

Time and Cost Optimization of Construction Equipment Fleet for Highway Project

Sandip Jadhav¹, Amol Thorbole²

¹M. Tech. Student Civil - Construction Management, RIT, Maharashtra, India ²Assistant Professor, RIT, Maharashtra, India

***_____

Abstract - Construction equipment are the major resources in infrastructure projects. Construction equipment occupy major portion of project cost, but improper utilization of such resources lead to loss of productivity, ultimately affecting profit. Thus, there is need to optimize these operations to reduce the cost. The present research attempt to design the optimized equipment fleet by studying existing fleet and using optimization for the highway project. It includes an economic analysis of equipment fleet with respect to time and cost. To perform these optimization, production capacity and cost of equipment is taken into consideration. To validate the results, case study of four laning of Sangli - Solapur Section of NH 166 is taken.

Key Words: Construction equipment fleet, cost analysis, productivity analysis, optimization.

1. INTRODUCTION

In road construction, equipment plays a major role as earthwork manage major portion of total construction cost, so their cost and productivity has a major role in making the project profitable to the company [4]. Therefore, if accuracy in terms of calculating the operating cost, productivity offered by equipment and feasible way of acquiring equipment is achieved, the project with more precision and economic cost can be planned [6].

Every task of road layer requires different types of equipment and machineries having their own level of application, such as subgrade, granular sub-base, dry lean & pavement quality concrete so each require different set of equipment fleet [3]. The equipment productivity control is undertaken to determine its employment time, the output achieved and its productivity at the site. The main purpose of equipment productivity control is to minimize the wastage in utilization and to minimize the cost [2].

One of the first tasks to be performed on any project, is the development of detailed cost estimates and schedules. The better the historical data available to the estimator, the more accurate the results of his analysis. This includes the actual performance characteristics of specific equipment items as well as determining which type of equipment to use for a particular project. The aim of this work is to perform economic analysis of equipment fleet used in pavement construction. This research has performed economic analysis of existing equipment fleet for selected case study by calculating total owning and operating cost of all equipment.

2. CASE STUDY AND DATA COLLECTION

2.1 Description of the case study

For data collection, case study of National Highway NH-166 (Package –II) is selected. From project data, condition of existing equipment fleet management is observed. The method of construction in pavement and working of each equipment are thoroughly studied and further cost analysis of each equipment is performed.

The Package-II of the project highway starts at Borgaon (Existing Chainage Km. – 219.956 to Design Chainage Km. - 224.000) in Sangli District and ends at Watambare (Existing Chainage Km. -272.394 to Design Chainage Km 276.000) in Solapur district. The project is located in Maharashtra, India and it is being carried out under Hybrid Annuity Model (HAM) by National Highway Authority of India (NHAI).

2.2 Data collection

For primary data collection, data related to each equipment cost was collected for month of 'October 2019' from contractor's records from site. The data of fuel consumption, maintenance cost, labor operating cost and efficiency of equipment was collected for further economic analysis. Then hourly cost of each equipment was calculated.

3. COST ANALYSIS OF EQUIPMENT FLEET

The total cost of construction equipment is divided into two components namely ownership cost and operating cost; also referred as 0 & 0 cost of the construction equipment. Ownership cost consist of initial cost, salvage value, insurance cost and road taxes.

Operating cost of the equipment is influenced by various parameters namely number of operating hours, location of job site, operating conditions, category of equipment etc. The operating cost consist of maintenance cost, fuel cost, and equipment operator wages.

3.1 Ownership cost

Ownership cost is the total cost associated with the construction equipment for owning it irrespective of the equipment is employed or not in the project. The ownership cost consists of the following;

a) Initial cost, b) Salvage value, c) Interest cost or cost of capital investment, d) Insurance cost, e) Road taxes

3.2 Operating cost

Operating cost is incurred only when the equipment is operated. The operating cost of the equipment is influenced by various parameters namely number of operating hours, location of job site, operating conditions, category of equipment etc. The operating cost consists of the following;

a) Maintenance cost, b) Fuel cost, c) Equipment operator wages.

For case study, equipment which are most cost effective are selected and considered for further analysis. These equipment are studied for finding out owning and operating cost. The various costs associated with equipment for calculating total owning and operating cost are calculated below.

The annual ownership cost of each equipment is calculated by considering purchase cost, life of equipment, insurance cost and road taxes associated with it.

