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Abstract - The spatial diversity offers advantages when 
Multiple-Input Multiple-Output (MIMO) antenna techniques 
are considered as compared to traditional point to point 
MIMO systems. In massive MIMO technology, the Base Station 
(BS) equipped with large number of antennas serves many 
users in the same time-frequency network and therefore, it is a 
promising candidate technology for next generations of 
wireless systems. Because of the multiplexing gain and the 
array gain, huge performance can be accomplished with 
massive antenna arrays, and energy efficiency. Millimeter 
wave (mmWave) cellular networks will have the data-rates 
upto gigabits/second. This project introduces a novel neural 
network architecture, termed as auto-precoder, modeling the 
hybrid precoding matrices by detecting the mmWave channel 
with just a few deep-learning based training pilots. A multi-
task classification problem is trained in auto-precoder neural 
network which integrates both channel sensing and beam 
prediction. The presented method reduces the training 
overhead substantially comparable with traditional (non-
machine learning) approaches. This illustrates a promising 
solution in mmWave and massive MIMO networks for channel 
estimation and hybrid precoding architecture challenge. 
 
Key Words:  Deep Learning, millimeter wave, massive 
MIMO, channel estimation and hybrid precoding, etc 
 

1. INTRODUCTION  
 
Hybrid analog/digital systems have drawn tremendous 
attention over the past couple of years, due to its ability to 
attain high data rates with energy-efficient devices. 
Moreover, an accurate estimate of the mmWave channel is 
usually needed for designing the hybrid precoding matrices. 
This mmWave channel prediction is a challenging work due 
to the large number of antennas on transmitters and 
receivers resulting in high overhead training and the strict 
hardware limitations on the RF chains. Due to the wide 
bandwidth available at millimeter wave frequencies, 
mmWave cellular networks will allow gigabit/second data 
rates. MmWave communication extends from 30 GHz to 300 
GHz and therefore enjoys a much larger bandwidth than 
modern cellular networks. To realize enough link margin, 
mmWave devices can use spatial beamforming on both 
transmitter and the receiver with large antenna arrays. 
Because of the high cost and power consumption of mixed-
signal gigasample devices, mmWave precoding is likely to be 
split among the analog and digital domains. The vast number 
of antennas and the inclusion of analog beamforming include 
the design of channel estimation and precoding algorithms 

specific to mmWave. Spatial diversity is one of the network 
diversity systems utilizing more than two antennas to 
boost efficiency and performance of network connection. 
 
The Need for a Dataset: For the advancement of machine 
learning work in mmWave and massive MIMO, it is 
important that researchers have an adequately large dataset 
can use for (i) assessing their machine learning algorithms 
performance, (ii) Includes replication in other articles and 
(iii) Benchmarks are set and the different algorithms are 
evaluated based on common results 
 

1.1 Objectives of the Project 
 

This project proposes a deep-learning based approach 
where the channel measurement vectors are mutually 
optimised and the hybrid beamforming vectors are designed 
with minimal overhead training to achieve near optimum 
data rates. In particular, neural network architecture called 
as auto precoder is developed to attain two key goals: (i) It 
improves the compressive channel sensing vectors 
depending on the surrounding area to target its sensing 
capacity in an unsupervised manner in the desirable spatial 
directions. (ii) The hybrid beamforming vectors are directly 
predicted from received sensing vector. 

 
Attaining these two goals resulting in a successful 

strategy for channel precoding/sensing architecture that 
could project near-optimal beam-forming hybrid vectors 
despite requiring minimal overhead training. 
 

1.2 Motivation 
 
Even though there are optimisation-based methods 

which approximate the precoders directly, they tend to be 
huge computational local-minimum complexity and issues 
related to random seperation. Also, hybrid precoders are 
designed for the effective MIMO multiple user situation, even 
though extremely realistic Importance, was not regarded in 
comparison to deep learning. Therefore, powered by the 
advantages of deep learning such as its low computational 
complexities, a system is created which can manage the 
hybrid precoding model when multi-user MIMO 
transmission is disrupted in the mmWave area feedback on 
channels is available. 
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2. SYSTEM AND CHANNEL MODELS 
 

The fully-connected hybrid architecture depicted in 
figure 1, in which a transmitter using Nt antennas and some 
Nt

RF RF chains interacts via receiver using Nr antennas and 
Nr

RF RF chains using Ns streams. 
  

