

# Comparative Study of Multi-Storied RC building with and without Shear Wall

# P Dhanush<sup>1</sup>, Kavya MPM<sup>2</sup>, Rashmi N<sup>3</sup>, Somashekar TN<sup>4</sup>

<sup>1,3,4</sup>Students, Department of Civil Engineering, Rajarajeswari College of Engineering, Karnataka. <sup>2</sup>Asst. Professor, Department of Civil Engineering, Rajarajeswari College of Engineering, Karnataka. \*\*\*

**Abstract** - In high rise buildings earthquake forces should be considered before determining the safety of a structure. Hence stiffness of columns must be enough to stay safe during an earthquake, and it was found that for providing high stiffness in the columns, the size of columns is very large and is difficult to construct large size columns due to congestion of space. Hence an alternative was found for high rise buildings which are termed as a shear wall. Shear wall behaves like a wide column. A 3-D analysis of shear wall structures has been carried out using the ETABS software package. Different models have been drawn by adopting different locations and configurations of shear walls. Different parameters studied are Storey Displacement and Storey Drift. Based on these parameters, the best model has been suggested.

# **1. INTRODUCTION**

Generally, shear wall is often outlined as structural vertical member that's able to resist combination of shear, moment and axial load elicited by lateral load and gravity load transfer to the wall from alternative support. Shear walls have high stiffness and strength, creating them quite advantageous in several structural engineering applications. The use of shear wall structure has gained quality in a high rise building structure, particularly within the construction of a service flat or office/ industrial tower. It's been well-tried that this method provides an economical structural system for multi construction building within the vary of 30-35 storeys.

#### 2. LITERATURE REVIEW

When shear walls are situated in an advantageous position and configuration in a building they can form a very efficient lateral load resisting system. The various authors investigated the study on parameters like lateral displacement, storey drift and member forces to find out the ideal location and configuration of shear walls and braces in the building. This chapter includes the studies carried out by different authors and conclusions of their study.

# **3. METHODOLOGY**

When a structure is subjected to ground motions in an earthquake, it responds by vibrating. The random motion of the ground caused by an earthquake can be resolved in any three mutually perpendicular directions. This motion causes the structure to vibrate in all three directions. The predominant direction of shaking is horizontal.

As the ground on which a building rests is displaced, the base of the building moves suddenly with it, but the roof tends to stay in its original position (inertia). When designing a building according to the codes, the lateral force is considered in each of the two orthogonal horizontal directions of the structure.

#### **3. DESCRIPTION OF CONSIDERED MODEL**

| Load cases | Туре            | Details                                       |
|------------|-----------------|-----------------------------------------------|
| Dead       | Dead load       | Use self-weight multiplier                    |
| Floor      | Live load       | Slab: 200mm                                   |
| Storey     | Live load       | Slab: 200 mm<br>Beams: 600x600 mm             |
| Earthquake | Seismic<br>load | Is:1893:2002 response<br>reduction factor = 5 |

Table 2: Load cases



e-ISSN: 2395-0056 p-ISSN: 2395-0072

| S.NO | PARTICULARS       | DATA      |
|------|-------------------|-----------|
| 1    | No. Of storeys    | 15        |
| 2    | Plan dimension    | 20x20 m   |
| 3    | Storey height     | 3.0 m     |
| 4    | Grade of concrete | M30       |
| 5    | Grade of steel    | Fe415     |
| 6    | Thickness of slab | 0.2 m     |
| 7    | Beam size         | 0.6x0.6 m |
| 8    | Column size       | 0.6x0.6 m |
| 9    | Seismic zone      | 2         |
| 10   | Seismic factor    | 0.1       |
| 12   | Top storey load   | 1.5 KN/m2 |
| 14   | Floor/cover load  | 1.0 KN/m2 |

#### Table 3: Building Details

The following are the models to be considered for analysis of an R.C building with shear walls at various locations.

| I.   | Bare frame (no shear walls)   | M1 |
|------|-------------------------------|----|
| II.  | Shear wall at central core    | M2 |
| III. | Shear walls at corners        | М3 |
| IV.  | Shear walls at edge faces     | M4 |
| V.   | Shear walls at core + corners | M5 |
| VI.  | Shear walls at core + edges   | M6 |

