
Abstract

Crop diseases are a significant problem on the road to food hygiene and security, but still they cannot
be identified rapidly in many parts of the world due to the lack of essential infrastructure. But Due to
increasing global smartphone penetration and recent advances in Artificial Intelligence and Computer
Vision has made it possible by using deep learning and has paved the way for device-assisted disease
diagnosis. By Using a dataset of approximately 54,000 images of diseased as well as healthy plant leaves
gathered under controlled conditions, we train a deep convolutional neural network for the identification
of 14 crops and their 26 diseases. After the training phase, the model achieves an accuracy of 99.06%
on a test set. Overall, by using the method of training deep learning models on large and increasing
publicly available image datasets presents a path towards device-assisted crop disease prognosis on a
vast global scale.

1 Introduction

In the 21st Century, Latest Technologies have en-
abled human society to produce food to meet the
demand of more than 6 billion people. But, food
hygiene and security remains a threat by a number
of reasons including climatic change, plant diseases
etc. Plant diseases not only creates a threatening
scenario to food hygiene at the global level but can
also create damaging consequences for small-scale
farmers whose lives depend on crops. In this flour-
ishing world, more than 70 percent of the agro-
production is generated by small scale farmers, and
reports of loss of more than 60% due to diseases
are there. Moreover, the hungry people account-
ing for more than 40% live under small scale farm-
ing households, affecting the vulnerability of this
group to pathogen-derived breakage in the food
chain.

Various Efforts have been made to prevent
crops from diseases. Going back in history, the ap-
plication of pesticide in the past have been trans-
formed by IPM (Integrated Pest Management) ap-

proaches. Disease identification has been largely
guided by the extension of agricultural organisa-
tions, such as local clinics related to plantation
and agriculture. In recent times, efforts have been
guided by transferring information and knowledge
for disease prognosis online, averaging the increase
of web penetration. Personal Computers in partic-
ular offer very unique approaches for the identifica-
tion of disease because of their super high compu-
tational power, High-Resolution displays and ac-
cessories including high definition cameras. At the
end of 2019, already most of the population of the
world have access to computers and the internet,
a 20-fold increase since 2005. Here, we explain
the technological feasibility of using a Deep Learn-
ing CNN approach with transfer learning demon-
strating by applying on a dataset of approximately
54,000 images of 14 crops with 26 diseases made
publicly available by Plant Village project.

Deep Learning and object recognition, has
made huge advances in the past years. The PAS-

            International Research Journal of Engineering and Technology (IRJET)                         e-ISSN: 2395-0056 

            Volume: 08 Issue: 01 | Jan 2021                 www.irjet.net                                                             p-ISSN: 2395-0072 

 

Multimodal Transfer Learning Outlook for Plants Disease Prognosis

Delhi Technological University

---------------------------------------------------------------------------***--------------------------------------------------------------------

Anshul Dhingra, Samarth Khajuria

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 599 



CAL VOC Challenge and ILSVRC (Large Scale
Visual Recognition Challenge) which were based
on ImageNet dataset have been regarded as a cri-
terion for wide visualisation-related obstacles in
Computer Vision, including object detection. Re-
cently, a deep CNN network achieved a top 5 er-
ror of nearly 16% for the image classification into
1000 classes, but now the error has been reduced
to 3.57% in these 3 years. Moreover, training large
deep neural networks can be very time consuming,
the pre-trained models can classify images very
quickly, making them more convenient for appli-
cations on personal computers.

Deep Neural Networks have been recently ap-
plied successfully in many different fields as end-
to-end learning models. Neural networks comprise
basically a mapping between an input is an image
of a crop which is diseased as in our model to an
output which is a crop-disease pair in our model.
A neural network comprises of many hidden layers
further consisting of nodes or neurons which are
mathematical functions that take inputs (mathe-
matical) from the adjoining edges and will further
provide a mathematical output via an output edge.
These Neural networks basically maps the input
layers to the output softmax layers via various hid-
den layers stacked in between. The aim and goal
is to develop a deep network in a way that all the
neurons (nodes) weigh correctly and possesses the
correct Mathematical function and same goes for
connecting edges. Deep networks are trained by
tuning the weights also known as network param-
eters in a way in which mapping improves during
the training phase, back-propagating the loss by
comparing the predicted and actual output further
back-propagating the loss.

To develop and increase the accuracy measure
of image classifiers for plant disease detection and
prognosis we needed a larger, verified dataset con-
taining images of diseased as well as healthy plants.
So, we used Plant Village project which is collect-
ing hundreds of thousands of plant images and is
further increasing day by day furthermore being
freely available to the public on GitHub. Here, we
demonstrate the classification of 26 diseases among
14 different crops using approximately 54000 im-
ages with a CNN based transfer learning approach.
We calculate the performance of our model based

on its ability to predict correct crop, as well as
disease in pair among, made 38 classes in pairs.
Our best-trained model achieves a mean F1 score
of 0.9906 (accuracy of 99.06%), our results giving
a step forward towards a computer-assisted plant
disease prognosis system.

