
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 01 | Jan 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 669

Ship Intrusion Detection using Custom Object Detection System with

YOLO Algorithm

Srujan Patel1, Naeem Patel1, Siddhesh Deshpande1, Amroz Siddiqui2

1Student, Computer Engineering Dept., Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai,
Maharashtra, India

2Assistant Professor, Computer Engineering Dept., Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai,
Maharashtra, India

---***--
Abstract - Due to the growth in the field of computer vision
and deep learning which can be attributed to theoretical
innovations as well as an improvement in hardware
capabilities, automating tasks such as surveillance has become
an area of great relevance which can leverage advancements
in Artificial Intelligence to improve upon existing systems. One
specific example is pertaining to the Tata Institute of
Fundamental Research (TIFR) which is located on the shores
of the Arabian Sea in Mumbai, India. Due to its location, it
faces a constant risk of intrusion by sea. Despite there being a
closed circuit television (CCTV) or video surveillance system in
place, there are limitations on the ability of humans to
monitor footage from such a system continuously. Hence a
foolproof intrusion detection system is required to address this
issue. We propose an automated system that would be capable
of detection of ships and similar vessels approaching the shore
as well as people. This system uses Image Processing and Deep
Learning for such intruder detection. On detection of intruding
ships, the concerned authority (i.e. the security personnel)
would receive an alert of the same. The problem that we are
concerned with is detection of real time ship intrusion in a
dynamic (i.e. constantly changing) environment. We propose a
robust, localized, generalized video surveillance system using
Deep Neural Networks. On top of that, a secure system should
be able to, with reasonable performance, detect various kinds
of threats which can come in all sorts of shapes and sizes. Thus,
detecting custom objects is also a useful feature of our system.
Finally, the system should be easy to use and providing a good
UI (user interface) has been a main goal in developing this
system. We present this along with some stats regarding the
training process and detection results on two classes, namely
person and ship.
Key Words: Computer Vision, Machine Learning, Deep
Learning, Convolutional Neural Networks, Ship
Intrusion, YOLO

1. INTRODUCTION

Before the advent of object recognition and automatic
detection systems, surveillance systems relied on human
supervision and even now, security systems haven’t evolved
to completely eliminate human attention. Computer Vision
has one of the aims of achieving human level capabilities in
seeing the world. In achieving this aim through artificial
intelligence, a substantial amount of research has been done
that takes a connectionist approach to this task. Deep Neural

Networks, in particular, Convolutional Neural Networks
have proven to be really adept at the task of object detection
which is at the core of a surveillance system. Apart from the
exclusivity of certain advanced technologies like Radar and
Lidar to the military, using Deep Learning is fairly simple
owing to its open-source nature. There are many
implementations available of various algorithms along with
necessary resources that expedites the task of creating a
neural network based object recognition system. By nature,
neural networks are mostly black boxes that are mostly
invariant to the task and perform equally well on other
disparate tasks. Surveillance is crucial not just in security,
but also in hospitals for medical patients [1], in sports for
detecting players [2] and in agriculture as well to detect
anomalies the fields [3] to name a few examples. The ideal
state of a surveillance system is one that involves least
human intervention and notifies or signals an alarm once an
intrusion is detected. These systems can use a variety of
techniques like signal & image processing, computer vision,
machine learning, etc. Having the right infrastructure in
terms of hardware computing power, mostly GPUs (Graphics
Processing Units) increases the system throughput and
drastically reduces the risks of failure, proving to be a good
investment. The ability of various deep learning algorithms
and neural networks to utilize the GPUs to speed up
computations is a huge benefit to reduce system latency [4].
There is no need of manually extracting the features because
deep learning models are already trained using large sets of
labelled data and neural network architectures which learn
features from the given data. The availability of these deep
learning resources has sparked a new method of creating an
object detector known as transfer learning [5] which enables
the development of these detectors without the need for
immense amounts of data allowing the use of these
techniques to a wide variety of applications. The main
motivation in building this system with TIFR, Colaba is the
fact that it is located on the shores and is at risk of intrusion
by sea in water vessels. So, there is a need to put a system in
place that has high reliability and is robust enough to solve
this problem. Currently, Closed Circuit Television (CCTV) is
used which are quite efficient but require constant human
monitoring. There are limitations in the ability of humans to
constantly monitor surveillance of live footage [6]. Another
reason for automating this is the fact that sometimes the
cameras may face resolution issues which may alter the
appearance of the objects making them harder to detect.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 01 | Jan 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 670

Training humans to do this is not only expensive but may not
be completely robust [7]. Comparatively, training an
algorithm or a system to evolve with changing needs is
easier and more cost-effective. A custom object detection
system consists of 4 major steps which are image annotation,
dataset splitting, training and testing/detection on videos,
images or live feed. Traditionally, a user would have to
perform all these tasks by employing a diverse range of
methodologies and an array of different softwares.
Additionally, they would need to manually edit the related
files and without any simple GUI (graphical user interface).
Our main contribution would be to present an end-to- end
system that does all these 4 tasks in one place with just a few
dependencies and a well-rounded GUI to automate as many
tasks as possible.