Cr. No.	Equipment True	Purchase	Life	Annualized	Insurance	Road	Total Ownership
Sr. No	Equipment Type	Cost (Rs.)	(yrs)	Purchase Cost (Rs.)	Premium (Rs.)	Taxes	Cost (Rs.)
1	Back Hoe Loader	2,000,000	10	353,968.33	8665	17680	380,313.33
2	Dozer	9,185,902	10	1,625,759.19	6538	-	1,632,297.19
3	Excavator	5,600,000	8	1,127,295.91	2653	-	1,129,948.91
4	Excavator Breaker	5,550,000	8	1,117,230.77	3237	-	1,120,467.77
5	Excavator Mine	10,797,000	6	2,626,108.08	4568	-	2,630,676.08
6	Excavator Mine Breaker	6,277,600	6	1,526,873.77	4454	-	1,531,327.77
7	Motor Grader	11,000,000	10	1,946,825.81	18800	-	1,965,625.81
8	Slip Form PQC Paver SP 1200	96,250,000	6	23,410,475.40	53086	-	23,463,561.40
9	Slip Form PQC Paver SP 500	54,720,000	6	13,309,311.31	24562	-	13,333,873.31
10	Soil Compactor	2,488,633	10	440,448.63	1197	-	441,645.63
11	Tandem Roller	2,639,250	6	641,933.48	1240	-	643,173.48
12	Texture Curing TCM 180	76,650,147	6	18,643,287.07	13312	-	18,656,599.07
13	Tipper Mine	3,838,000	8	772,600.31	27914	24512	825,026.31
14	Tipper 10 Wheeler	1,973,000	8	397,170.51	27914	24512	449,596.51
15	Transit Mixer	1,700,000	6	413,483.72	12655	24752	450,890.72
16	Vogele DLC Paver	18,648,000	10	3,300,400.69	8815	-	3,309,215.69
17	Water Tanker	435,000	8	87,566.74	19222	24512	131,300.74
18	Wheel Loader	3,263,826	10	577,645.52	10539	25412	613,596.52

Table -1: Annual Ownership Cost

The equipment salvage cost of each equipment is calculated by considering purchase cost, life of equipment and annualized salvage value associated with it. Summary of the equipment salvage cost per hour for equipment which are major cost effective is given below.

Sr. No	Equipment Type	Purchase	Life	Salvage	Annualized Salvage
51°. NO	Equipment Type	Cost (Rs.)	(yrs)	Value (Rs.)	Cost (Rs.)
1	Back Hoe Loader	2,000,000	10	200,000.00	11,396.83
2	Dozer	9,185,902	10	918,590.20	52,345.09
3	Excavator	5,600,000	8	560,000.00	45,529.59
4	Excavator Breaker	5,550,000	8	555,000.00	45,123.08
5	Excavator Mine	10,797,000	6	1,079,700.00	133,046.81
6	Excavator Mine Breaker	6,277,600	6	627,760.00	77,356.18
7	Motor Grader	11,000,000	10	1,100,000.00	62,682.58
8	Slip Form PQC Paver SP 1200	96,250,000	6	9,625,000.00	1,186,047.54
9	Slip Form PQC Paver SP 500	54,720,000	6	5,472,000.00	674,291.13
10	Soil Compactor	2,488,633	10	248,863.30	14,181.27
11	Tandem Roller	2,639,250	6	263,925.00	32,522.35
12	Texture Curing TCM 180	76,650,147	6	7,665,014.70	944,526.94
13	Tipper Mine	3,838,000	8	383,800.00	31,204.03
14	Tipper 10 Wheeler	1,973,000	8	197,300.00	16,041.05
15	Transit Mixer	1,700,000	6	170,000.00	20,948.37
16	Vogele DLC Paver	18,648,000	10	1,864,800.00	106,264.07
17	Water Tanker	435,000	8	43,500.00	3,536.67
18	Wheel Loader	3,263,826	10	326,382.60	18,598.64

The hourly ownership cost of each equipment is calculated by considering annual ownership cost, annual salvage value and monthly working hours associated with it. Summary of the hourly ownership cost per hour for equipment which are major cost effective is given below.

