

TIME, COST AND QUALITY TRADE OFF ANALYSIS IN CONSTRUCTION OF **PROJECTS**

Md Arshad Sheikh¹, Mr. Chitranjan Kumar²

¹PG Student, CTM Dept. of Civil Engg, Al-Falah University, Faridabad, Haryana, India ²Assistant Professor, Dept. of Civil Engg, Al-Falah University, Faridabad, Haryana, India

***______ Abstract - The foremost objective of construction comes is to complete the project per to an offered budget, within a planned schedule, and achieving a pre-specified extent of quality. Therefore, time, cost, and quality unit thought-about the foremost necessary attributes of construction comes. The aim of this study is to include quality into the standard twodimensional time-cost trade-off (TCT) therefore on develop a sophisticated three dimensional time-cost-quality trade-off (TCQT) approach. Time, cost, and quality of construction comes unit reticulate and have impacts on one another. It's a troublesome task to strike a balance among these three conflicting objectives of construction comes since no answer is ideal for the three objectives. The overall performance of a project regarding time, cost, and quality is decided by the amount, cost, and quality of its activities. These attributes of every activity place confidence within the execution chance by that the activity's work is completed. It's required to develop an approach that's capable of finding an optimum or about to optimum set of execution selections for the project's activities therefore on attenuate the project's total worth and total amount, whereas its overall quality is maximized. For constant purpose, three varied Microsoft surpass based totally TCOT models unit developed as follows:

 \rightarrow First, a simplified model is developed with the target of optimizing the entire amount, cost, and quality of straightforward construction comes utilizing the GA-based surpass add in Evolver.

 \rightarrow Second, a random model is developed with the target of optimizing the overall amount, cost, and quality of construction comes applying the spirited approach therefore on admit uncertainty related to the performance of execution selections and therefore the whole project.

 \rightarrow Third, a sophisticated multi objective improvement model is developed utilizing a self-developed improvement tool having subsequent capability.

Key Words: Time, Cost, Quality, Trade-off analysis & Construction

INTRODUCTION

The development trade is one among the foremost necessary industries within the world and is taken into account one among the foremost economy conducive ones. That's why construction engineering and management analysis is of nice importance to the success of that very important trade. Consistent with construction management references, a project is outlined as "a temporary endeavour undertaken to make a novel product or service." (PMI, 2008). In alternative words, a project could be a sequence of distinctive and connected activities having one goal that has to be completed by a selected time, at intervals a budget and consistent with specifications. Any distinctive project incorporates a planned period, an outlined scope, an calculable budget, and prespecified specifications. Therefore, time, cost, and specifications are the 3 constraints that are limiting the project success. Specifications of comes embrace however don't seem to be restricted to quality, safety, property, and lots of alternative technical or written agreement details (Hegazy, 2002). For the projected analysis, the fundamental goal of any construction project is to end the project consistent with an offered budget, at intervals a planned schedule, and achieving a needed extent of quality.

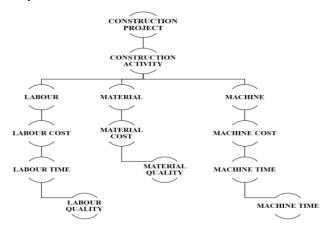
OBJECTIVE

The main objective is to check the TCT and TCQT approaches and techniques so as to develop innovative and sensible improvement models that square measure applicable for construction comes. The event of such models supports the efforts of construction companies and general contractors to boost projects' performance in terms of your time, cost, and quality. The elaborate analysis objectives square measure as follows:

- Investigating a sensible approach for quantifying and ≻ evaluating the standard performance of execution choices and also the whole project.
- Studying the TCQT as a distinct improvement ≻ drawback, that is a lot of relevant to construction comes. For the distinct TCQT, every project's activity has totally different modes or choices of execution and every mode has its corresponding time, value and quality price severally.
- Summarizing recent improvement approaches to propose AN applicable one for TCQT issues. It's needed to propose a sturdy multi-objective improvement approach that's capable of effectively optimizing multiple conflicting objectives of your time, cost, and quality among a thought-about project.

- Incorporating the uncertainty related to the performance of execution choices and also the performance of the total project relating to time, cost, and quality.
- Developing a sturdy, straightforward to use, stand out based mostly TCQT models so as to come up with execution eventualities that deliver the goods the objectives of a thought-about project.