2. LITERATURE SURVEY

2.1 Existing Systems

1) Closed-circuit television (CCTV): Closed-circuit
television (CCTV) cameras are used to produce
images or recordings for surveillance purposes. A
Basic CCTV System Consists of a camera connected
directly to a monitor by a co-axial cable with the
power for the camera being provided from the
monitor which is used to check for intrusion of ships.
Although it is a very easy and simple solution, 24/7
monitoring of the video recordings is difficult due to
the high risk of human error [7]. CCTV systems that
require manual human attention clearly lack
complete security but if coupled with automated
systems and additional modules that improve the
reliability, could be a good solution for surveillance
systems. In fact, CCTV systems have been employed
to good use for traffic monitoring. [8] demonstrates
a pedestrian monitoring system. Further the use of
face recognition systems through CCTVs [9]
encourage the need to build intrusion detection
systems for other use cases as well (ships in our
case).

2) Radar: RADAR (Radio Detection and Ranging)
method is used to detect the intrusion of ships [10].
The background of seashore landscape Synthetic
Aperture Radar (SAR) image is dark and targets are
bright making it is easy to detect the ship [11]. But
when the wind is fierce, large waves will be stirred
and engender strong backscattering echo. This
causes many difficulties in the detection of ships.
Thus the overall accuracy turns out to be poor and
makes it difficult to detect the ship during bad
weather condition. Furthermore, installation of
these systems require a fairly large investment and
these systems are more restrictive too in terms of
viewing angles. Also, the complexity of these
systems provide little scope of applying the latest
computer vision based algorithms which are gaining
popularity for surveillance tasks.

3) Wireless Sensor Networks: Using signal processing
techniques and cooperative signal processing,
detection of any passing ships can be done by
distinguishing the ship-generated waves from the
ocean waves. A three-tier intrusion detection
system which can exploit spatial and temporal
correlations of an intrusion can be used to increase
detection reliability. The main limitations of these
systems are that they require relatively dense
networks, especially to achieve higher detection
accuracy with small boats because of the high noise
of the sea [12].

4) Phase Saliency Map and extended wavelet
transform: This method for ship detection is based
on phase saliency map and extended wavelet
transform (PSMEWT) to solve two issues: Accurate
detection of ships in complex background and how
to detect accurate ship targets in the event that ship
targets are comparable to false alarms. In this
method, multi-spectral information is first adopted
in the sea–land segmentation to reduce the
detection time consumption. Then, a visual phase
saliency map based on the extended wavelet
transform is constructed to highlight the difference
between ships and the background to locate ship
candidates. In the process of removing false alarms,
aside from morphological and geometric features,
other advanced methods are used to more
effectively eliminate false alarms, and the SVM
classifier is adopted to conduct offline training at
the same time. However, there will be relatively
more false targets when this method is applied to
small ships. The small size (only 10–20 pixels) of
the ships in the images make it difficult to
determine whether it is a ship through optical
remote sensing images [13].

2.2 Our Approach

1) Object Detection and Computer Vision: Object
detection is a computer technology related to
computer vision and image processing that deals
with detecting instances of semantic objects of a
certain class (such as humans, buildings, or cars) in
digital images and videos. [14] Object detection
algorithms typically use extracted features and
learning algorithms to recognize instances of an
object category. It is commonly used in applications
such as image retrieval, security, surveillance, and
advanced driver assistance systems (ADAS).
Programming a computer and designing algorithms
for understanding what is in these images is the
field of computer vision. Computer vision is an
interdisciplinary scientific field that deals with how
computers can gain high-level understanding from
digital images or videos. From the perspective of
engineering, it seeks to understand and automate
tasks that the human visual system can do [15]–

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 01 | Jan 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 671

[17]. From a computer vision point of view, the
image is a scene consisting of objects of interest and
a background represented by everything else in the
image. Object detection and localization are two
important computer vision tasks. Object detection
determines the presence of an object and
localization determines the location of that object in
the image.