Table -3: Hourly	Ownership Cost
------------------	----------------

Sr. No	Equipment Type	Annual Ownership Cost (Rs.)	Annual Salvage Value (Rs.)	Total Annual Ownership Cost (Rs.)	Monthly Ownership Cost (Rs.)	Hourly Ownership Cost (Rs.)
1	Back Hoe Loader	380,313.33	11,396.83	368,916	30,743.04	102.48
2	Dozer	1,632,297.19	52,345.09	1,579,952	131,662.67	438.88
3	Excavator	1,129,948.91	45,529.59	1,084,419	90,368.28	301.23
4	Excavator Breaker	1,120,467.77	45,123.08	1,075,345	89,612.06	298.71
5	Excavator Mine	2,630,676.08	133,046.81	2,497,629	208,135.77	693.79
6	Excavator Mine Breaker	1,531,327.77	77,356.18	1,453,972	121,164.30	403.88
7	Motor Grader	1,965,625.81	62,682.58	1,902,943	158,578.60	528.60
8	Slip Form PQC Paver SP 1200	23,463,561.40	1,186,047.54	22,277,514	1,856,459.49	6,188.20
9	Slip Form PQC Paver SP 500	13,333,873.31	674,291.13	12,659,582	1,054,965.18	3,516.55
10	Soil Compactor	441,645.63	14,181.27	427,464	35,622.03	118.74
11	Tandem Roller	643,173.48	32,522.35	610,651	50,887.59	169.63
12	Texture Curing TCM 180	18,656,599.07	944,526.94	17,712,072	1,476,006.01	4,920.02
13	Tipper Mine	825,026.31	31,204.03	793,822	66,151.86	220.51
14	Tipper 10 Wheeler	449,596.51	16,041.05	433,555	36,129.62	120.43
15	Transit Mixer	450,890.72	20,948.37	429,942	35,828.53	119.43
16	Vogele DLC Paver	3,309,215.69	106,264.07	3,202,952	266,912.64	889.71
17	Water Tanker	131,300.74	3,536.67	127,764	10,647.01	35.49
18	Wheel Loader	613,596.52	18,598.64	594,998	49,583.16	165.28

The equipment maintenance cost of each equipment is calculated by considering monthly maintenance cost, average daily and monthly working hours associated with it. Summary of the equipment maintenance cost per hour for equipment which are major cost effective is given below.

Sr. No	Equipment Type	Monthly Maintenance Cost (Rs.)	Avg. Daily Working Hours	Monthly Working Hours	Hourly Maintenance Cost
1	Back Hoe Loader	71,466	6.91	207.43	344.53
2	Dozer	131,165	1.33	39.90	3,287.34
3	Excavator	30,359	9.50	284.89	106.56
4	Excavator Breaker	21,010	8.01	240.32	87.42
5	Excavator Mine	24,787	14.46	433.82	57.14
6	Excavator Mine Breaker	4,670	9.59	287.68	16.23
7	Motor Grader	141,261	6.96	208.93	676.12
8	Slip Form PQC Paver SP 1200	1,322,634	2.79	83.57	15,826.39
9	Slip Form PQC Paver SP 500	120,185	2.71	81.43	1,475.96
10	Soil Compactor	349	4.22	126.64	2.76
11	Tandem Roller	5,907	4.10	123.00	48.02
12	Texture Curing TCM 180	2,332	2.53	75.75	30.79
13	Tipper Mine	44,978	8.80	264.00	170.37
14	Tipper 10 Wheeler	20,717	100.38	3,011.43	6.88
15	Transit Mixer	5,901	71.50	2,145.00	2.75
16	Vogele DLC Paver	760,233	5.11	153.21	4,961.89
17	Water Tanker	7,501	5.90	177.14	42.34
18	Wheel Loader	93,494	5.87	176.00	531.22

Table -4: Equipment Maintenance Cost

The hourly fuel cost of each equipment is calculated by considering standard fuel consumption at liters/hour, weekly and monthly fuel consumption, monthly average mileage and fuel cost per liters associated with it. Summary of hourly fuel cost per hour for equipment which are major cost effective is given below.

Table -5: Hourly Fuel Cost

Sr. No	Equipment	Standard	Weekl	y Fuel Con	sumption of	f October	Monthly Avg.	Fuel Cost	Average Fuel Cost
5 Г. NO	Туре	Consumption (Liters/hour)	2-8 Oct	9-15 Oct	16-22 Oct	23-29 Oct	Mileage (Liters/hour)	(Rs.67/Liter)	(Rs.)
1	Back Hoe Loader	5	5.16	4.69	5.00	5.08	4.98	333.83	328.43
2	Dozer	22	-	-	22.58	-	22.58	1,512.86	1,512.86
3	Excavator	15.5	13.62	14.10	13.32	14.55	13.90	931.13	974.42
4	Excavator Breaker	14	12.15	11.77	11.61	11.67	11.80	790.60	876.95
5	Excavator Mine	20	18.34	17.89	18.78	17.59	18.15	1,216.05	1,226.27
6	Excavator Mine Breaker	15	13.69	13.66	13.63	14.35	13.83	926.78	895.62
7	Motor Grader	12	10.81	11.71	11.18	10.74	11.11	744.37	724.96
8	Slip Form PQC Paver SP 1200	18	22.17	15.99	9.70	19.21	16.77	1,123.42	963.82
9	Slip Form PQC Paver SP 500	12	8.91	-	9.93	-	9.42	631.14	631.14
10	Soil Compactor	9	9.45	10.42	10.16	-	10.01	670.67	631.79
11	Tandem Roller	8	7.29	7.78	6.81	-	7.29	488.65	460.74
12	Texture Curing TCM 180	4		3.11	3.00	3.08	3.06	205.24	202.79