THE METHODOLOGY IS AS FOLLOWS:


- An in depth literature review: General overviews of schedule, cost, quality, and optimisation are illustrated. The literature review of the most recent analysis developments is then conducted so as {to investigate to analysis to analyse} and analyse relevant research studies and practices in each two-dimensional timecost trade-off (TCT) analysis and 3 dimensional timecost-quality trade-off (TCQT) analysis so as to spot their limitations and downsides.
- Development of 3 TCQT models: supported the literature review of potential enhancements, 3 TCQT models is developed. the most purpose of those 3 five models is to get associate degree best or close to best combination of construction choices with the target of at the same time minimizing the whole project length, total cost, while

Maximizing its total quality. The 3 projected models are developed and enforced in Microsoft stand out to learn from the advanced optimisation add-in tools and stand out options and capabilities.

- \triangleright Validation of the developed models: The developed models are applied to straightforward case studies so as an example their capabilities, validate their results, and demonstrate their potency. Results of the developed models are compared with results of the literature models. 3 case studies are analysed by the developed models as follows: o A case study to demonstrate the power of the simplified model to get satisfactory results compared to those obtained by the literature. o A case study as an example the power of the random model to contemplate uncertainty related to execution choices and to review the random trade-off among time, cost, and quality of the project. A case study to demonstrate the power of the advanced model to with efficiency analyse TCT issues additionally to TCOT issues.
- Conclusions: A comprehensive analysis of the developed models and their results is conducted. Limitations and capabilities of the developed models are illustrated and their contributions and significance are mentioned.

WORK BREAK DOWN STRUCTURE

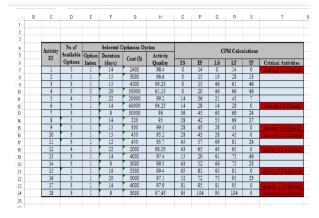
A work breakdown structure (WBS), in project management and systems engineering, may well be a deliverable-oriented breakdown of a project into smaller parts. A chunk breakdown structure may well be a key project deliverable that organizes the team's work into manageable sections. Once academic degree activity is just too huge or advanced for a reliable amount estimate project guide lines state than a non-public activity that takes up over 10 p.c of the project schedule ought to be attenuated. A project manager uses a clear stage down technique to chop back the activity to smaller tasks. Ideally the project manager can estimate the amount of tasks that individual employees perform further accurately than the total activity.

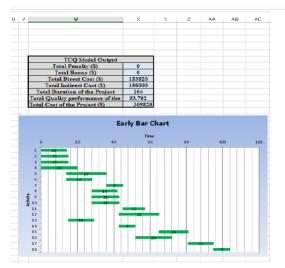
CALCULATION

1) To calculate the whole project cost, the given equation is used.

 $C = \Sigma DC + IC * D + Pen* (D-deadline) - Bon* (deadline- D),$ Wherever C is the total project value, Σ Dc is the summation of direct costs of all activities, and IC * D is indirect cost per time unit multiplied by total duration. Pen* (D-deadline) is the penalty of delay per time unit multiplied by the number of delay units and Bon* (deadline- D) is bonus per time unit multiplied by no of early units.

- 2) Early Finish (EF) = Early Start (ES) + Dur
- 3) Late Start (LS) = Late Finish (LF) Dur
- 4) Total Float (TF) = LS ES = LF EF
- 5) to evaluate the quality of each execution option, qi = ΣWti,k * qi,klkk=1
- 6) to evaluate the overall project quality, QT = Σ Wti ni
 * qi = Σ Wti n i=1 Σ Wti, * qi, l kk=1

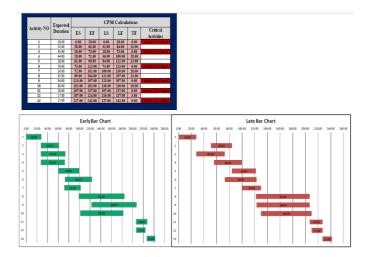

Wherever , is the weight of quality indicator (k) of activity (i) and *qi*, *l* is the performance or result of quality indicator (k) in activity (i) using resource utilization option (l). Wti is the weight of activity (i) and the term qi or Σ *Wti*, * *qi*, *l kk* =1 is the quality of each activity when executed by a specific execution option (l).



e-ISSN: 2395-0056 p-ISSN: 2395-0072

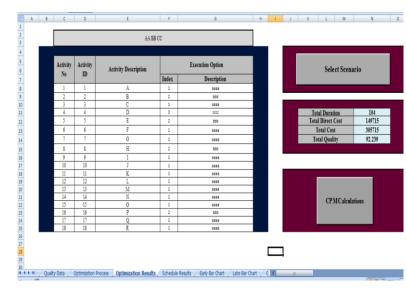
RESUTLS

The Simplified Model Output:



Early Bar Chart

													_									
Solution							Res	ource	Utiliz	ation O	ptions t	ior Act	vities						Time	Direct	Total	Ouality
Solution	Act.1	Act.2	Act.3	Act.4	Act 5	Act.6	Act.7	Act.8	Act.9	Act.10	Act.11	Act.12	Act.13	Act.14	Act.15	Act.16	Act.17	Act.18	Time	Cost	Cost	Quanti
Min. Direct Cost	3	5	3	3	4	3	3	5	3	1	2	4	3	3	1	5	1	1	129	103,700	297,200	70.05%
Min. Total Cost	1	5	3	3	4	3	3	5	1	1	3	1	3	3	1	5	1	1	114	105,270	276,270	71.55%
Min. Duration	1	2	2	1	3	1	3	4	1	1	2	1	3	3	1	3	1	1	104	150,358	306,358	84.28%
Max. Quality	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	104	168,820	324,820	97.63%
Min. (T*C/Q)	1	1	1	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	104	153,820	309,820	93.70%

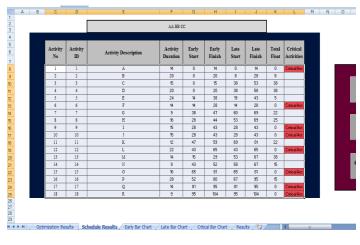

Results of the Simplified Model

The Schedule Module Output of the Stochastic Model

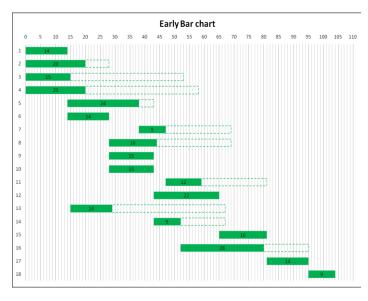
Solution		Re	soui	re I	Itiliz	catio	n O	ptio	ns fo	or A	ctivi	ities		Duration	Duration with	Direct	Direct	Total cost	Total cost with	Ouality	Quality with
Solution	1	2	3	4	5	6	7	8	9	10	11	12	13		P=90%	cost	P=90%	Total Cost	P=90%	Quality	wini P=90%
Min. Direct Cost	3	1	2	1	1	1	1	1	2	1	1	2	3	228.167	230.809	2076	2090.354	4357.667	4372.02	0.8793	0.7019106
Min. Total Cost	3	1	2	1	1	2	1	1	2	1	1	2	3	220,167	222.355	2116	2130.354	4317.667	4332.02	0.8353	0.6479072
Min. Duration	3	3	3	2	1	3	3	3	3	2	3	3	3	(199)	201.491	2481	2497.429	4471	4487.429	0.604	0.3476897
Max. Quality	1	1	1	1	1	1	1	1	3	1	1	1	3	238	241.225	2077	2093.148	4657	4673.148	0.9253	0.7820515
Min. (T*C/Q)	3	1	1	1	1	1	1	1	3	1	1	1	3	229	232.225	2081.00	2097.15	4371.00	4387.148	0.9233	0.767836

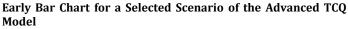
Results of the literature example (Zhang and Xing, 2010)

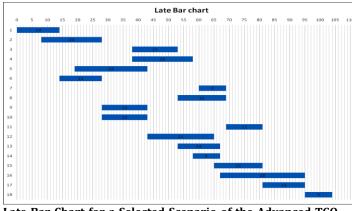
Optimization results for a selected scenario of the advanced TCQ

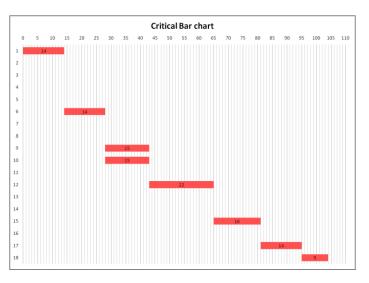


International Research Journal of Engineering and Technology (IRJET) e-I


Volume: 07 Issue: 09 | Sep 2020


www.irjet.net


e-ISSN: 2395-0056 p-ISSN: 2395-0072


Scheduling Results for a Selected Scenario of the Advanced TCQ Model

Late Bar Chart for a Selected Scenario of the Advanced TCQ Model

Critical Bar Chart for a Selected Scenario of the Advanced TCQ Model

Results and Analysis

The advanced TCQ model results for varied optimisation approaches and varied optimisation objectives.

