
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5462

A Review on Advanced Host Controller Interface (AHCI)

Usha V1, Dr H V Kumaraswamy2

1Student, Department of TCE, RV College of Engineering, Karnataka, Bengaluru – 560059, India
2Professor & Associate Dean, Department of TCE, RV College of Engineering, Karnataka, Bengaluru – 560059, India
---***--

Abstract - Integrated Drive Electronics (IDE) was in use to
achieve communication between system memory and storage
devices, prior to the invention of Advanced Host Controller
Interface (AHCI). Since IDE was compatible with older
technologies and device and was taking too long to achieve
communication with supporting only few number of devices
and many more drawbacks AHCI came into existence which
can even support IDE. AHCI also provides newer features such
as hot plugging, 64 bit addressing, power management, Native
command queuing (NCQ) etc. Since AHCI supports NCQ the
Hard Disk Drive’s (HDD) speed will increase significantly. If
Solid State Devices (SSD) is to be used then IDE mode does not
support it and one must switch to AHCI.

Key Words: Host Controller Interface (AHCI),
Integrated Drive Electronics (IDE), Native command
queuing (NCQ), Hard Disk Drive (HDD).

1. INTRODUCTION

AHCI makes use of the concept of scatter or gather list of IDE
and this will be result in decreasing CPU or software
overhead and also support advanced features of SATA like
power management, hot plug, Native command queuing etc.
The Communication between system software and devices
goes from task file one byte at a time to a command Frame
Information Structure which will be in the memory of
system which will be fetched by the Host Bus Adopter (HBA).
Resulting reduced command setup time, so that host
controller could be connected with numerous devices, and
software could not communicate directly through task file to
a device.

Communication of data to or from the system memory
and device occurs via the HBA, which act as a bus master to
system memory. HBA fetches or stores the data to system
memory without the intervention of CPU and regardless of
method of transfer which may be DMA or PIO, there is no
accessible data port.

Each and every transfer is performed using DMA. PIO has
very little support for errors, for example, before the data
transmission, the ending status field of PIO transfer will be
given to the HBA during the PIO Setup FIS. If commands like
IDENTIFY DEVICE need to be performed then this could be
possible only through PIO.

To implement a Serial ATA command queue using the
DMA Setup FIS, AHCI defines a standard mechanism. AHCI
HBA is built such that individual slots in Command List will

be allocated in system’s memory for every command. AHCI
device driver written place a command into slot which is
empty and after this is reflected in AHCI HBA through
register access, the HBA shall fetch the command and
transfers it. To get the scatter or gather list used in the
transfer, the DMA Setup FIS made use of as a reference into
the command list. Multiple commands in the list can still be
placed by System software whether PIO, ATAPI or DMA, and
the AHCI HBA will look into it and transfers it one by one.

This will be achieved by the HBA by simply moving
pointer, which is pointing to command list only when DRQ
bit, ERR bit, BSY bits are cleared by the device. Advanced
Host Controller Interface (AHCI) host devices support 32
ports as 1 to 32. AHCI is a hardware mechanism supporting
the system’s software to communicate with SATA storage
devices like HDD and SSD. AHCI is a PCI class device. AHCI
acts as a data mover to or from SATA devices and system’s
memory. Both None queued commands and queued
commands will no t be mixed in the command list for the
same device except the Native Command Queuing (NCQ)
unload command. AHCI describes a generic area in system
memory for a table of entries describing a command list,
status and control.

2. AHCI MEMORY STRUCTURE

To achieve communication between AHCI driver and storage
devices system memory descriptors which represent the
status of transmitted and received FIS as well as pointers for
data transfer and HBA registers are used. HBA memory space
consists of AHCI registers and is divided as AHCI registers
and system memory as shown in Figure 1. AHCI registers are
built in part of AHCI HBA which will usually be integrated
inside motherboard of the system.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5463

Figure 1: AHCI HBA memory space.

AHCI HBA registers are divided into configuration
registers and memory registers. AHCI configuration registers
consist of PCI configuration registers and AHCI memory
registers consist of Generic Host Control and port registers
for corresponding to each 32 ports as depicted in Figure 2.
AHCI memory registers are linked by AHCI BAR of AHCI
configuration register. Generic Host Control registers
indicates all the capabilities. Port control register holds the
pointer pointing to command list corresponding to every 32
ports in system memory.