International Research Journal of Engineering and Technology (IRJET) www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

13	Tipper Mine	6	7.59	7.66	8.53	8.49	8.07	540.52	479.42
14	Vogele DLC Paver	12	10.41	11.91	11.53	12.86	11.68	782.39	782.39
15	Water Tanker	5	5.42	6.13	3.23	-	4.93	330.09	344.26
16	Wheel Loader	10	-	8.46	8.88	10.19	9.18	614.84	633.82

The hourly labor cost of each equipment is calculated by considering labor type, monthly wages, labor cost per hour associated with it. Summary of hourly labor cost per hour for equipment which are major cost effective is given below.

Sr. No	Equipment Type	Labor Type	Monthly Wages (Rs.)	Labor Cost (Rs./hour)	Total Labor Cost (Rs./hour)	
1	Tipper	Driver	15,000	50.00	50.00	
2	Eucouston	Operator	25,000	83.33	123.33	
Z	Excavator	Helper	12,000	40.00	123.33	
3	Backhoe Loader	Operator	18,000	60.00	60.00	
4	Dozer	Operator	18,000	60.00	60.00	
5	Transit Mixer	Operator	20,000	66.67	66.67	
6	6 Motor Grader	Operator	25,000	83.33	123.33	
0	Motor Grader	Helper	12,000	40.00	123.33	
7	Slip Form PQC Paver	Operator	35,000	116.67	316.67	
/	Shp Form FQC Faver	4- Helper	60,000	200.00	510.07	
8	Soil Compactor	Operator	18,000	60.00	60.00	
9	Tandem Roller	Operator	18,000	60.00	60.00	
10	Touture Curing Machine	Operator	25,000	83.33	133.33	
10	Texture Curing Machine	Helper	15,000	50.00	155.55	
11	DLC Paver	Operator	30,000	100.00	200.00	
11	DLC Paver	2 - Helper	30,000	100.00	200.00	
12	Wheel Loader	Operator	15,000	50.00	50.00	
13	Water Tanker	Operator	12,000	40.00	40.00	

Table -6: Hourly Labor Cost

The equipment efficiency of each equipment is calculated by considering weekly working hours, average daily hours and hourly working shift of associated with it. Summary of equipment efficiency for equipment which are major cost effective is given below.

Table -7: Equipment Efficiency

Sr. No	Equipment Type	Wee	kly Hours	for October	Month	Avg. Daily	Hourly	Avg.
51. NU	Equipment Type	2-8 Oct	9-15 Oct	16-22 Oct	23-29 Oct	Hours	Shift/day	Efficiency
1	Back Hoe Loader	53.70	46.90	55.20	37.80	6.91	10	0.62
2	Dozer	0.00	0.00	9.30	0.00	1.33	2	0.66
3	Excavator	90.60	68.10	65.40	41.80	9.50	20	0.45
4	Excavator Breaker	60.00	90.30	62.00	12.00	8.01	20	0.46
5	Excavator Mine	120.30	122.00	106.90	55.70	14.46	20	0.64
6	Excavator Mine Breaker	81.50	77.90	78.30	30.80	9.59	20	0.41
7	Motor Grader	44.50	49.00	65.20	36.30	6.96	20	0.31
8	Slip Form PQC Paver SP 1200	6.00	75.00	10.00	29.00	2.79	10	0.56
9	Slip Form PQC Paver SP 500	23.00	0.00	15.00	0.00	2.71	10	0.27
10	Soil Compactor	31.50	31.30	25.10	30.30	4.22	10	0.41
11	Tandem Roller	31.40	23.40	31.30	0.00	4.10	10	0.40
12	Texture Curing TCM 180	0.00	40.55	9.34	20.81	2.53	20	0.15
13	Tipper Mine	44.90	76.90	68.90	55.70	8.80	20	0.41
14	Tipper 10 Wheeler	980.00	664.00	464.00	0.00	100.38	20	0.58