# 4. RESULTS AND DISCUSSION



Figure 4.1: Model 1 storey displacement plot



International Research Journal of Engineering and Technology (IRJET)e-ISSN:Volume: 07 Issue: 07 | July 2020www.irjet.netp-ISSN:

e-ISSN: 2395-0056 p-ISSN: 2395-0072



Figure 4.2: Model 2 storey displacement plot



Figure 4.3: Model 3 storey displacement plot









Figure 4.5: Model 5 storey displacement



Figure 4.6: Model 6 storey displacement plot

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 p-ISSN: 2395-0072



www.irjet.net

Volume: 07 Issue: 07 | July 2020

IRJET

Graph 4.1 storeys vs storey displacement(mm)



Graph 4.2 storeys vs storey drift



Graph 4.3 storeys vs base shear (kN)



| Displacement(mm) |        |        |        |        |        |        |
|------------------|--------|--------|--------|--------|--------|--------|
| Storey           | M1     | M2     | M3     | M4     | M5     | M6     |
| Story15          | 60.92  | 42.674 | 39.596 | 48.784 | 33.422 | 31.994 |
| Story14          | 59.556 | 39.841 | 36.802 | 45.955 | 30.935 | 29.67  |
| Story13          | 57.447 | 36.752 | 33.792 | 42.816 | 28.312 | 27.216 |
| Story12          | 54.658 | 33.529 | 30.681 | 39.467 | 25.623 | 24.693 |
| Story11          | 51.288 | 30.194 | 27.486 | 35.908 | 22.88  | 22.107 |
| Story10          | 47.435 | 26.777 | 24.238 | 32.161 | 20.111 | 19.478 |
| Story9           | 43.189 | 23.319 | 20.976 | 28.264 | 17.347 | 16.836 |
| Story8           | 38.634 | 19.866 | 17.746 | 24.275 | 14.626 | 14.216 |
| Story7           | 33.846 | 16.474 | 14.595 | 20.262 | 11.987 | 11.659 |
| Story6           | 28.893 | 13.201 | 11.58  | 16.305 | 9.476  | 9.211  |
| Story5           | 23.837 | 10.111 | 8.757  | 12.497 | 7.139  | 6.925  |
| Story4           | 18.73  | 7.274  | 6.189  | 8.944  | 5.029  | 4.855  |
| Story3           | 13.62  | 4.763  | 3.946  | 5.768  | 3.198  | 3.065  |
| Story2           | 8.553  | 2.656  | 2.115  | 3.112  | 1.709  | 1.617  |
| Story1           | 3.655  | 1.015  | 0.769  | 1.118  | 0.62   | 0.572  |
| Base             | 0      | 0      | 0      | 0      | 0      | 0      |

# Table 4.1 Combination of storey displacement plots of above six models

Table 4.2 Combination of storey drifts of above six models

| Storey drift(mm) |          |          |          |          |          |          |
|------------------|----------|----------|----------|----------|----------|----------|
| Storey           | M1       | M2       | M3       | M4       | M5       | M6       |
| Story15          | 0.000456 | 0.000971 | 0.000979 | 0.000974 | 0.000858 | 0.000798 |
| Story14          | 0.000703 | 0.00103  | 0.001007 | 0.001046 | 0.000878 | 0.000818 |
| Story13          | 0.00093  | 0.001074 | 0.001037 | 0.001116 | 0.000896 | 0.000841 |
| Story12          | 0.001123 | 0.001112 | 0.001065 | 0.001186 | 0.000914 | 0.000862 |
| Story11          | 0.001284 | 0.001139 | 0.001083 | 0.001249 | 0.000923 | 0.000876 |
| Story10          | 0.001415 | 0.001153 | 0.001087 | 0.001299 | 0.000921 | 0.000881 |
| Story9           | 0.001518 | 0.001151 | 0.001077 | 0.00133  | 0.000907 | 0.000873 |
| Story8           | 0.001596 | 0.001131 | 0.00105  | 0.001338 | 0.00088  | 0.000852 |
| Story7           | 0.001651 | 0.001091 | 0.001005 | 0.001319 | 0.000837 | 0.000816 |
| Story6           | 0.001685 | 0.00103  | 0.000941 | 0.00127  | 0.000779 | 0.000763 |
| Story5           | 0.001702 | 0.000946 | 0.000856 | 0.001186 | 0.000704 | 0.000692 |
| Story4           | 0.001703 | 0.000838 | 0.000748 | 0.001061 | 0.00061  | 0.000602 |
| Story3           | 0.001689 | 0.000703 | 0.000613 | 0.000889 | 0.000498 | 0.000488 |
| Story2           | 0.001636 | 0.000547 | 0.000453 | 0.000665 | 0.000366 | 0.000349 |
| Story1           | 0.001218 | 0.000338 | 0.000256 | 0.000373 | 0.000207 | 0.000191 |
| Base             | 0        | 0        | 0        | 0        | 0        | 0        |



