
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5525

Traffic Black Hole Detection Framework
B Sai Bhaskar Reddy1, Saba Farheen N S2

1Dept. of Electronics and Communication Engineering, R V College, Karnataka, India
2Professor, Dept. of Electronics and Communication Engineering, R V College, Karnataka, India

---***--

Abstract - Internet backbone and core networks are under
continuous shift, striving to keep up with the increasing
demand. Capital expenditures of telecom companies on
network maintenance hovered at around 15 percent of the
total revenue. A common fault in network is packets getting
dropped without evident reasons, where pinpointing the cause
of failure is a difficult and tedious job. These kinds of packet
drop in traffic over internet is called a” Traffic Black Hole” or”
Silent Failures”. Automating the debugging process of traffic
black hole detection is difficult in case of traditional networks,
thus requiring manual intervention leading to an increased
investment in time and resources. The goal of this project is to
automate the debugging process that is generally employed
while detecting a black hole. The framework achieved
detection of black hole by considering all the required methods
that are presently being used and by interpreting the routines
as rules for Health Bot. The proposed Traffic black hole
detection framework could successfully detect a traffic black
hole that is caused by a Ingest connectivity failure. Due to this
framework, resources spent on debugging the issue got
reduced by 80 percent than the usual.

Key Words: Health Bot (HB), Traffic Black Hole, Junos
OS, Open Shortest Path First (OSPF).

1. INTRODUCTION

 The term traffic Black hole refers to packet loss in a
stream, which can be caused by wide ranges of technical
errors. Detecting a traffic black hole is a tedious work which
requires a lot of resources. A typical Problem Report (PR)
takes almost a week by an engineer to complete it. The
Problem detection part takes a major amount of time and
resources. More PRs would result in a delayed release of the
newer versions of the Junos OS. Automating detection of
black holes can save a lot of time and resources, which will
improve the efficiency of the workforce and the team to be
more agile and responsive. The automated debugging
framework developed in this work helps to simplify, quicken
the debugging process required to find the traffic blackhole
in the network. It employs basic to advanced methods used
conventionally by an engineer to find the cause of loss in
traffic and reports back. This way it reduces the meticulous
and tedious steps.

 In [1], author presents an application framework in which
declarative specifications of debugging actions are translated
into execution monitors which can automatically detect
bugs. The approach is non-intrusive with respect to program
source code and provides a high level of abstraction for

debugging activities. Efficiently monitoring a network
requires full observability of each node. The main challenge
lies in correlating the monitoring logs coming from all the
nodes and reconstructing useful network-wide knowledge
such as routing topology or end-to-end performance.
Authors in [3] proposes a monitoring framework in which
nodes would report events that are significant to the life of
the network, following clearly specified semantics. Clear
semantics allows maintaining a network model, running on a
computer on the side of the network, thus mirroring the
state of the real network.[4] suggest an approach to the
development of debugging automation tools and soft- ware
testing based on precise program behaviour models. A
program behaviour model is defined as a collection of events
which have two basic binary relations over the events i.e.
inclusion and precedence, and this represents the temporal
relationship between all the actions. A language for
computations over all the event traces is developed which
provides a basis for debugging queries, assertion checking,
performance measurements and execution profiles.
Backbone networks of Internet are under constant load,
struggling to keep up with ever increasing demand. The
trend of technology change so often that outstrips the
deployment of fault monitoring capabilities, that are built
into today’s IP protocols and routers. Some of the new
technologies across network layers, raise the requirement
for unanticipated connections and service disruptions that
the built-in monitoring systems cannot detect. In such cases,
failures in detection may cause data packets to drop silently
without triggering any built-in monitoring systems. These
kinds of drops are called “silent failures” or “black holes” can
cause critical failures in the network. In [10], the authors a
present a simple and effective method to detect and diagnose
such silent failures. The proposed method uses active
measurement between edge routers to raise alarms when-
ever end-to-end connectivity is disrupted, regardless of the
cause. These alarms feed localisation agents that employ
spatial correlation techniques to isolate the root-cause of
failure. Using data from two real systems deployed on
sections of a tier-I Internet Service Provider network,
successfully detects and localises their known black holes.

