Ni + sign (Ni) if |Ni|>1 (3)

 sign Ni (4)

In eq (3), s {0,1}, s indicates the additional information bit

to be embedded and Ni’ denotes the corresponding hidden

AC coefficients in the marked JPEG image. The information

extraction and image restoration algorithm can be described

as follows:

 S’ = (5)

 Ni (6)

where S’ and Ni denotes the extracted secret bit and the

restored AC coefficient, respectively.

The data embedding procedure is divided into six steps:

(1) Input encrypted jpeg image J*.
(2) Cover JPEG image J* is decoded to get the

quantized DCT coefficients D.
(3) Check the AC coefficients of D for every seven

bits as a group Xi in zig-zag order.
(4) If Xi is a perfect string, it is embedded with

additional information using the (7, 4) Hamming
code. Otherwise, the Histogram Shifting method
is used to embed the information. For each
seven-tuple, we divide Xi in two parts, which
consists of the LSB of each element, and which is
composed of the non-LSB parts of each element.
We take R into eq. (2) to calculate the vector
value of Y(R). If Y(R) is equal to (0, 0, 0), then R is
a perfect stream and the (7, 4) Hamming code is
used to hide the data for this seven-tuple Xi and
continue to step (5). Otherwise, R is a non-perfect
stream, HS is used to hide the data for this seven-
tuple Xi and then we continue to step 6.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4258

Fig -6: Data Embedding

(5) For seven-tuple Xi =(x1,x2,x3,x4,x5,x6,x7) whose R
and P are defined as step 4, and information to be
embedded be S, we first convert S to its
corresponding decimal value Y (Y<8). If Y=0, then
the stego perfect stream R’ =
(r’1,r’2,r’3,r’4,r’5,r’6,r’7) is equal to the cover seven-
tuple R; otherwise, the stego perfect stream R’ =
(r’1,r’2,r’3,r’4,r’5,r’6,r’7) is generated by flipping Yth
bit of R. Finally, the vector of the stego seven-
tuple X’i= (x’1,x’2,x’3, x’4,x’5,x’6,x’7) is generated by
re-combination of P and R’ .

(6) For a vector of cover seven-tuple Xi =
(x1,x2,x3,x4,x5,x6,x7) and binary secret bit streams
S = (s1,s2,…,si), we first read x sequentially. If xi
is a nonzero number, then we calculate x’i using
eq. (3) and (4). The binary secret bit is value
corresponding to s is 1; otherwise, x remains
unchanged, and x’i is equal to x, which is zero.
Then, we get the stego seven-tuple to X’i =
(x’1,x’2,x’3,x’4,x’5,x’6,x’7) carry the secret message.

(7) Record the adopted embedding method of each
group using a binary location map. ”0” to
represent (7, 4) Hamming code for hiding. “1” to
represent HS method for hiding the additional
information.

(8) Finally, obtain a new DCT coefficient carrying the
additional information to get mid-JPEG image.
Finally, the location map is embedded in the mid-
JPEG image using HS method to generate the
stego-image I”.

3.3 Data Extraction and Bitstream Recovery

The data extraction procedure is divided into six steps:

(1) Get stego-JPEG image I’’
(2) Extract location map M and recover mid-JPEG

image I’ .
(3) The quantized DCT coefficients D’ is generated

from mid-JPEG image I’ that carries the
embedded information.

(4) The AC coefficients of D’ are grouped into Xi' in
zig-zag order, and each group is seven tuple,
just like the embedding phase.

(5) Using location map , judge which hiding method
is used.

(6) If the corresponding location of Xi ' in location
map M is “0” which means the (7, 4) Hamming
code is used for Xi '. Otherwise, histogram
shifting is used for Xi’.

(7) Corresponding to the hiding method used,
extract embedded information S and obtain
original DCT coefficients D.

(8) Through D, obtain the original JPEG image J.

Fig -7: Data Extraction and Bitstream Recovery

3.4 JPEG Decryption

Decryption is the reverse process of encryption method of
JPEG bitstream.
The decryption procedure is divided into six steps:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4259

(1) User extracts N-n encrypted segments from the
reserved application APPn in the JPEG header JH*.

(2) Using RC4 with decryption key K, user decrypt
these segments back to ECSr(j), where j = 1,.., N – n.