Figure 2: AHCI HBA registers.

HBA Memory space is located in system memory and is
reserved for AHCI. Each Port Control Register points to two
sections of System Memory that is Base address of
corresponding Command List and FIS. Command List
consists of a Command Table. Command table contain

command which is to be issued and PRD table which
contains the scatter or gather list for the data transfer.
Different field for every DMA Setup FIS, Set Device Bits FIS,
PIO Setup FIS, D2H Register FIS and unknown FIS are
reserved in Received FIS Structure as shown in figure 3.

Figure 3: AHCI System memory.

3. DATA TRANSFER IN AHCI

In AHCI, it is assumed that all operations are usually DMA and
hence each port has DMA engine. AHCI Driver software is
responsible to place the commands in the command list
declared this happens when command need to be post and if
there is a free slot in command list of corresponding port.

3.1 ATA DMA writes:

Write bit is set to 1 whenever write operation need to
happen, and ATAPI bit must not be set since it is ATA
command. Read or write operation starts from idle state.
First the command is fetched and transmits it, since it is DMA
write the received FIS will be placed in DMA setup FIS as in
Figure 3. Then the received FIS will be accepted and go to
another DMA transfer until the required number of bytes has
been written completely.

3.2 ATAPI DMA writes:

Since here ATAPI command is used ATAPI bit will be set
to 1. Also write bit will also be set to 1, similar steps will be
used that is the command will be fetched and transmitted but
it will be in PIO setup FIS. Then the FIS will be accepted by
AHCI HBA and ATAPI command will be placed PIO setup now

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5464

again this will be accepted by AHCI HBA and the data will be
transmitted using DMA transmit and will continue to do so
until all required number of bytes have been successfully
written to device.

3.3 ATA DMA read:

Write bit is set to 0 whenever read operation need to
happen, and ATAPI bit must not be set since it is ATA
command. Initial steps would be similar to ATA DMA write
that the command will be fetched and transmits it this will be
accepted by AHCI HBA and this will perform DMA receive
operation would take place and will repeat it until the
required number of bytes has been read from devices.

3.4 ATAPI DMA read:

Since here ATAPI command is used ATAPI bit will be set
to 1 but write bit will also be set to 0, similar steps will be
used that is the command will be fetched and transmitted but
it will be in PIO setup FIS. Then the FIS will be accepted by
AHCI HBA and ATAPI command will be placed PIO setup now
again this will be accepted by AHCI HBA and the data will be
transmitted using DMA receive operation would take place
and will repeat it until the required number of bytes has been
read from devices.

4. CONCLUSION

A review on AHCI architecture reveals that use of AHCI mode
enhances the speed of accessibility with Hard disk drives and
also by little amount in case of Solid state device since AHCI
mode supports Native command queuing, power
management. Also gives a brief idea of how AHCI memory
space is organized and how the DMA read write operation
would be performed in both ATA and ATAPI devices.

REFERENCES

[1] D. Cotroneo, L. De Simone, F. Fucci and R. Natella, “MoIO:

Run-time monitoring for I/O protocol violations in
storage device drivers,” 2015 IEEE 26th International
Symposium on Software Reliability Engineering (ISSRE),
Gaithersbury, MD, 2015, pp. 472-483.

[2] https://www.ieee.org/content/dam/ieeeorg/ieee/web/
org/about/corporate/ieee-industry-
advisoryboard/digital-storage-memory-technology.pdf

[3] https://www.intel.in/content/www/in/en/io/serial-
ata/serial-ataahci-spec-rev1-3-1.html

[4] D. C. Turicu, O. Creţ and L. Văcariu, "High performance
serial ATA Gen3 controllers on FPGA devices," 2017
International Conference on Field Programmable
Technology (ICFPT), Melbourne, VIC, 2017, pp. 32-39.

[5] H. M. Ashour, "Challenges in serial protocols Verification
on an emulation environment (SATA as an example),"
2016 11th International Design & Test Symposium (IDT),
Hammamet, 2016, pp. 93-97.

https://www.intel.in/content/www/in/en/io/serial-ata/serial-ataahci-spec-rev1-3-1.html
https://www.intel.in/content/www/in/en/io/serial-ata/serial-ataahci-spec-rev1-3-1.html