ISO 9001:2008 Certified Journal

1

International Research Journal of Engineering and Technology (IRJET) e-I

T Volume: 07 Issue: 08 | Aug 2020

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

15	Transit Mixer	383.00	337.00	651.00	631.00	71.50	20	0.50
16	Vogele DLC Paver	54.00	35.00	40.00	14.00	5.11	10	0.51
17	Water Tanker	40.80	16.30	66.90	0.00	5.90	10	0.41
18	Wheel Loader	0.00	47.30	49.30	26.60	5.87	10	0.59

Finally, the hourly owning and operating cost of each equipment is calculated by considering ownership cost, labor cost, maintenance cost and fuel cost associated with it. Summary of the owning and operating cost per hour for equipment which are major cost effective is given below.

Sr. No	Equipment Type	Ownership	labor Cost	Fuel Cost	Maintenance	0 & 0 Cost
5 г. NO	Equipment Type	Cost (Rs.)	(Rs.)	(Rs.)	Cost (Rs.)	(Rs.)
1	Back Hoe Loader	97.57	60.00	333.83	344.53	835.93
2	Dozer	438.88	60.00	1512.86	3,287.34	5,299.08
3	Excavator	301.23	123.33	931.13	106.56	1,462.25
4	Excavator Breaker	298.71	123.33	790.60	87.42	1,300.06
5	Excavator Mine	693.79	123.33	1216.05	57.14	2,090.30
6	Excavator Mine Breaker	403.88	123.33	926.78	16.23	1,470.22
7	Motor Grader	528.60	123.33	744.37	676.12	2,072.42
8	Slip Form PQC Paver SP 1200	6,188.20	316.67	1123.42	15,826.39	23,454.68
9	Slip Form PQC Paver SP 500	3,516.55	316.67	631.14	1,475.96	5,940.32
10	Soil Compactor	118.74	60.00	670.67	2.76	852.17
11	Tandem Roller	169.63	60.00	488.65	48.02	766.30
12	Texture Curing TCM	4,920.02	133.33	205.24	30.79	5,289.38
13	Tipper Mine	213.70	50.00	540.52	170.37	974.59
14	Tipper 10 Wheeler	113.62	50.00	199.56	6.88	370.06
15	Transit Mixer	112.55	66.67	444.59	2.75	626.56
16	Vogele DLC Paver	889.71	200.00	782.39	4,961.89	6,833.99
17	Water Tanker	108.63	40.00	330.09	42.34	521.06
18	Wheel Loader	158.22	50.00	614.84	531.22	1,354.27

Table -8: Hourly Owning & Operating Cost

4. PRODUCTIVITY ANALYSIS

The equipment which are major cost effective in existing fleet are considered for further analysis. Hence, production of these equipment is calculated to perform detailed economic analysis of existing fleet. The details of production calculations of these equipment are given below.

4.1 Excavator Dumper Production Calculation

The highway site at Ch. 244 + 750 to 244 + 950 having bucket size of 1.30 cy and 3 dumpers used of 10 cum. Work is in progress from Ch. 244 + 900 to dump site at 246+400 (Borrow area), having lead of 3.0 km and height of cut is 2.5 m.

1) Bucket size = 1.3 cy. 2) Material = sandy gravel soil. ... Table 9.4 (CEPM, Purifoy) So fill factor = 110%3) Cycle time = 15 sec ... Table 9.5 (CEPM, Purifoy) 4) Check depth of cut – O.K. 5) Production = (Bucket size x Fill factor x Efficiency) / cycle time = 1.30 cy x 1.1 x 27/(15 sec/60) min/hr.= 154.44 lcy/hr. 6) Convert production to tons/hr. Hence, Production = (154.44 x 2260 lb/cy) / 2000 lb/ton = 174.51 tons/hr 7) Match Excavator to available dumper Loading time dumper = no. of bucket passes x hoe cycle time No. of bucket passes = Payload Hauler/ Payload Bucket = 1.3 cy x 1.1

International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395-0056Volume: 07 Issue: 08 | Aug 2020www.irjet.netp-ISSN: 2395-0072