(3) The n segments ECSs(i) are extracted from J*. The
user reads [DCH* , DCA*] from all segments ECS∗
s(i) , and decodes them into the values of {d’s(1),
d’s(2),..., d’s(n)}. The original DC coefficients {ds(1),
ds(2),..., ds(n)} are reconstructed by

ds(i) = s(k) i =1,2,..,n (7)

(4) The user reconstructs the original ECSs(i) after
reencoding these DC coefficients into [DCH,
DCA] by Huffman codes.

(5) After rearranging all segments of ECSs(i) and
ECSr(j) the user reconstructs the original
entropy encoded data.

(6) Finally, the original JPEG stream J is decrypted
after modifying the JPEG header to specify the
original image size H x W.

Fig -8: JPEG Decryption

4. RESULTS AND ANALYSIS

The histogram analysis of ciphertext image illustrates about
the quality of the image encryption algorithm. If a uniformly-
distributed histogram for the ciphertext image is generated,
then the encryption method is considered to be a good image
encryption. While performing the histogram analysis in the
original JPEG image shown in Fig.9, we get a histogram as
shown in Fig.10.

Fig -9: Original JPEG Image

Fig -10: Histogram of Original JPEG Image

Similarly performing histogram analysis on ciphertext
image of original JPEG image shown in Fig.11, we get a
histogram as shown in Fig.12.

Fig -11: Encrypted JPEG Image

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4260

Fig -12: Histogram of Encrypted JPEG Image

While examining the histograms generated for both the
original and ciphertext images, ciphertext image histogram
is uniformly distributed and thus concluded that the
encryption method had a good quality.

The proposed framework uses a two combined phase of data
embedding method. For the experiment, the original image
in Fig.9 with different quality factors (i.e, QF = 70,80,90,100)
were taken. Then the quantity of perfect string (PS) and non-
perfect string (NPS) for each DCT quantized block is shown
in Table.3. The experimental results show that an increase in
quality factor decreases the number of PS. But the results
show that an average number of PS can be reached when the
quality factor is 80. Even if the quality factor is 100, there is a
considerable amount of PS. Three bits of data can be hidden
in one PS by using (7,4) Hamming code. Thus, the embedding
capacity increases with increase in PS. Compared to the
previous RDHEI techniques which have low embedding
capacity, this proposed embedding framework provide high
embedding capacity as shown in Table.4.

Table -3: Number of PS and NPS

QF PS NPS

70 12443 5997

80 10990 7442

90 7487 10945

100 2316 16116

Table -4: Comparison of Embedding Capacity

Images [16] [17] Proposed

System
Lena 798 3667 9432
Man 1809 4856 13297

Peppers 960 4253 9884

The proposed JPEG encryption algorithm is also secure
against the ciphertext-only attack. During JPEG bitstream

encryption, it pseudo-randomly select n entropy-encoded
segment from the bitstream to construct a new JPEG
bitstream, which can be decoded to smaller sized ciphertext
image. An attacker has no information of the original size of
the image because only a part of Huffman codes are
available. It is difficult for the attacker to find the original
orders of all blocks, as long as the entropy encoded block
number N is large enough. Thus, larger key space is enough
to ensure security.

5. CONCLUSIONS

Many unauthorized users try to get the protected
information and therefore it is necessary to secure our data.
There are also scenarios in which data hiding needs to be
done in the encrypted domain or combined with the
encryption, especially in the domain of big data and cloud
computing. But the main challenge is the secure
transmission of user’s data. The proposed system is designed
to develop a cloud application that can hide the details of the
image owner who uploads the encrypted JPEG image to the
cloud. The authorized user when require can request the
cloud for the image, then cloud will extract the hidden data
and send the recovered encrypted image to the user who can
download it and decrypt it. The proposed system provides a
high capacity embedding and image privacy. The tasks of
data embedding, extraction and bitstream recovery are done
by cloud, thus it is a client free application i.e, the proposed
framework requires the owner or user to do no extra tasks
except encryption/decryption.