2. AUTOMATED DEBUGGING FRAMEWORK

 Manual Debugging of a problem starts with deeply
analysing the given problem, pinpointing the part of the
source code leads to the problem. Modifications or new
additions needs to be done to fix the problem. Local testing
would be done to avoid any compilation errors. The code
would be submitted for regression and sanity tests once it

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5526

gets passed locally. These tests are performed on all
available platforms and are run several times. Once the code
passes for regression and sanity tests, one needs to commit
to merge the changed code. This usually takes a week by an
engineer to complete. The Framework aims to automate the
debugging process. When submitted a topology, the
framework runs all the commands and processes, which are
usually run by engineers to figure out the problem and
report back to the user on which point of failure leads to the
problem.

2.1 Health Bot
 Health Bot (HB) is a programmable telemetry-based
analytics application. With it, one can diagnose and root
cause network issues, detect network anomalies, predict
imminent network issues, and create real time remedies for
any issues that come up. HB Data Collection Methods are
used in order to provide visibility into the state of the
network devices, HB first needs to collect their telemetry
data and other status information. HB does Data Collection
using sensors. HB currently supports the following sensors:

 Native Google Protocol Buffers (GPB)
 OpenConfig
 Syslog
 iAgent (CLI/NETCONF)
 Simple Network Management Protocol (SNMP)

2.1.2 Health Bot-Rules
 HB’s primarily function is collecting and reacting to
telemetry data from network devices. The role of a rule is
defining collection of the data, and to react to the data.
Defining a rule requires a language that describes several
elements, what a rule is and does, where the rule receives
data from, a way to filter or manipulate the data, and then a
way to react to that data. In software terms, this type of
language is called a Domain Specific Language (DSL), i.e., a
language that is specific to one domain.

Fig -1: Structure of a Health Bot Rule

 HB’s DSL includes topics, rules, sensors, fields, triggers,
and so on. HB ships with a set of default rules, which can be
seen on the Rules page of the HB GUI, as well as in GitHub in

the HB-rules repository. One can also create their own rules
depending on the requirement.

Sample structure of a HB rule is as shown in Fig. 1. To keep
rules organised, HB organises them into topics. Topics can be
very general, like system, or they can be more granular, like
protocol.bgp. Each topic contains one or more rules. As
described above, a rule contains all the details and
instructions to define how to collect and handle the data.

2.1.3 Health Bot-Playbooks

 In order to fully understand any given problem or
situation on a network, it is often necessary to look at a
number of different system components, topics, or key
performance indicators (KPIs). HB operates on playbooks,
which are collections of rules for addressing a specific use
case. Playbooks are the HB element that gets applied, or run,
on device groups or network groups.

HB comes with a set of pre-defined Playbooks. For example,
the system-KPI playbook monitors the health of system
parameters such as system-cpu-load-average, storage,
system-memory, process-memory, etc. It then notifies the
operator or takes corrective action in case any of the KPIs
cross pre-set thresholds.

One can create a playbook and include any rules in it. The
playbooks need to be applied to the device groups. By
default, all rules contained in a Playbook are applied to all of
the devices in the device group. There is currently no way to
change this behaviour. If playbook definition includes
network rules, then the playbook becomes a network
playbook and can only be applied to network groups.

2.2 Framework Development

 A software framework offers generic software
functionality and can be restrictively changed by writing
user programs to make it well suited to the required
application.

2.2.1 Parsing User’s Topology

 When a problem is raised by a customer or any other team,
the Engineer should again undergo all the steps to reach that
problem (here, a traffic black hole). To reproduce the set-up
of the customer, the topology information is needed.

Fig -2: Example network topology

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5527

 Fig. 2 shows a sample network topology. When a topology
is created using pbuilder, a .yaml and a .topo file. The user
should input either the topo or yaml file to the framework.
The framework should parse the required information as
Router’s name, Router’s ip, Interface info, etc. A python
program, topoResolve.py is created to take care of parsing
user’s topology.

2.2.2 Running required methods

 After parsing the required information, all the methods
and CLI commands are run on the routers to figure out the
traffic black hole. Some of the methods performed are as
discussed below.

1. Device Handle: A device handle should be acquired
on any device to run CLI commands on it. It is done
by calling the Device method defined in a standard
library.

2. Interface Statistics: IF stats give information on
packets that have been received and transferred at
both physical interface (IFD) and Logical Interface
(IFL) stages. This helps to figure out if there has
been a drop at any interface, which will help to
narrow down on devices.

3. Stream Statistics and CoS scheduler statistics:
These statistics give information at even deeper
levels at the interface. This will help to rule out
whether the problem is with the interface hardware
or with device control and forwarding plane.