2) Deep Learning: Deep learning is a form of machine
learning that enables computers to learn from
experience and understand the world in terms of a
hierarchy of concepts. Because the computer
gathers knowledge from experience, there is no
need for a human computer operator formally to
specify all of the knowledge needed by the
computer. The hierarchy of concepts allows the
computer to learn complicated concepts by building
them out of simpler ones; a graph of these
hierarchies would be many layers deep hence the
name “deep” learning [18]. Over the last years deep
learning methods have been shown to outperform
previous state-of-the-art machine learning
techniques in several fields, with computer vision
being one of the most prominent cases. The
ambition to create a system that simulates the
human brain fueled the initial development of
neural networks. In 1943, McCulloch and Pitts [19]
tried to understand how the brain could produce
highly complex patterns by using interconnected
basic cells, called neurons. The McCulloch and Pitts
model of a neuron, called a MCP model, has made an
important contribution to the development of
artificial neural networks. These include LeNet [20]
and Long Short-Term Memory [21], leading up to
today’s “era of deep learning.” One of the most
substantial breakthroughs in deep learning came in
2006, when Hinton et al. [22] introduced the Deep
Belief Network, with multiple layers of Restricted
Boltzmann Machines, greedily training one layer at
a time in an unsupervised way. Guiding the training
of intermediate levels of representation using
unsupervised learning, performed locally at each
level, was the main principle behind a series of
developments that brought about the last decade’s
surge in deep architectures and deep learning
algorithms [23].

3) Convolutional Neural Networks: Convolutional
Neural Networks (CNNs) were inspired by the
human visual system’s structure, and by the models
of it proposed in [24]. The first computational
models based on these local connectivity between
neurons and on hierarchically organized
transformations of the image are found in
Neocognitron [25], which describes that translation
invariance is achieved when neurons with the same
parameters are applied on patches of the previous
layer at different locations, Yann LeCun and his
collaborators later designed Convolutional Neural

Networks employing the error gradient and
attaining very good results in a variety of pattern
recognition tasks [23], [26]–[28]. A CNN comprises
of three main layers: convolutional layers, pooling
layers and fully connected layers as demonstrated
in Figure 1.

Fig -1: Example of Convolutional Layers

4) YOLO algorithm: YOLO (You Only Look Once) real-

time object detection algorithm, which is one of the
most effective object detection algorithms. YOLO
uses a totally different approach than other
algorithms. YOLO is a clever convolutional neural
network (CNN) for doing object detection in real-
time. The algorithm applies a single neural network
to the full image, and then divides the image into
regions and predicts bounding boxes and
probabilities for each region. These bounding boxes
are weighted by the predicted probabilities. The one
we used, YOLOv3 [29] is really powerful with a
good tradeoff between accuracy and speed. There is
also another version of YOLO known as ’tiny-YOLO’
which is a scaled down version of YOLO which gives
faster results on low-end systems with slightly
worse results. The benefits of YOLO have been
applied to various applications due to the
availability of pre-trained weights trained on the
COCO dataset and reasonable training times. For
instance, [30] have demonstrated the use of YOLO
in counting traffic. [31] have used the YOLO
algorithm to monitor the growth of apples in
orchards. This demonstrates the viability of YOLO
as being a reliable object detection algorithm in
diverse applications. The architecture of the
network used in YOLO is shown in Figure 2.

Fig -2: YOLO Architecture

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 01 | Jan 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 672

3. SYSTEM DETAILS

The system will work in a dynamic environment, i.e. even in
the presence of background disturbances such as winds,
waves, birds flying, etc. The system requires that the object
to be detected is at least 5% of the input dimensions. The
object will be detected at multiple scales of the object. The
detection is indicated by a bounding rectangle that encloses
the detected target and an alarm is raised to alert the
concerned authority of the intrusion. The main goal of the
system is to provide a workflow to the user with a GUI for
performing the task necessary in building a custom object
detector using the YOLO algorithm and using it for detection
on images, videos and live footage. The system should allow
the user to annotate images for training, then split it into
training and validation sets, then train it and finally obtain
weights that will help in detection. For our specific use case
we have chosen to work on detection of ship and person. A
high-level block diagram of the system is illustrated in Figure
3. In terms of implementation, we have used the Qt
framework for C++ to develop our software. We have also
used the OpenCV [32] library for image manipulation related
tasks. The main OS used by us was Ubuntu but the
application can be made to work in any Unix-like
environment. For distribution, we used Appimages to
package our software. In particular, linuxdeployqt. The main
modules that the system is divided into will be elaborated
upon in the following sections.