REFERENCES

[1] Li, X., Li, B., Yang, B., & Zeng, T. (2013). General
Framework to Histogram-Shifting-Based Reversible
Data Hiding. IEEE Transactions on Image Processing,
22(6), 2181–2191. doi:10.1109/tip.2013.2246179

[2] X. Zhang, “Reversible data hiding in encrypted image,”
IEEE Signal Process. Lett., vol. 18, no. 4, pp. 255–258,
Apr. 2011.

[3] W.-L. Tai, C.-M. Yeh, and C.-C. Chang, “Reversible data
hiding based on histogram modification of pixel
differences,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 19, no. 6, pp. 906–910, Jun. 2009.

[4] W. Hong, T.-S. Chen, and H.-Y. Wu, “An improved
reversible data hiding in encrypted images using side
match,” IEEE Signal Process. Lett., vol. 19, no. 4, pp.
199–202, Apr. 2012.

[5] X. Liao and C. Shu, “Reversible data hiding in
encrypted images based on absolute mean difference
of multiple neighboring pixels,” J. Vis. Commun. Image
Represent., vol. 28, pp. 21–27, Apr. 2015.

[6] Z. Qian, S. Dai, F. Jiang, and X. Zhang, “Improved joint
reversible data hiding in encrypted images,” J. Vis.
Commun. Image Represent., vol. 40, pp. 732–738, Oct.
2016.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4261

[7] J. Zhou et al., “Secure reversible image data hiding
over encrypted domain via key modulation,” IEEE
Trans. Circuits Syst. Video Technol., vol. 26, no. 3, pp.
441–452, Mar. 2016.

[8] K. Ma, W. Zhang, X. Zhao, N. Yu, and F. Li, “Reversible
data hiding in encrypted images by reserving room
before encryption,” IEEE Trans. Inf. Forensics
Security, vol. 8, no. 3, pp. 553–562, Mar. 2013.

[9] W. Zhang, K. Ma, and N. Yu, “Reversibility improved
data hiding in encrypted images,” Signal Process., vol.
94, pp. 118–127, Jan. 2014.

[10] X. Cao, L. Du, X. Wei, D. Meng, and X. Guo, “High
capacity reversible data hiding in encrypted images
by patch-level sparse representation,” IEEE Trans.
Cybern., vol. 46, no. 5, pp. 1132–1143, May 2016.

[11] M. Fujiyoshi, “Separable reversible data hiding in
encrypted images with histogram permutation,” in
Proc. IEEE Int. Conf. Multimedia Expo, Jul. 2013, pp.
1–4.

[12] W. Zhang, H. Wang, D. Hou, and N. Yu, “Reversible
data hiding in encrypted images by reversible image
transformation,” IEEE Trans. Multimedia, vol. 18, no.
8, pp. 1469–1479, Aug. 2016.

[13] Qian, Z., Dai, S., Jiang, F., & Zhang, X. (2016). Improved
joint reversible data hiding in encrypted images.
Journal of Visual Communication and Image
Representation, 40, 732–738.
doi:10.1016/j.jvcir.2016 .08.020.

[14] Huang, F.,Qu, X., Kim, H. J., & Huang, J.(2016).
Reversible Data Hiding in JPEG Images. IEEE
Transactions on Circuits and Systems for Video
Technology, 26(9), 1610–1621. doi
:10.1109/tcsvt.2015. 2473235.

[15] Qian, Z., Zhou, H., Zhang, X., & Zhang, W.
(2016). Separable Reversible Data Hiding in
Encrypted JPEG Bitstreams. IEEE Transactions on
Dependable and Secure Computing, 1–
1.doi:10.1109/tdsc.2016. 2634161.

[16] J. C. Chang, Y. Z. Lu, and H. L. Wu, “A separable
reversible data hiding scheme for encrypted JPEG
bitstreams,” Signal Process., vol. 133,pp. 135–143,
Apr. 2017.

[17] Qian, Z., Xu, H., Luo, X., & Zhang, X. (2018). New
Framework of Reversible Data Hiding in Encrypted
JPEG Bitstreams. IEEE Transactions on Circuits and
Systems for Video Technology, 1–1.
doi:10.1109/tcsvt.2018.2797897

[18] Chin-Cheng Chang, Ran Tang, Chia-Chen Lin, Wan-Li
Lyu, "High-Capacity Reversible Data Hiding Method
for JPEG Images," Journal of Software vol. 13, no. 1,
pp. 1-17, 2018.