2 Dataset Information

We analyse approximately 54,000 images of
disease plants, having a 38 category labels. Each
category is a crop-disease in pair, and we try to
guess the same, given just the image of the diseased
plant. (Image. 1) shows each example of crop-
disease pair from the Plant Village project dataset.
We have further resized the image to 256X256 pix-
els, performing different feature extraction & Deep
Learning techniques on these downscaled images.

Among all the models, we used 2 different ver-
sions of the same dataset Plant Village project. 2
versions were (a) Coloured Images, (b) Grey-scaled
Images. We started 1st with colour images, then
grey-scaled. This set is constructed to understand
if the CNN model is actually learning the ”impres-
sion” of the plant diseases, or is it just learning the
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”constitutional bigotry” in the dataset. (Image 2)
shows the different versions of the same plant.

3 Performance Check

To get an estimate how our constructed model
works, and also to know if our approaches are over-
fitting, we run all our model experiments across a
range of train-test splits, for example 70–30 (70%
of the whole dataset used for training, and 30%
for testing), 80–20 (80% of the whole dataset used
for training, and 20% for testing), 60–40 (60% of
the whole dataset used for training, and 40% for
testing), 50–50 (50% of the whole dataset used for
training, and 50% for testing) and at last 20–80
(20% of complete dataset used for training, and
80% of the whole dataset for testing). We observe,
the Plant Village Project dataset has images of
the same plant leaf (taken from different angles),
and we tried to do the mappings of such cases for
40,000 images out of the 54,000 images; and dur-
ing running of all these test-train splits, we make
sure all the images of the same plant disease in-
puts either in training set or test set. Moreover,
after running every model experiment, we measure
the mean precision, recall, & F1 score, along with
the aggregate accuracy during the complete epoch
period of training(at the end of every epoch). We
use the final mean F1 score for the comparison
and calculation of results among all the different
experimental versions and configurations.

4 Approach

We examine the applicability of Deep CNN net-
works for the classification task. We focus on
two in-demand architectures, namely ResNet(50)
and GoogLeNet which were developed in ILSVRC
(Large Scale Visual Recognition Challenge) for the
ImageNet dataset. At the ILSVRC 2015, The
Residual Neural Network (ResNet) by Kaiming He
et al developed an architecture with ”skip con-
nections” which featured heavy batch normaliza-
tion. Skip connections are known as gated units
or gated recurrent units in fact they have a strong
similarity to successful elements applied in RNNs.
It achieves a top-5 error rate of 3.57ResNet ar-

chitecture is comprised of VGG-19 at the bottom
(A state-of-the-art approach in Large Scale Visual
Recognition Challenge 2014), then 34-layer plain
network is treated as the deeper network of VGG-
19, i.e more convolution layers, and then further
34=layer residual network at the top which is a
plain one with skip connection. All the layers usu-
ally have ReLu non-linear activation units associ-
ated with them. At the last, fully connected layer
has 38 outputs in our version of ResNet(which
equals to the total number of categories or classes
which is also 38 in our dataset), which further
feeds to the SoftMax layer. The idea of using a
ResNet is through one or more layers, whereas in
the deep CNNs in general all layers are processed
one at a time. The GoogLeNet architecture is a
deep and wide architecture with 22 layers in gen-
eral, but still with a lower number of parameters
(just approximately 5 million) whereas there are
more than 23 million in ResNet-50. GoogLeNet
works on the basic principle of ’Network in Net-
work’ architecture in the form of inception models.
It uses a parallel 1X1, 3X3 and 5X5 convolutions
across max-pooling layers in parallel. This is the
way a single inception model is formed, whereas
we will be using 9 modules similar to this for our
experiment. We examine the performance of these
both models that is ResNet and GoogLeNet on
the Plant Village dataset by training both of them
using the transfer learning approach. In transfer
learning, we reinitialise the weights of fully con-
nected layers in ResNet and of loss (1,2,3) layers in
case of GoogleNet. To compile, we have a total of
20 experimental configurations, depending on the
following parameters: begin 1. Choice of Trans-
fer Learning Architecture: ResNet GoogLeNet 2.
Choice of the dataset to be used: Colour, Gray-
Scaled 3. Training-Test Split:

• Train: 80% Test: 20%

• Train: 80% Test: 20%

• Train: 80% Test: 20%

• Train: 70% Test: 30%

• Train: 60% Test: 40%

• Train: 50% Test: 50%
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• Train: 20% Test: 80%

Each of these 20 experiments runs for a total of 20
epochs, where one epoch is the number of training
repetitions in which our Neural Network completes
one cycle of whole training set. For a fair compar-
ison and observation, we standardize the parame-
ters also known as hyper-parameters in all the 20
experiments:

1. Optimizer: Stochastic Gradient Descent,

2. Learning Rate: 0.004

3. Learning Rate Variation: Step (Decrease of
10 after every 20/2 epochs)

4. Momentum: 0.9

5. Weight Degenerate: 0.0005,

6. Batch Size: 50(Resnet), 16(GoogLeNet)

7. Gamma: 0.1

All the above experiments were performed us-
ing Keras with TensorFlow backend which is a
fast, open-source framework for deep learning and
achieves good results, especially on the media data.