 
 

Figure 1: A system architecture for hybrid analog/digital 
transceiver 

 
Considering the complete hybrid architecture depicted in 

figure 1, the transmitter uses Nt antennas and Nt
RF RF chains 

interacts to a receiver using Nr antennas and Nr
RF RF chains 

through NS streams. Transmitted signal is precoded using 
transmitter with the Nt

RF×NS baseband precoder and the 
Nt×Nt

RF RF precoder whereas the receiver integrates the 
obtained signal with the Nr×Nr

RF RF combiner and its 
baseband combiner NrR×NS. Normalization of the baseband 
precoder to satisfy ||FRFFBB||2

F = NS enforces the total power 
limit. Graphical channel layout of L-paths is adopted for the 
channels between transmitter and receiver antennas. The 
Nr×Nt channel matrix H in this system is written as, 
 
H =  (  (                        (1) 

 
The achievable rate can be defined for hybrid precoders 

as, 
 
R = | I + |                                           (2)   Equation 4.2 

 
Where, F = FRFFBB and W = WRFWBB. The matrix                        

Rn = (1/SNR)*WHW depicts the equation of noise covariance 
in which SNR = PT/(NSσ2

n) and with PT denotes the total 
transmitting power and σ2

n denotes noise power. RF 
beamforming vectors are chosen by the predetermined 
quantified codebooks. After defining the channel, the design 
problem of the hybrid precoder can be described as, 
 
{ , }=argmax |I+ |   (3)                                                                                                                                                                                                           

       s.t                  F = FBB FRF                                           (4)                                             

                             W = WBB WRF                                       (5) 

                             [FRF ]:, nt € Ƒ, Ɐnt                                  (6)                        

                                             [WRF]:, nr € Ⱳ, Ɐnr                              (7)                        

                                             ||FRF FBB  =  NS                          (8)                              

The optimal baseband precoders FRF and WRF are defined 
for chosen RF precoders when the RF beam-forming 
codebooks comprise of orthogonal vectors as, 

 
{ } = argmax         | I+ HFRF                                         

                         [FRF]:,nt€ Ƒ,Ɐnt 
                         [WRF]:,nr€ Ⱳ,Ɐnr 

                                                                   × FRF)-1 HHWRF|       (9)   

                            

The problem formulation in (9) states that hybrid 
precoders could be identified by an extensive study over RF 
beam-forming vectors. The problem moreover, is that 
channel is usually uncertain and its clear estimate involves 
very high overhead training in the mmWave model. To 
overcome this problem, the goal is to formulate a method 
that specifically defines the hybrid architecture precoding RF 
vectors that optimize (or approach) the optimally attainable 
rate despite allowing low-channel overhead training. 
 

3. NEURAL NETWORK DESIGN FOR HYBRID 
PRECODING 
 

In this project a neural network architecture is proposed 
called an auto-precoder and the channels are sensed by deep 
learning method where the hybrid beam-forming vectors are 
designed directly through compressed measurements. 
  

 
 

Figure 2: The neural network proposed for auto-precoder. 
 

The figure 2 illustrates the block diagram of neural 
network of auto-precoder. It consists of two sections, one of 
which is a channel encoder and other being a precoder. The 
channel encoder uses the vector representation channel 
matrix as an input and send it across two 1D-convolution 
layers representing Kronecker (⊗) product operation of 
transmitting and receiving measuring matrices. 
  

The Kronecker product, also referred to as ⊗, is a 
two-matrices operation of arbitrary size which results in a 
block matrix. This is a representation of the outer product 
through vectors to matrices and provides the representation 
of the tensor product to the traditional choice of the basis. 
The Kronecker product must never be mistaken with regular 
multiplication of the matrix, which is a completely 
distinct operation. The result of the channel encoder will be 
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fed into the precoder. The precoder comprised of two sets of 
fully connected layers and two output predicted beams for 
predicting the index of Nt

RF RF beam-forming vectors and the 
Nr

RF RF combining vectors of the hybrid architecture.  