The following conclusions were reached by the generated results:

1. Compared to results that obtained by literature, (Hegazy & Ayed, 1999), (El-Rayes & Kandil, 2005), and (Zheng et al. , 2004), satisfactory results were obtained by the advanced TCQ model.

2. Compared to results of the simplified TCQ model utilizing the Evolver add-in, comparable results were obtained by the advanced TCQ model utilizing the self-developed optimisation tool.

3. it's obvious that the NSGAII approach outperforms the opposite 2 approaches in analysing each TCT and TCQT issues.

4. It demonstrate the impact of objectives' weights of the doc approach on the obtained solutions. Therefore, it's suggested to use the doc approach once there's a preference for a particular objective.

5. supported conducted tests and in line with the developed code, it's suggested to line the population size between fifty and a hundred and also the range of generations between a hundred and two hundred. it's suggested to line the crossover rate between 0.4and 0.6 and also the initial mutation rate between 0.05 0.3.

6. For the MAWA approach, it's suggested to cut back the initial mutation rate (Pmi) so as not to disrupt the created offspring solutions. Pmi of 0.05 generates satisfactory solutions. 7. programming results provided by the advanced TCQT model were compared with results created by MS Project and each were identical.

© 2020, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3540

							The	GP .	Appr	oach	Rest	its											
SOLUTION	Weigh	ts of Ot	jectives	Total	Direct	Total	Total							Exec	ution	opti	ons fi	or act	ivities	ŝ			
wion	Wt	Wc	Wq	Duration	Cost	Cost	Quality	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1		0	0	104	163,470	319,470	88.95	1	3	3	1	1	1	1	5	1	1	3	1	2	3	1	2
2	0	1	DO	108	122,320	284,320	80.11	1	3	1	3	4	2	3	5	1	1	1	1	3	1	1	5
3	0	0	L	107	168,755	329,255	97.46	1	1	1	1	1	1	1	2	2	1	1	1	1	1	1	1
4	0.333	0.333	0.333	104	150.320	306320	92.62	1	1	1	3	2	1	1	1	1	1	1	1	1	1	1	2

The GP Approach Results of the Advanced TCQ Model

						The M	MAW	/A A	ppro	ach I	Resul	ts									
SOL	Total	Direct	Total	Total							Exec	ution	optic	ons fo	r act	ivities	;				
Solution	Duration	Cost	Cost	Quality	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	1
1	104	161,015	317,015	91.63	1	2	2	1	1	1	2	2	1	1	2	1	1	2	1	1	1
2	107	151340	311840	89.71	1	4	1	3	1	1	1	3	2	1	2	1	1	3	1	1	1
3	104	145,115	301,115	86.81	1	4	2	3	1	1	2	2	1	1	2	1	1	2	1	1	1
4	106	155,070	314070	87.54	1	2	2	1	1	1	3	5	1	1	1	2	3	2	1	4	1

The MAWA approach results of the advanced TCQ model

						The 1	ISG.	AII A	ppro	ach l	Resul	ts									
Sol	Total	Direct	Total	Total							Exec	ution	optic	ons fo	r act	ivities	;				
Solution	Duration	Cost	Cost	Quality	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	108	122,400	284,400	80.25	1	3	1	3	4	2	3	3	1	1	1	1	3	1	1	5	1
2	104	162820	318820	95.16	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1
3	104	150,320	306,320	92.62	1	1	1	3	2	1	1	1	1	1	1	1	1	1	1	2	1
4	104	141,100	297100	88.67	1	3	1	3	2	1	3	3	1	1	1	1	1	1	1	2	1
5	104	149,820	305820	92.2	1	1	1	3	2	1	1	1	1	1	1	1	1	1	1	4	1
6	104	168,820	324820	97.63	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

The NSGAII approach results of the advanced TCQ model

					The	GP App	roach	Rest	uts fe	or TC	Т											
Californ	Meights of Objectives Total Direct Total Execution options for activities																					
Somon	Wt We Duration Cost I <																					
1		0	104	152.858	308,858	1	5	2	2	1	1	1	4	1	1	1	1	3	1	1	3	1
2	0		108	119.270	281,270	1	5	3	3	4	2	3	5	1	1	3	1	3	3	1	5	1
3	0.5	0.5	105	127.270	284.770	1	5	3	3	4	1	3	5	1	1	3	1	3	3	1	5	1