5 Results

Graphs showing the various properties of our best perofrmed experimental version .
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We observed and calculated that on a dataset
with 38 classes/categories, a random guess will
achieve nearly 2.5% accuracy on average. Across
all of our experiments on the Plant Village
Dataset, the overall accuracy we obtained varied
from 79.9% (in case of ResNet::GrayScale::20-80)
to 99.06% (in case of GoogLeNet::Coloured::80-
20), hence it shows a strong range of accuracy

variation. Further to address the problem of
overfitting, we changed the training to test set
ratio and observed that even for the last case
that is on 20% training data and rest 80% test-
ing data, model achieved a satisfactory 96.7%
accuracy(GoogLeNet::Color::20-80). But we did
saw that accuracy decrease if we keep decreasing
the share of the dataset for the training set.

TRANSFER LEARNING

RESNET GOOGLENET

TRAIN 20% TEST 80%

COLOUR 0.9356 0.9679

GREYSCALE 0.7941 0.8321

TRAIN 50% TEST 50%

COLOUR 0.9566 0.9772

GREYSCALE 0.8561 0.9112

TRAIN 60% TEST 40%

COLOUR 0.9698 0.8913

GREYSCALE 0.9849 0.9348

TRAIN 70% TEST 30%

COLOUR 0.9531 0.9901

GREYSCALE 0.9094 0.9448

TRAIN 80% TEST 20%

COLOUR 0.9665 0.9906

GREYSCALE 0.9394 0.9499

The models performed better on the coloured
datasets than grayscale datasets. We were con-
cerned that the CNN network might pick up the
inherent biases only, therefore we experimented
with the grey-scale dataset to test the ability of
the model to recognize the disease and the crop
in absence of colour information. As a result, the
performance did degrade in absence of colour in-

formation, but even in the worst-case scenario the
accuracy was quite satisfied that is 79%. To sum-
marize, all the results have been concluded with
model recognizing the crop and the disease both
simultaneously whereas we believe if the dataset
could be modified with the type of crop already
mapped, we could yield much better results.

6 Discussion

The performance of Deep Learning & Convolu-
tional Neural Networks in image classification and

object recognition has made huge progress in re-
cent years. In the past, the traditional methods
for image classification tasks were based on hand-
designed or engineered features, such as SIFT,
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HoG, SURF, etc., and then people used some form
of a learning algorithm in these feature matrices.
The performance of these methods therefore re-
lied heavily on the associated predefined features.
Feature Engineering was a very tedious and com-
plex process which needed to be revisited time to
time when the problem in hand or the associated
dataset changes significantly. This problem occurs
in with all the usual methods to detect plant dis-
eases using computer vision as they depend mainly
on hand-engineered features, image enhancement
techniques, and a lot of other complex and labour-
intensive technologies. Our method is based on
the work which showed that end-to-end super-
vised training using transfer learning on a deep
CNN network architecture is a practical approach
even for image classification and object detection
problems having a very large number of categories
or classes, getting ahead of the traditional meth-
ods using hand-engineered features. Skipping the
labour-intensive task of feature engineering and
the familiarity of the solution makes them a very
encouraging candidate for a constructive and ex-
pandable path for computational interpretation of
crops and plant diseases. The limitation is that
we are at the moment compulsive to the analysis
of single leaves, facing up, on a more or less same
background. As this is not in the case of real-
life leaves images, real-life analysis and prognosis
should be able to classify and analyse images of a
disease as it presents itself directly on the plant. In
fact, most of the diseases don’t present themselves
on the upper or lower side of leaves only, but on
different parts of the crop species. Thus, we would
try to collect new image data with more realistic
images and most importantly from many different
perspectives. By using 38 categories that comprise

of both crop species and disease type, we have even
made the task harder than necessary from a prac-
tical view, as people related to agricultural and
farming are expected to know which crop species
they are growing and harvesting. Be it the high ac-
curacy on the Plant Village Project Dataset, if we
limit the classification challenge to the disease sta-
tus then it won’t have a measurable effect. But,
on the existing real-world datasets, we can con-
clude significant improvements inaccuracy. Over-
all, the experimented method works reasonably
well with any type of distinguishable crops and
diseases, and further to improve quite noticeably
with more training data. Decisively, it’s worth to
note that the method presented here does not aim
to replace the already existing solutions for dis-
ease prognosis, but rather to fortify them. As we
all know, Laboratory tests are always more reliable
than prognosis based on just visual symptoms, and
even most of the times early-stage prognosis via vi-
sual inspection alone is quite difficult. Coming to
the point, there are more than 2.5 billion personal
computers in the world by 2020—of which almost
20 million alone in Africa, we do think that this
method represents a viable additional method to
help decrease the yield loss. Strongly, in the fu-
ture, image data from a personal computer may
be fortified with location and as well as time infor-
mation for additional improvements in the mea-
surement of the accuracy and precision. Lastly,
we do have our belief on the astonishing pace at
which computer technology has developed in re-
cent years, and will continue to do so. Also with
improving number and quality of processing power
of computing devices, we consider it likely that
highly accurate prognosis via computers is only a
question of time.
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