 
3.1 Millimeter Wave Auto-Precoder 
 

The auto-precoder network comprised of two divisions: 
(i) Firstly channel encoder studies how compressive sensing 
vectors can be refined to target sensing capacity on the most 
successful approaches. (ii) The precoder that knows how RF 
beam-forming vectors of hybrid architecture can be 
predicted from output of channel encoder. The auto-
precoder network can be trained and utilized as follows to 
attain the objectives.  

 
i. Auto Precoding Training: The auto-precoder gets trained 
in sequential pattern during the training process. More 
precisely, a mmWave channel dataset and the associated RF 
beamforming matrices are developed and the auto-precoder 
is predicted by training hybrid RF precoding vector indices. 
The RF beamforming matrices was built which used the near 
optimum Gram Schmidt hybrid beamforming algorithm. The 
channel encoder depicted in figure 2 knows how to refine its 
compressed sensing vectors by training the auto-precoder 
framework. 
 
ii. Auto-Precoder Prediction: After the training of auto-
precoder network, this is seperated in two sections within 
the prediction stage. Firstly the channel encoder is applied 
explicitly in analog circuits. Most precisely, both transmitter 
and the receiver would use weights of two convolutionary 
layers of channel encoder as the weights of analog/RF 
measurement matrix. The unique architecture of channel 
encoder as stated in section 3.2 is allowed. Detecting the 
uncertain mmWave channel matrix must use these deep-
learning optimized measuring matrices. Secondly the 
channel measurement output which is the receiver sensing 
vector would be processed into the precoder and further 
used to estimate the indices of RF beamforming vectors. 
 

3.2 Millimeter  Wave Compressive Channel Sensing 
 
 Enhancing the sparsity of the millimeter wave signal, [2] 
suggested to exploit compressive sensing devices to detect 
and recreate the millimeter wave hybrid transmitters and 
receivers. A neural network architecture is designed which 
integrates the compressive sensing paradigm and enables 
the network architecture to refine the measuring vectors 
depending on the ambient environment. Considering the 
channel models, let P and Q represent the channel 
measurement matrices (Nt×Mt and Nr×Mr) implemented by 
both the transceiver for channel H, with the number of 
transceiver measurements defined by Mt and Mr. If the pilot 
symbols are 1, it is possible to write the received measuring 
matrix Y as, 

VHPY QQP
HH

T


                                                                     (10)
 

where [V]m,n ∼ NC(0, σn
2) is the noise of the receiving 

measurement. Therefore, when the measuring matrix y is 
vectorised, the obtained equation is, 
 

 
vQPP q

HT

T
hy 








                                                              (11)
 

 
where y = vec (Y), v = vec (QHV)  and h = vec (H). In 

traditional methods to signal processing, transceivers do not 
usually make use of earlier research and thus have no 
awareness of the most suitable spatial directions of channel 
measurements. Consequently, traditional compressive 
channel sensing methods usually follow random vector 
calculation. 
 
Channel Encoder Network Architecture: The 
implementation of channel sensitivity as seen in (11), the 
product of vector channel h as well as the two measurement 
matrices are being replicated by inserting the channel into 
the network composed of two successive convolutionary 
layers, as seen in figure 2. In the design Mr filters are 
employed by first convolutionary layer. Each kernel will 
have a size of Nr and phase of Nr, which describes one receive 
vector of measurement. More precisely, each kernel's 
weights explicitly reflect the inputs from receiver calculation 
vector. The first convolutionary layer result has feature 
maps of Mr. The matrix of such characteristic maps is 
vectorized and inserted further into second convolutionary 
row. Relative to first layer, the second convolutionary layer 
is composed of Mt kernels that follow the P transmission 
computation matrix. This is worth noting here that because 
the measuring weights of the transceiver are typically 
complicated, the multi-evaluated neural network model of 
the convolution layers are followed. 
 