Fig -3: Block Diagram

3.1 LOGIN, MAIN MENU AND PROFILE MODULE

Registration allows users to register themselves on the
system using a valid email and password. Users can log in to
the system once they are registered. Only registered users
can log in to the system. If unregistered users try to log in, an
“Invalid User” notification pops up and the unregistered users
are prompted to register before logging in. On the login page,
the user can click the help button for a description of the
application. Once logged in, the user is presented with the
Main Menu, from here, he can view instructions on how to
proceed. The user can go to the required module, for training
or testing, a dropdown menu will further provide more
options to perform the required tasks. A user can view their
profile which contains the file/folder paths that the user may
have previously selected for the application, these paths can
be copied to clipboard as well. On using a module and

returning, the session is refreshed and the current state of
that module is reverted to initial state.

3.2 LABELING/IMAGE ANNOTATION MODULE

Fig -4: The associated .txt file will have the following
contents (if car is class 0): 0 0.0833 0.0833 0.0556 0.0417

Although there are many tools available for annotating
images like [33]. These need to be installed separately and
there are some features that they lack. To overcome this and
integrate the workflow for custom object detection, we came
up with our own implementation of an image annotation tool.
This module basically loads training images and allows users
to annotate it by drawing bounding boxes which enclose the
ROI (region of interest) which can be an object (bus, car,
book, etc.) that we want to predict later. This module loads a
training directory and allows the user to go through all the
images in that directory and draw bounding boxes around
the ROI. The user can also add and specify classes to which
the ROIs belong. This module stores the image details in
YOLO format which is saved as a .txt file. The file contains
object number and object coordinates on this image, for each
object in new line:

 <object-class><x><y><width><height>

where,

 Object class - integer number of object from 0 to (classes-
1)

 <x><y><width><height> - float values relative to width
and height of image, it can range from 0.0 to 1.0

 Attention: x and y are center of rectangle (are not top-left
corner)

An example of how the annotations are stored is illustrated in
Figure 4. There is no cap on the number of classes that the
user can add, the user can add their class and even edit the
class name. While drawing bounding box, the user can even
search from the list of existing classes to minimize effort in
scrolling and then selecting the class. The class names are
saved in the’classes.txt’ file which contains each class name

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 01 | Jan 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 673

on each line. The classes are 0-indexed. Once the directory is
selected, the first image will load and the user can then go
through the images using ’next image’ and ’previous image’
button. The app will save previous annotations and they will
load if a session is resumed. The app also provides an option
to view the corresponding .txt file generated for the current
image. The user can also view the progress of the labeling of
the dataset. This displays the percentages and names of the
images that have been labeled and not yet labelled. It also
displays the percentage and names of images that have been
copied to the training and validation directories in case the
user has already split the dataset before. Drawing bounding
boxes is intuitive with the use of mouse. The app will ask for
confirmation every time a bounding box is drawn. To skip
this, the user can check the” Auto-save” option to remove
these confirmation messages. To delete a bounding box, the
user can right click and delete and to edit the class of a
bounding box in case of a mistake, the user has to select the
correct class after pressing edit on right click. Apart from
these, the user can zoom-in and zoom-out in case the item to
be annotated is too small or too large. The user can also reset
zoom and view the zoom level.

3.3 DATASET SPLIT MODULE

Training Dataset is the sample of data used to fit the model.
This is the actual dataset that we use to train the model
(weights and biases in the case of Neural Network). The
model sees and learns from this data. Validation Dataset is
the sample of data used to provide an unbiased evaluation of
a model fit on the training dataset while tuning model
hyperparameters. The evaluation becomes more biased as
skill on the validation dataset is incorporated into the model
configuration. The validation set is used to evaluate a given
model, but this is for frequent evaluation. We use the
validation set results and update higher level
hyperparameters. So the validation set in a way affects a
model, but indirectly. Splitting the dataset into two folders
(training and validation) manually requires copy pasting the
images through the OS or the command line which is again a
bit tedious. Since, the separation should be random for
optimum results, the process is again complicated to select
certain images. For solving this, we have added this module
which randomly splits the dataset and the user has to just
give the ratio of training to validation images. This module
takes as input the training and the validation split and then
randomly samples the data. This sampled data is now stored
in a folder called as the Validation and the remaining are then
stored in training directory. The amount of Validation
depends on the ratio provided by the user. The Default is
80:20, but the user is free to change it using the slider
according to their requirement. This module does not move
the images, it copies the images into training and validation
subdirectories inside the main dataset directory.