The GP approach results of the advanced TCQ model for тст

				The	MA	WA /	Appr	oach	Resu	its fo	r TC	Т									
Solution	Total	Direct	Total						E	secut	ion o	ption	s for	activi	ities						
Solution	Duration	Cost	Cost	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18														18			
1	104	140,700	296,700	1	4	1	3	3	1	2	3	1	1	1	1	1	2	1	1	1	1
2	107	130.920	291.420	3	1	3	3	4	1	2	5	1	1	1	1	3	3	1	5	1	1
3	106	136,170	295,170	3	4	1	3	3	1	2	1	1	1	3	1	3	3	1	4	1	1

The MAWA approach results of the advanced TCQ model for TCT

				The	NSC	AII	Appr	oach	Rest	ults fo	r TC	T								
Solution	Total	Direct	Total						E	secut	ion o	ption	s for	activi	ities					
Solution	Duration	Cost	Cost														17			
1	104	132,270	288,270	1	5	3	3	3	1	3	5	1	1	3	1	3	3	1	5	1
2	108	119,270	281,270	1	5	3	3	4	2	3	5	1	1	3	1	3	3	1	5	1
3	105	127,270	284,770	1	5	3	3	4	1	3	5	1	1	3	1	3	3	1	5	1

The NSGAII approach results of the advanced TCO model for TCT

CONCLUSIONS

The principal plan of TCQT is to strike a balance among the conflicting objectives of time, cost and quality. There are two categories of trade-off problems: (1) continuous trade off problems, in which the relation among time, cost, and quality has been considered a continuous function; (2) separate tradeoff issues, during which the relation among time, cost, and quality has been through of separate or isolated. Separate timecost-quality relationships are preferred for 2 main reasons: (1) it's a lot of relevant to globally construction projects; (2) it's appropriate for modelling any general time-cost relationship.

For minimizing techniques, evolutionary algorithms are preferable and unremarkably used as a result of they can deal with more than one objective, easily achieve diverse solutions, and they are more effective when applied to large-scale issues. Amongst varied EA techniques, GA has been extensively utilised for minimizing issues generally and construction management issues specially. Multi-objective optimization approaches have been also reviewed. 3 approaches of MOO techniques are mentioned, that are measure goal programming (GP), Pareto optimum, and non-dominated sorting genetic algorithmic program (NSGA-II). The NSGA-II has demonstrated to be one of the most robust algorithms for MOO problems. Three TCQT models were developed in MS Excel: the simplified model to optimize the objectives of time, cost, and quality of simple projects; the stochastic model to analyse projects considering uncertainty; and the advanced model to analyse both TCT and TCQT for large-scale projects. The principal objective of such models is to find an optimal or near optimal set of execution options for a project's activities in order to minimize the project's total price, minimize its total duration, and maximize its overall quality. The Evolver add-in software was utilized as an optimization tool for the first two models; but, a self-developed minimizing tool utilizing three various optimization approaches was utilised for the advanced model. To validate the developed models and demonstrate their efficiency, they were applied to case studies introduced by literature. Compared to results obtained by literature, satisfactory results were obtained by the developed models. Additionally, the advanced TCQ model utilizing the selfdeveloped minimizing tool generated comparable results compared to those obtained by the Evolver add-in.

REFERENCES:

- 1. AACE International. (2004). Skills & Knowledge of Cost Engineering. Morgantown: AACE Internationalthe Association for the Advancement of Cost Engineering.
- 2. AACE International - the Association for the Advancement of Cost Engineering. (2004). Skills & Knowledge of Cost Engineering. Morgantown: AACE International.
- 3. Abd El Razek, R., Diab, A., Hafez, S., & Aziz, R. (2010). Time-Cost-Quality Trade-off Software by using Simplified Genetic Algorithm for Typica-Irepetitive Construction Projects. World Academy of Science, Engineering and Technology, 61, 312-321.
- 4. Abdel-Razek, R. (1998). Factors Affecting Construction Quality in Egypt: Identification and Relative Importance. Engineering, Construction and Arcitectural Management, 5(3), 220-227.
- 5. Adeli, H., & Karim, A. (1997). Scheduling/Cost Optimization and Neural Dynamics Model for Construction. Construction Engineering and Management, 123(4), 450-458.
- Afshar, A., Kaveh, A., & Shoghli, O. (2007). Multi-6. Objective Optimization of Time-Cost-Quality Using Multi-Colony Algorithm. Asian Journal of Civil Engineering (Building and Housing), 8(2), 113-124.
- 7. Al-Tabtabai, H., & Alex, A. P. (1999). Using Genetic Algorithms to Solve Optimization Problems in Construction. Engineering, Construction and Management, 6(2), 121-132...