The training of autoprecoder as explained in section 3.1 
trains the channel encoder to refine its transreceive 
compressive channel calculation matrices in an implicit 
fashion. Such optimization instinctively modifies the 
measurement matrices both to vicinity area and device 
application, thus concentrates the sensor capacity for 
appealing physical paths. Once the training of model is over, 
the channel encoder kernel will then be directly used by the 
transceiver as the measurement matrices for sensing the 
undiscovered channels. To determine the RF beamforming 
vectors, the output of the channel measurement must be fed 
into precoder of figure 2 and it is second portion of auto 
precoder network. 
 

3.3 Hybrid Beam Prediction 
 

Incorporating deep learning models from the obtained 
channel estimation vector y to know the direct mapping 
feature from its obtained vector y as well as the 
beamforming vector. The proposed methodology 
concentrates on estimating the RF beamforming integrating 
FRF and WRF vectors for convenience. After the design of RF 
beamforming vectors, the low-dimensioned efficient 
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WRF
HHFRF channel can be conveniently measured and used to 

create the precoders and combiners for the beseband. 
Furthermore, as the RF beam-forming vectors are chosen by 
its quantized codebooks, formulating issue of determining 
RF beamforming vector index as a multi-label categoriztion 
issue. Further the network architecture adopted for hybrid 
beam prediction is explained in brief. 
 
Network Architecture of Precoder: The proposed neural 
network architecture of autoprecoder illustrated in figure 2 
estimates the indices of the RF beam-forming vectors from 
receiver measuring vector y. This system comprises of two 
sets of fully connected layers as well as two output layers 
where it is inputed by the 'channel encoder' network output 
specified in section 3.2. The two sets of fully connected 
layers comprises of Relu activation and batch normalization 
as the first set and Sigmiod and batch normalization as the 
second set. The system comprises of two output layers 
where first layer predicts the indices of beamforming vectors 
of transmission while in the second layer, the indices of 
combining vectors of the reception are predicted. The auto-
precoder framework is equipped in a Multi Task Learning 
(MTL) way, treating RF precoding configuration and 
integrating the hybrid architecture matrices as two linked 
functions. Therefore, the network is then trained to combine 
these two functions simultaneously, and thus allows for 
dependency among precoding and combining matrices. 

 

3.4 Training and Predicting the Deep Learning 
Architecture 
 

The autoprecoder network as shown in figure 2 is being 
trained as a learning based problem being part of deep-
learning category as briefed in section 3.1 and 3.3. Generally 
neural network is trained depending on channel matrix 
dataset and associated hybrid model RF beam-forming 
vector. The RF precoding matrices are determined by using 
Gram-Schimdt hybrid precoding (GS-HP) algorithm. The goal 
is to build a reduced-complexity algorithm that performs 
similarly (or quite near) to the Direct Greedy Hybrid 
Precoding (DG-HP) algorithm. The labeling for 
the beamforming vectors of transmitter and combining 
vectors of reciever are defined as Nt

RF hot vectors, for those 
at the positions that match the indices of intended RF beam-
forming codewords (from codebook F). 
 

For loss function, binary cross entropy is used to 
distinguish multi-label, which correlates from each task. The 
overall loss factor is the mean of two tasks of binary cross-
entropies, as they are similarly necessary for whole purpose 
of hybrid precoding or combing architecture. Sample-wise 
precision of estimated indices is calculated to determine the 
efficiency of the prediction. The precision of the sample i is 
then defined as, 
 

 ai  =  

                                                                      

(12)
 

where ∩ represents two sets intersection. Therefore, the 
sample-wise accuracy is defined as, 
 

 a =                                                                                       
(13)

 

 
Here Nsamples represents sample number. The two 

commonly accepted output metrics are reduced to (12) 
because the amount of label for each channels would be a 
defined number for real labels and estimated labels. 
 

The neural network architecture shown in figure 2 meets 
two specific goals in this training period: (i) It enhances the 
transmission/reception measuring vectors in an un-
supervised way to guide sensitivity power in its most 
succesful ways. (ii) Understands predicting hybrid 
architecture RF beamforming/combining vectors directly by 
channel measuring vectors via the precoder network. 

 

3.5 Training of datasets 
  

The generated datasets use the generic DeepMIMO 
datasets that are publicly available. The parameters 
are listed in table 1. 