3.4 TRAINING MODULE

YOLO allows us to train the model on our own dataset to
detect our own classes. The actual training of the network
happens in this module. Without this part, the user would
have to manually modify necessary files and configure the

environment and give command line instructions to start
training a model. All this is automated with this module. To
train the network, there are certain inputs required and our
application then generates the required files when the user
clicks the configure environment button. The user can select
the tiny-yolo checkbox to train using tiny-yolo instead of
normal YOLO. Custom Training involves providing a set of
directories and files. These include:

 Darknet Directory: This is the directory where Darknet
has been installed. The user is expected to run the make
in this directory prior to use. Installation instructions
are available online.

 Validation and training directory: Validation Directory is
the directory created by the Data set split Module. The
user need to provide the path to this directory. Training
Directory is the directory where all our training data will
be located. This is the directory too is created by the
data-split application.

 Weight File: This is the starting point for our training. Our
model will transfer learn taking the weight of a pre-
trained model as the starting point for our training. If
starting training on a new dataset, the use of the
darknet.conv.74 weight file is recommended. If the user
has already trained before, they can resume training
with those weights as well. By default, darknet saves the
weight file every 100 iterations and then every 1000
iterations after 1000th iteration.

 CFG file: The Configuration (cfg) file contains the variables
that specify the configuration of the network. The user
has to provide the standard cfg file that is available on
the official darknet site. It is named yolov3.cfg or the
tiny-yolo variant.

To train the network for our dataset, we need to make the
following changes in the .cfg file:

 Line 3: set batch=24, this means we will be using 24
images for every training step

 Line 4: set subdivisions=8, the batch will be divided by 8
to decrease GPU VRAM requirements.

 Line 603/127(for tiny): set filters= (classes + 5)*3

 Line 610/135(for tiny): set classes= the number of
categories we want to detect

 Line 689/171(for tiny): set filters=(classes + 5)*3 � Line
696/177(for tiny): set classes= the number of
categories we want to detect

 Line 776: set filters= (classes + 5)*3

 Line 783: set classes= the number of categories we want
to detect

Once the inputs are given, the user has to configure
environment for training, without this all the other options
are disabled. After generation of required files, the user can
view the generated files on the output window in the page.
The files that are generated are:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 01 | Jan 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 674

 app-training.data: This file contains the supplementary
information like the number of classes, the location of
the other generated files and the path of the backup
directory where the weight file generated from training
is stored.

 app-training.cfg: This file is the modified cfg file that is
customized to our dataset.

 app-training.names : This file contains each class name on
a separate line.

 app-training-test.txt: This contains the path to all the
images in the validation set.

 app-training-train.txt: This contains the path to all the
images in the training set.

Once these files are generated then we can start training, the
output comes in batches from the terminal, so there is a little
latency. The user can stop the training as well which kills the
process. Furthermore, the output window can be cleared by
the clear window button’s clicking. The output of training
provides some float numbers like IoU and the average loss,
we have to see the average loss and decide if we are satisfied
with the training. If enough iterations are run, then the app
displays the location of the weight file which can be then
used to perform detection or further train the model.

3.5 TESTING/DETECTION MODULE

After we have trained the model, we now need to test it.
Testing or detection can be done on images, videos, and
webcam (if available) In order to test our custom trained
object, we again need to provide a set of files. These are:

 Weight File: This is the weight file which contains our
network along with the weights for all the neuron. This
is the output file from the training module.

 Image/Video: We provide the image/video on which we
want to test our model.

 .names file : This is the data file which contains the name
of each class that we want the model to recognize.

 Cfg File: This file contains the modified cfg file from the
training. This file contains information about the
number of layers, filters, input layer etc.

In the video detection module, the user can see the detection
along with the related information like inference time which
is the time taken to load a frame, the user can also see the
objects detected and the frames skipped in case of fast-
forwarding. As mentioned above, the user can fast-forward,
pause and play on the video detection. The user can go to the
default speed as well. It is recommended that the detection is
done on GPUs for minimum inference time.

4. RESULTS AND DISCUSSION

Using our application, we created a ship and person intrusion
detector. All the processes were done using our application
except training which was done on Google Colab due to lack
of dedicated GPU. It took us about 2 to 3 days to create the
detector without a dedicated good enough GPU but we

estimate that this process can be finished in even lesser time
given a dedicated GPU with good compute capability. Before
using a GPU, CUDA should be installed and darknet should be
installed with the GPU and CUDNN options set to 1. Online
tutorials are available on how to do this. Regardless, our
process involved the steps discussed in the following
sections.