| Base Shear(kN) |          |          |          |          |          |          |
|----------------|----------|----------|----------|----------|----------|----------|
| Storey         | M1       | M2       | M3       | M4       | M5       | M6       |
| Story15        | 657.7704 | 1159.491 | 1293.437 | 980.0952 | 1573.285 | 1619.728 |
| Story14        | 681.7341 | 1212.941 | 1365.225 | 1025.275 | 1675.006 | 1717.089 |
| Story13        | 587.8218 | 1045.852 | 1177.159 | 884.038  | 1444.266 | 1480.551 |
| Story12        | 500.8659 | 891.14   | 1003.023 | 753.2631 | 1230.617 | 1261.535 |
| Story11        | 420.8665 | 748.8052 | 842.8177 | 632.9503 | 1034.06  | 1060.04  |
| Story10        | 347.8235 | 618.8472 | 696.5435 | 523.0994 | 854.595  | 876.0657 |
| Story9         | 281.7371 | 501.2663 | 564.2002 | 423.7105 | 692.222  | 709.6132 |
| Story8         | 222.6071 | 396.0622 | 445.7878 | 334.7836 | 546.9408 | 560.682  |
| Story7         | 170.4335 | 303.2351 | 341.3063 | 256.3187 | 418.7516 | 429.2722 |
| Story6         | 125.2165 | 222.785  | 250.7557 | 188.3158 | 307.6542 | 315.3837 |
| Story5         | 86.9559  | 154.7118 | 174.1359 | 130.7749 | 213.6488 | 219.0164 |
| Story4         | 55.6518  | 99.0156  | 111.447  | 83.6959  | 136.7352 | 140.1705 |
| Story3         | 31.3041  | 55.6963  | 62.6889  | 47.0789  | 76.9136  | 78.8459  |
| Story2         | 13.9129  | 24.7539  | 27.8617  | 20.924   | 34.1838  | 35.0426  |
| Story1         | 3.4782   | 6.1885   | 6.9654   | 5.231    | 8.546    | 8.7607   |
| Base           | 0        | 0        | 0        | 0        | 0        | 0        |

Table 4.3 Combination of Base shear(kN)

**5. CONCLUSIONS** 

From the above results, it was concluded that more number of shear walls more will be the resistance. The horizontal displacement of 15 storey building with shear wall at core+edge places is lesser compared to other models. Larger the width of the shear wall more will be the resistance. It is observed that more the base shear more will be the resistance. Hence, from the above results, it can be concluded that model 6 is having least storey displacement with the maximum number of shear wall which resists more lateral loads compared to other models.

# 6. ACKNOWLEDGEMENT

It also gives us immense pleasure to express our gratitude to **Ms Kavya MPM** Assistant Professor of Civil Engineering whose valuable inputs have made us richer in terms of knowledge and also for guiding us at a place where everything was not familiar, her supervision during our project has been proved as the greatest asset to our project.

# **7. FUTURE SCOPE**

- In this paper we have considered a building of 15 storeys only, we can also consider buildings with more number of storeys.
- In this paper, we considered the building with a regular plan and assumes seismic load acts in a

unidirectional. It also to carry out for irregular plan and load acts in a multi-directional.

# 7. REFERENCES

- 1. Shah M. D and Patel S. B., (2011), "Nonlinear static analysis of R.C.C. frames" Software implementation ETABS 9.7, National Conference on Recent Trends in Engineering & Technology, 1-6.
- 2. Shaik Kamal Mohammed Azam, Vinod Hosur,(2013), "Seismic
- 3. Performance Evaluation of Multistoried RC framed buildings with Shearwall", International Journal of Scientific & Engineering Research.
- 4. S. M. Yarnal, S.S. Allagi, P.M. Topalakatti and A. A. Mulla (2015), "Non-Linear Analysis of Asymmetric Shear Wall with Openings", International Journal of Engineering Research & Technology (IJERT) Vol. 4 Issues 08, August-2015.
- Venkata Sairam Kumar.N, Surendra Babu.R, Usha Kranti.J(2014), "Shear walls – A review", International Journal of Innovative Research in Science, Engineering and Technology, Feb 2014.