4. Flexible PIC concentrator (FPC) commands: All
commands required cannot be run on Router
Engine (RE), some need to be run on the
Forwarding plane. Packet Forwarding Engine (PFE)
instances should be known from chassis. A special
command needs to be run, for getting information
from FPC.

5. Jnh exceptions: Jnh exceptions reports on any
failure in the FPC. Clearing these will help most of
the forwarding plane failures.

6. Ttrace: Ttrace gives all the processes a packet
underwent. Several steps need to be run on both RE
and PFE to get ttrace.

2.2.3 Detection of black hole

 Deductions from each method run are different and gives a
unique perspective on the problem. All of these can be
incorporated into the network. Black holes pertain to those
areas of the network where the arriving or departing traffic
is silently dropped, without notifying the source that the
data is not delivered to the desired destination. The term
“Black holes” is given, considering these places are invisible
upon inspection of the topology of the network, and can only
be detected by examining the lost traffic. All of the above-
mentioned methods help to monitor the traffic automatically

and make the process of detecting black holes quick and
easy.

3. DESIGN OF FRAMEWORK

 HB offers several ways to detect and troubleshoot device-
level and network- level health problems. The information
provided by the subsequent HB GUI pages is used to
investigate and discover the root cause of issues detected by
HB.

Fig -3 Health Bot Dashboard

 The Dashboard also has a graphical list of Pre-defined dash
lets across the top that is initially hidden from view. Each
dash-let provides graphical information from a specific point
of view. Many of the dash lets can be clicked on to drill down
deeper into the information presented. The Dashboard is
used to create a custom view of one’s interests as shown in
Fig. 3.

3.1 Adding Devices

 The Device information gathered from the user’s topology
should be added to the HB, that can be done through HB GUI.
HB GUI is accessed through port 8080 of the deployed HB.

Fig -4: Adding a Device via HB GUI

 Fig. 4 shows the addition of a device using the GUI by
choosing the “+Device” tab and filling the information about
Device name, IP Address, System ID (needed for native
sensors – this document is not covering much on native

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5528

sensors, but focuses more on Openconfig and iAgent Sensor),
Open Config Port Number, Username/ Password. Once the
devices are added, they can be grouped logically. This logical
grouping is required if the rules/playbooks are to be applied
on set of devices.

3.2 Creating Rules

 A rule has the details and procedures to collect and handle
data. The Sensors defines the attributes for collection of the
data. The data collection model is typically used to ingest the
data, and to pull or push the data. In a rule, a sensor will be
described in the current rule or can be taken from another
rule. A yaml file consisting the configurations to the sensor is
created. The created yaml file needs to be uploaded in the
sensor section. Respective sensor is also needed to be
selected.

Fig -5: Creating a custom rule.

 Fig. 5 shows creation of rule in HB GUI. The sensor usually
intakes a huge amount of data, so fields will enable a way to
filter or manipulate that data, which allows to identify,
modify and facilitate that data. Triggers consistently and
periodically brings together the values and fields elements
which are used to compare and gather the required status of
the system.

3.3 Uploading Playbook

 The methods that are created are to be added to HB. Each
script is added as a rule and collections of rules become a
playbook. The created playbook when run on a given
topology will have an ability to detect the black hole.

Fig -6: Uploading the Playbook

 The created system black hole detection playbook should
be uploaded to HB. Fig. 6 shows the way to upload a
playbook.

4. RESULTS AND DISCUSSIONS

 As the need for automation is very much required in the
near future and it is populating all over the internet world.
This chapter describes the results that are achieved through
the system black hole detection HB playbook. A case is
considered where a black hole is identified. It details the way
HB would manage the traffic black hole detection.

4.1 Traffic Black Hole

 A case is considered where packet loss is happening even
though every interface is up and forwarding the data
streams, a classic Traffic Black hole. The routes are
configured by OSPF. Fig. 7 shows that there is a fatal error
that is raised due to packet loss.

Fig -7: Toby log, Packet Loss is happening

 300 packets were sent from Spirent’s transferring port but
only 222 were received at the receiving port. Every Interface
of the router is up and is not dropping any packets when
checked for many iterations. Debugging this manually takes
a lot of time and resources which could be used on other
important work.