4.1 COLLECTION OF DATA

 Dataset collection is the first step, we need a dataset that has
enough images to get a good detector. Furthermore, the
dataset should have good variety for the classes that we want
to build the detector for. Variety means images in which the
classes are having different sizes, orientations, colors, etc. The
more variety and size of the dataset, the more robust our
detector is. There should also be some negative images which
do not contain the classes. For our process, we took the
dataset from the COCO dataset [34] along with some images
scraped from the web. The details about our dataset are given
in Table 1.

4.2 LABELING/IMAGE ANNOTATION

This is the next step in our procedure. This involves labeling
our dataset and drawing bounding boxes around the classes
in our image, our application provides a labeling module that
does this efficiently and provides the users with many extra
features to make the process as smooth as possible. Using our
application, the .txt files are generated that contain the image
annotations in the YOLO format. The user can also view their
progress through the application. For a large dataset,
annotation process may be time consuming and using our
application, we estimate that at least 500-600 images can be
annotated in 2 hours. We, however, used the annotations
already given in the COCO dataset to generate the .txt files in
the YOLO format which saved us some time.

Table -1: Dataset Information for Detector

Total no. of images used 13221

Training Images 12697

Validation Images 524

Testing Images 143

No. of Classes 2

4.3 TRAINING

The main part of building a detector is training. Training the
neural network requires a lot of computations which are
usually done using good NVIDIA GPUs. These are expensive
and require additional packages or softwares installed for
their use which require a proper environment. In- stead of
doing all this manually, we decided to use the GPUs that
Google provides on their cloud named colab platform. The
GPUs provided are powerful and all the necessary
installations are easy to carry out. The downside is that the
runtime is refreshed every 12 hours meaning that a lot of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 01 | Jan 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 675

redundant work needs to be done. On top of that sometimes,
colab causes the browser to crash and gets disconnected if
the browser is inactive for more than 20-30 minutes.
Anyhow, for lack of a better option, we used colab to train.
We used the initial darknet53.conv.74 to start training using
YOLO and other weight file for tiny yolo as well. The training
statistics are provided in Table 2. The AP (Average precision)
is a popular metric in measuring the accuracy of object
detectors like Faster R-CNN, SSD, etc. Average precision
computes the average precision value for recall value over 0
to 1. mAP (mean average precision) is the average of AP. In
some contexts, we compute the AP for each class and average
them. But in others, they mean the same thing. For example,
in the context of COCO dataset, there is no difference between
AP and mAP.

Table -2: Training Statistics

 YOLO Tiny-YOLO
No. of iterations 34000 104000

Time taken (hours) 17.5 20.5
Average Loss 1.19 1.92

mAP (mean average precision) 45.2% 31%

4.4 TESTING/DETECTION

The detection module of the application can detect the
trained classes with the help of the weights, .names and the
.cfg (configuration) files. If any class is detected, a bounding
box is drawn around the detected class and the confidence
with which that object is detected is also displayed. In case of
image detection, the detected image is displayed with the
initial input image provided. However, with webcam and
video detection, a new page is displayed with more features
like pause/play and fast-forward. In the video detection page,
the inference time, the classes detected and the frames
skipped (in case of fast-forwarding) is also shown. To gain a
better idea of how our model works we used some metrics.
To understand these metrics, we use these measures:

1) True Positives (TP): Images with objects present and
detected correctly by the model.

2) False Positives (FP): Images not containing objects
but objects detected by the model.

3) False Negatives (FN): Images with objects which are
not detected by the model.

4) True Negatives (TN): Images not containing objects
and not detected by the model.

5) Accuracy: It is the fraction of predictions that the
model got right. Formally,

 Or,

6) Precision: It tells us what proportion of positive
identifications was actually correct.

7) Recall: It tells us what proportion of actual positives
was identified correctly.

8) F1 score: F1 score conveys the balance between the
precision and the recall.

Table 3 shows the values obtained for each of the metrics.
These values have been obtained by testing on new images
which the model has previously not seen. We used a script
that detected detections with a threshold confidence value of
0.5. The values have been given for three models. The first
one shows the values for the pre-trained YOLO model, those
weights are available online and have been trained for about
500000 iterations. The next is our custom-trained model on
YOLO which has been trained for 34000 iterations. And last
one is the custom trained model on tiny YOLO which has been
trained for 104000 iterations. Note that the tiny yolo model is
much faster and lightweight but gives a lower accuracy. The
YOLO model can be improved if run for more iterations.