  
Table 1: Parameters adopted for Deepmimo dataset 

 
Parameters for 

DeepMIMO Dataset 
Values 

Activated Base Stations 4 
Activated mobile users From R1200 to R1500 row 
Number of BS Antennas Mx = 01, My = 64, Mz = 01 

Number of User Antennas Mx = 01, My = 64, Mz = 01 
Antenna spacing 

(wavelength) 
0:5 

System bandwidth (GHz) 0:5 
OFDM subcarriers 1024 

OFDM sampling factor 01 
OFDM limit 01 

Number of paths 03 
 

The auto-precoder neural network is trained using 
constructed dataset. The system is designed with Theano 
backend using Keras library. Adam optimizer is used with 
0.5 momentum, 512 as batchsize and 0.005 as learning rate. 

 
Initially  four base-stations are considered in the exterior 

scenario which communicates to the active users from row 
number R1200 to R1500 through uplink configuration. Both 
mobile users and BS are employed with 64 antennas each 
and three RF chains. Initially the channel matrix is 
constructed with the help of DeepMIMO dataset generator. 
However the channel matrix is summed with random noise 
and depending on 0.5GHz bandwidth and 5dB receive noise 
figure, the noise power is being calculated. The near-
optimum Gram Schmidt hybrid precoding algorithm is used 
to build target RF precoding matrices in the noisy channel 
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pair and respective RF precoding codebook indices are 
referred as one data-point in dataset. 
 

4. RESULTS 
 

To determine the hybrid precoding system centered on 
deep learning, achievable rate is measured using the 
expected precoding/combining and comparing indices to its 
optimum rate. Precisely, the presented auto-precoder neural 
network architecture in section 3 for predicting the 
appropriate set of RF precoding matrix for hybrid 
architecture is used for defined noisy channel calculation.  
Then, attainable rate is calculated as described in (2) by 
implementing the precoding/combining design of the 
baseband. This performance will be contrasted with the 
optimum rate obtained when computing the 
precoding/combining matrices as described in section 3.5 
with complete knowledge of the channels. 
 

The results listed below is the achievable rate calculated 
by the use of estimated precoding indices and compared 
with optimum indices. The figure 3 represents the simulated 
model that can attain desirable throughput while decreasing 
the pilot training, that is only a limited amount of channel 
measurements Mt, Mr. 
 

 
 

Figure 3: The achievable rates of the proposed method for 
various values of total transmit power PT. 

 
The figure 3 describes the achievable rate of the 

presented hybrid precoding based on deep-learning 
approach with its average value versus values of total 
Transmitting Power (PT). Further the graph for achievable 
rate of the proposed methodology for channel 
measurements Mt = Mr = 2, 4, 8  channel measurements is 
plotted. It represents the efficiency of the proposed system 
at reasonable values of PT and also represents the decrease 
in training overhead needed relative to conventional 
methods. 
 

Besides the attainable rate (key Purpose of the project), 
the efficiency of the presented deep learning architecture is 
also evaluated by utilizing sample-wise precision described 

in section 3.4. The capability of deep Learning architecture to 
predict the appropriate collection of RF beamforming/ 
combining matrices is evaluated by sample wise precision. 
Considering figure 3, similar models of system and channel 
are adopted in figure 4 and describe the sample precision of 
transmission beams and receiver beams of various 
parameters of PT. 
 

 
 

Figure 4: Sample wise accuracy 
 

The figure 4 represents evaluation of the results by using 
sample-wise precision of the proposed neural network. This 
analyzes the deep learning model's ability to predict the 
appropriate set of RF beamforming vectors for hybrid 
architecture. 
 

5. Conclusion 
 

This project presented deep-learning model in mmWave 
massive MIMO systems for sensing joint channel and hybrid 
precoding architecture to improve the attainable rate of the 
model by reducing training pilots. First, the channel encoder 
studies considering the neural architecture to improve the 
channel sensation vectors to concentrate the sensing 
capacity upon its successful approaches. Further, the 
precoder starts predicting the the hybrid architecture RF 
beamforming/combining vectors directly from obtained 
sensing vector. Analytical results revealed that the proposed 
approach based on deep-learning would accurately predict 
hybrid beamforming vectors that attain desirable data-rate 
needing few training pilots relative to extensive analysis and 
standard compression sensing alternatives. 
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