4.2 System Black hole Detection Playbook

 A system black hole detection playbook is developed
which consists of required routines that are performed by an
engineer.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5529

Fig -8: Instantiating Playbook

Fig. 8 shows the playbook being added via HB GUI. The
Traffic Difference threshold can be added at the time of
initiating the playbook. When saved and deployed the HB
starts gathering data from routers via iAgent communication
agent and starts running the developed rules.

Fig -9 Table View

 Fig. 9 shows the tabular view of the system resources. The
table view gives the progress of the scripts that are running
at present, the instances of the resources that are being used
while being forwarded, etc.

4.3 Health bot Output

 Few seconds after instantiating the playbook, the overview
section in HB GUI starts to rise a more specific and relevant
error.

Fig -10: Health bot Result

 Fig 10 shows the final test result, a Ingest connectivity
issue with check fib rule. Indicating an issue that generally
occurs with router tester, Spirent. When dug deeper into the
configurations of the spirent and ran multiple tests in the
STC, resulted in a thought that there is an issue with the
traffic stream. The goal of the original test was to send 300
packets at 10 FPS but the Spirent is configured in a single
burst mode which resulted in sending 300 packets at once,
i.e., at 300 FPS, which was way more than the original 10
FPS, that resulted in the packets being dropped from RT to
DUT.

5. CONCLUSIONS

 The aim of this project is to automate tedious debugging
process that is usually employed when detecting a black
hole. The project has achieved automation of the debugging
process by considering all the required routines that are
done and by interpreting these routines as rules for HB. Due
to this time and resources spent on simulating the user’s
case, understanding different topologies and running a lot of
routines is reduced for the user. Also, it is integrated with
the already established HB software which has a great
potential in network monitoring and management.

 The user’s topology information gathering system is
developed to simplify understanding and deploying the
topology. HB Rules that are required and essential in
detecting a traffic Black hole are developed. A system black
hole detection HB is created combining the rules. When
the playbook is uploaded to HB GUI, it successfully managed
in detecting the traffic black hole.

 A case is considered with a traffic black hole. The topology
information required is acquired through the Topo parser.
Devices and Device Group are added to the HB via HB GUI.
The system black hole detection framework is uploaded to
the HB. The traffic stream got started, after few moments

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 07 Issue: 07 | July 2020 www.irjet.net p-ISSN: 2395-0072

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 5530

the result section started to show an ingest connectivity
issue with the router tester. This playbook helped in
understanding, analysing and responding to the issue many
times faster than manual debugging process. By using this
process 80 percent of the time spent on identifying and
debugging the traffic black hole is reduced.

REFERENCES

1. A framework for automatic debugging,Proceedings
17th IEEE International Conference on Automated
Software Engineering, Sept. 2002.

2. A Survey Paper on Debugging Tools And

Frameworks For Debugging Real Time Industrial
Problems And Scenarios,2019 International
Conference on Vision Towards Emerging Trends in
Communication and Networking (ViTECoN).

3. Sensorlab2: A monitoring framework for IoT

networks,2017 International Conference on
Performance Evaluation and Modeling in Wired and
Wireless Networks (PEMWN).

4. M. Auguston, "Lightweight semantics models for

program testing and debugging automation",
Proceedings of the 7th Monterey Workshop on
“Modeling Software System Structures in a Fast-
Moving Scenario”, pp. 23-31, June 13–16, 2000.

5. High-level debugging of distributed systems: The

behavioral abstraction approach, Peter C.Bates, Jack
C.Wileden Volume 3, Issue 4, December 1983.

6. M. Ducasse, "COCA: An automated debugger for C",

Proceedings of ICSE 99, pp. 504-513, 1999.

7. M. Matsushita, M. Teraguchi and K. Inoue, "Effective
testing and debugging methods and its supporting
system with program deltas," Proceedings
International Symposium on Principles of Software
Evolution, Kanazawa, Japan,2000, pp. 282-289, doi:
10.1109/ISPSE.2000.913249.

8. J. Ji, G. Woo, H. Park and J. Park, "Design and

Implementation of Retargetable Software Debugger
Based on GDB," 2008 Third International
Conference on Convergence and Hybrid Information
Technology, Busan, 2008, pp. 737-740, doi:
10.1109/ICCIT.2008.268.

9. D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and
R. Morris. Resilient overlay networks. In
Symposium on Operating Systems, Principles, SOSP,
pages 131–145, 2001.

10. Luyuan Fang, A. Atlas, F. Chiussi, K. Kompella and G.
Swallow, "LDP failuredetection and recovery," in
IEEE Communications Magazine, Oct. 2004.