Table -3: Training Results

Metric YOLO (Pre-
Trained)

YOLO
(Custom-
Trained)

Tiny-YOLO
(Custom-
Trained)

Accuracy 94.37% 82.52% 68.06%
Precision 98.77% 98.39% 97.67%

Recall 91.95% 71.76% 48.28%
F1-Score 95.24% 82.99% 64.62%

5. CONCLUSIONS

The integration of various components required in the
process of building a custom object detector including image
annotation, dataset splitting, training the model and making
detections will make the process much easier for anyone
looking to do it using YOLO for their needs. Furthermore, a
user does not need to have in-depth knowledge of how to set
things up. Almost all the instructions are given in the
application which should be sufficient for using all the other
features as well. The applications of object detection are
ubiquitous and having a tool that enables a user to build a
custom object detector with minimum effort is critical in
such cases. There are going to be lots of new frameworks,
tool, algorithms that are going to come up as a result of
research in the fields of computer vision and artificial
intelligence and coupled with increasing availability of
powerful computational hardware like GPUs, it’s very
important to have systems in place that can allow users to
extract benefits of this. With that in mind, we have proposed
this system that is an end-to-end solution for using state-of-

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 01 | Jan 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 676

the-art algorithms to build a custom object detector for ship
intrusion detection. The screenshots of the main UI pages of
the system along with detection results on some images can
be found on this link. Our application is rudimentary in the
sense that emphasis is put on a system that uses only one
algorithm and has a fixed workflow which is nonetheless
effective but there is scope for expanding this. There can
always be more flexibility in that different neural network
architectures and methodologies can be added to the system.
Further, the Custom Object Detection System can be
provided as a service with all the steps like training, labeling,
testing being done on the cloud and the user doesn’t need to
put a lot of resources. Leveraging existing cloud resources
offered, the system can be turned into a web application or
mobile application with constructing the detector for a
specific object (class) in a short amount of time.

ACKNOWLEDGEMENT

We would like to appreciate the constant interest and
support of our mentor Prof. Shashikant Dugad in our project
and aiding us in developing a flair for the field of Computer
Vision and Machine Learning. We would like to show our
appreciation to Mr Amroz Siddiqui for his tremendous
support and help, without whom this project would have
reached nowhere. We would also like to thank our project
coordinator Mrs. Rakhi Kalantri for providing us with
regular inputs about documentation and project timeline. A
big thanks to our HOD Dr. Lata Ragha for all the
encouragement given to our team. We would also like to
thank our principal, Dr. S. M. Khot, and our college, Fr. C.
Rodrigues Institute of Technology, Vashi, for giving us the
opportunity and the environment to learn and grow.

REFERENCES

[1] A. Zainuddin, Z. Khalidin, M. S. Mohd Taufik, and A. F.

Mohd Mansor, “Patient monitoring system using
computer vision for emotional recognition and vital
signs detection,” 11 2020.M. Young, The Technical
Writer’s Handbook. Mill Valley, CA: University Science,
1989.

[2] W. Lu, J. Ting, J. J. Little, and K. P. Murphy, “Learning to
track and identify players from broadcast sports videos,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 7, pp. 1704– 1716, 2013.

[3] H. Tian, T. Wang, Y. Liu, X. Qiao, and Y. Li, “Computer
vision technology in agricultural automation ——a
review,” Information Processing in Agriculture, vol. 7, 09
2019.

[4] D. Steinkraus, I. Buck, and P. Simard, “Using gpus for
machine learning algorithms,” 10 2005, pp. 1115 – 1120
Vol. 2.

[5] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A
survey on deep transfer learning,” 2018.

[6] S. A. Velastin, “Cctv video analytics: Recent advances and
limitations,” in Visual Informatics: Bridging Research
and Practice, H. Badioze Zaman, P. Robinson, M. Petrou,
P. Olivier, H. Schr¨oder, and T. K. Shih, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 22–34.

[7] A. Costin, “Security of cctv and video surveillance
systems: Threats, vulnerabilities, attacks, and
mitigations,” 10 2016.

[8] J. K. Park, K. S. Han, and S. Y. Yun, “Intensity classification
background model based on the tracing scheme for deep
learning based cctv pedestrian detection,” in 2018 IEEE
9th International Conference on Mechanical and
Intelligent Manufacturing Technologies (ICMIMT), 2018,
pp. 224–228.

[9] Ting Shan, Shaokang Chen, C. Sanderson, and B. C. Lovell,
“Towards robust face recognition for intelligent-cctv
based surveillance using one gallery image,” in 2007
IEEE Conference on Advanced Video and Signal Based
Surveillance, 2007, pp. 470–475.