= 1.43 cyIdeal no of passes = 13 cy / 1.43 cy= 9.09 ... Take 9 But, actual no. of passes = 12Total loading time -For 9 passes = 2.25 min. For 12 passes = 3.0 min. 8) Haul time = 12.9 min9) Return time = 5.6 min Dump time = 2.0 min10) Truck cycle time = For 9 passes, truck cycle time = 22.75 min For 12 passes, truck cycle time = 23.5 min Dumpers required = Truck cycle time/ truck load time For 9 passes, No of dumpers = 22.75/2.25 = 10For 12 passes, No of dumpers = 23.5/3.0 = 811) Production = For 9 passes, 2.25 min, Production (excavator) = 27 min/hr x (1.3 x 10 cum) = 156 lcy/hr ... (Optimized Fleet) For 12 passes, 3.0 min, Production (excavator) = 27 min/hr x (1.3 x 10 cum) = 117 lcy/hr ... (Actual Fleet) For 9 passes, 10 no, 22.75 min Production (dumper) = 27 min/hr x 13 cy x 10 = 154.28 lcy/hr For 12 passes, 8 no, 23.5 min Production (dumper) = 27 min/hr x 13 cy x 8 = 119.48 lcy/hr

4.2 Tandem Roller Production

Roller passes = 8 ... (98.88% compaction achieved) Production = (W x S x L x E x 16.3) / n Compaction width W = 7.22 ft. S = average rolling speed in miles/hr = 3.1 miles/hr n = no of passes = 8, E = 0.40, L = Lift thickness = 10 inch Table 5.3 CEPM, Purifoy Production = (7.22 ft x 3.1 miles/hr x 10 inch. x 0.40 x 16.3) / 8 = 182.41 lcy/hr.

4.3 Soil Compactor Production

Speed of Compactor S = 5 kmph, Compacted Lift Thickness L = 254 mm, No. of passes n = 4 and efficiency E= 0.41, Compaction Width W = 1.68 m Production of Soil Compactor = (W x S x L x E) / n = (1.68 m x 5 kmph x 254 mm x 0.41) / 4 = 218.694 cum / hr.

4.4 Grader Production

6 passes are made for each layer i.e. (Mixing, Levelling and final shaping) For 1 km stretch, Speed of grader S = 5 kmph i.e. 3.1 mph Distance Travelled by grader D = 500 m i.e. 0.31 miles No of passes N = 6, and efficiency E = 0.31, Blade Length W = 3.7 m i.e. 12.136 ft. Grader time = (N x D) / (S x E)

$= (6 \times 0.31) / (3.1 \times 0.31)$ = 1.93 hr Avg. Total time Production of Grader = (5280 x S x W x E) / 9 = (5280 x 3.1 mph x 12.136 ft x 0.31) / 9 = 6838.73 Sq.m / hr.

5. RESULT

From productivity analysis, production of onsite equipment fleet for major cost effective equipment is mentioned below.

Sr. No.	Equipment Type	Production (Rs.)
1	Excavator Dumper	156 lcy/hr.
2	Tandem Roller	182.41 lcy/hr.
3	Soil Compactor	218.694 cum / hr.
4	Grader	6838.73 Sq.m/hr.

Table -9: Productivity Analysis

6. CONCLUSION

From productivity analysis performed, actual excavator-dumper fleet using 10 dumpers and 12 bucket passes has production Rs. 117 lcy/hr. But, optimized production is found for 8 dumpers and 9 bucket passes which is Rs. 156 lcy/hr. Roller production for achieving 98.88 % compaction is Rs. 182.41 lcy/hr. Compactor production is found on site is Rs. 218.694 cum / hr. Grader production for 2 hr. grader time is Rs. 6838.73 Sq.m/hr.

REFERENCES

[1] Govindan Kannan (2011): "Field Studies in Construction Equipment Economics and Productivity" Journal of Construction Engineering & Management ASCE, 137(10), 823-828

[2] Ilias Naskoudakisa, (2016): "A thematic review of main researches on construction equipment over the recent years" Journal of Procedia Engineering, 164, 206 – 213

[3] M. Waris, et al (2014): "Criteria for the selection of sustainable onsite construction equipment" International Journal of Sustainable Built Environment, 3, 96–110

[4] Manuel Parente (2016): "A novel integrated optimization system for earthwork tasks" Journal of Transportation Research Procedia, 14, 3601 – 3610

[5] Sabah Alkass, (1998): "Expert System for Earthmoving Equipment Selection in Road Construction" Journal of American Society of Civil Engineers, 114(3), 426-440

[6] Venkatesh M.P. (2019): "Improvement of Manpower and Equipment Productivity in Indian Construction Projects" International Journal of Applied Engineering Research, 14(2), 404-409