[10] J. Barnum, “Ship detection with high-resolution hf
skywave radar,” IEEE Journal of Oceanic Engineering,
vol. 11, no. 2, pp. 196–209, 1986.

[11] C. Wang, S. Jiang, H. Zhang, F. Wu, and B. Zhang, “Ship
detection for high-resolution sar images based on
feature analysis,” IEEE Geoscience and Remote Sensing
Letters, vol. 11, no. 1, pp. 119–123, 2014.

[12] H. Luo, K. Wu, Z. Guo, L. Gu, and L. M. Ni, “Ship detection
with wireless sensor networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 23, no. 7, pp.
1336–1343, 2012.

[13] T. Nie, B. He, G. Bi, Y. Zhang, and W. Wang, “A method of
ship detection under complex background,” ISPRS
International Journal of Geo-Information, vol. 6, p. 159,
05 2017.

[14] S. Dasiopoulou, V. Mezaris, I. Kompatsiaris, V.
Papastathis, and M. Strintzis, “Knowledge-assisted
semantic video object detection,” Circuits and Systems
for Video Technology, IEEE Transactions on, vol. 15, pp.
1210 – 1224, 11 2005.

[15] D. H. Ballard and C. M. Brown, Computer Vision, 1st ed.
Prentice Hall Professional Technical Reference, 1982.

[16] T. Huang, “Computer vision: Evolution and promise,”
1996.

[17] M. Sonka, V. Hlavac, and R. Boyle, Image processing,
analysis and and machine vision (3. ed.)., 01 2008.

[18] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep
learning. MIT press Cambridge, 2016, vol. 1, no. 2.

[19] W. S. McCulloch and W. Pitts, “A logical calculus of the
ideas immanent in nervous activity,” The bulletin of
mathematical biophysics, vol. 5, no. 4, pp. 115–133,
1943.

[20] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. E. Hubbard, and L. D. Jackel, “Handwritten
digit recognition with a backpropagation network,” in
Advances in neural information processing systems,
1990, pp. 396–404.

[21] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[22] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning
algorithm for deep belief nets,” Neural computation, vol.
18, no. 7, pp. 1527–1554, 2006.

[23] A. Voulodimos, N. Doulamis, A. Doulamis, and E.
Protopapadakis, “Deep learning for computer vision: A
brief review,” Computational intelligence and
neuroscience, vol. 2018, 2018.

[24] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular
interaction and functional architecture in the cat’s visual

https://www.dropbox.com/sh/sbm14fxu7i9og7t/AAArWa7tjiGxMrmuVgk6Nmlga?

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 01 | Jan 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 677

cortex,” The Journal of physiology, vol. 160, no. 1, p. 106,
1962.

[25] K. Fukushima and S. Miyake, “Neocognitron: A self-
organizing neural network model for a mechanism of
visual pattern recognition,” in Competition and
cooperation in neural nets. Springer, 1982, pp. 267–
285.

[26] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,”
Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[27] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel, “Backpropagation
applied to handwritten zip code recognition,” Neural
computation, vol. 1, no. 4, pp. 541–551, 1989.

[28] M. Tygert, J. Bruna, S. Chintala, Y. LeCun, S. Piantino, and
A. Szlam, “A mathematical motivation for complex-
valued convolutional networks,” Neural computation,
vol. 28, no. 5, pp. 815–825, 2016.

[29] J. Redmon and A. Farhadi, “Yolov3: An incremental
improvement,” arXiv preprint arXiv:1804.02767, 2018.

[30] J. Lin and M. Sun, “A yolo-based traffic counting system,”
in 2018 Conference on Technologies and Applications of
Artificial Intelligence (TAAI), 2018, pp. 82–85.

[31] Y. Tian, G. Yang, Z. Wang, H. Wang, E. Li, and Z. Liang,
“Apple detection during different growth stages in
orchards using the improved yolo-v3 model,” Computers
and electronics in agriculture, vol. 157, pp. 417–426,
2019.

[32] G. Bradski and A. Kaehler, Learning OpenCV: Computer
vision with the OpenCV library. ” O’Reilly Media, Inc.”,
2008.

[33] D. Tzutalin, “Labelimg–labelimg is a graphical image
annotation tool. github repository,” 2020.

[34] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D.
Ramanan, P. Doll´ar, and C. L. Zitnick, “Microsoft coco:
Common objects in context,” in European conference on
computer vision. Springer, 2014, pp. 740–755.

