
          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 08 Issue: 01 | Jan 2021                 www.irjet.net                                                                       p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 669 

Ship Intrusion Detection using Custom Object Detection System with 

YOLO Algorithm 

Srujan Patel1, Naeem Patel1, Siddhesh Deshpande1, Amroz Siddiqui2 

1Student, Computer Engineering Dept., Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai,  
Maharashtra, India  

2Assistant Professor, Computer Engineering Dept., Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai, 
Maharashtra, India  

---------------------------------------------------------------------***----------------------------------------------------------------------
Abstract - Due to the growth in the field of computer vision 
and deep learning which can be attributed to theoretical 
innovations as well as an improvement in hardware 
capabilities, automating tasks such as surveillance has become 
an area of great relevance which can leverage advancements 
in Artificial Intelligence to improve upon existing systems. One 
specific example is pertaining to the Tata Institute of 
Fundamental Research (TIFR) which is located on the shores 
of the Arabian Sea in Mumbai, India. Due to its location, it 
faces a constant risk of intrusion by sea. Despite there being a 
closed circuit television (CCTV) or video surveillance system in 
place, there are limitations on the ability of humans to 
monitor footage from such a system continuously. Hence a 
foolproof intrusion detection system is required to address this 
issue. We propose an automated system that would be capable 
of detection of ships and similar vessels approaching the shore 
as well as people. This system uses Image Processing and Deep 
Learning for such intruder detection. On detection of intruding 
ships, the concerned authority (i.e. the security personnel) 
would receive an alert of the same. The problem that we are 
concerned with is detection of real time ship intrusion in a 
dynamic (i.e. constantly changing) environment. We propose a 
robust, localized, generalized video surveillance system using 
Deep Neural Networks. On top of that, a secure system should 
be able to, with reasonable performance, detect various kinds 
of threats which can come in all sorts of shapes and sizes. Thus, 
detecting custom objects is also a useful feature of our system. 
Finally, the system should be easy to use and providing a good 
UI (user interface) has been a main goal in developing this 
system. We present this along with some stats regarding the 
training process and detection results on two classes, namely 
person and ship. 
Key Words: Computer Vision, Machine Learning, Deep 
Learning, Convolutional Neural Networks, Ship 
Intrusion, YOLO 
 

1. INTRODUCTION 
 

Before the advent of object recognition and automatic 
detection systems, surveillance systems relied on human 
supervision and even now, security systems haven’t evolved 
to completely eliminate human attention. Computer Vision 
has one of the aims of achieving human level capabilities in 
seeing the world. In achieving this aim through artificial 
intelligence, a substantial amount of research has been done 
that takes a connectionist approach to this task. Deep Neural 

Networks, in particular, Convolutional Neural Networks 
have proven to be really adept at the task of object detection 
which is at the core of a surveillance system. Apart from the 
exclusivity of certain advanced technologies like Radar and 
Lidar to the military, using Deep Learning is fairly simple 
owing to its open-source nature. There are many 
implementations available of various algorithms along with 
necessary resources that expedites the task of creating a 
neural network based object recognition system. By nature, 
neural networks are mostly black boxes that are mostly 
invariant to the task and perform equally well on other 
disparate tasks. Surveillance is crucial not just in security, 
but also in hospitals for medical patients [1], in sports for 
detecting players [2] and in agriculture as well to detect 
anomalies the fields [3] to name a few examples. The ideal 
state of a surveillance system is one that involves least 
human intervention and notifies or signals an alarm once an 
intrusion is detected. These systems can use a variety of 
techniques like signal & image processing, computer vision, 
machine learning, etc. Having the right infrastructure in 
terms of hardware computing power, mostly GPUs (Graphics 
Processing Units) increases the system throughput and 
drastically reduces the risks of failure, proving to be a good 
investment. The ability of various deep learning algorithms 
and neural networks to utilize the GPUs to speed up 
computations is a huge benefit to reduce system latency [4]. 
There is no need of manually extracting the features because 
deep learning models are already trained using large sets of 
labelled data and neural network architectures which learn 
features from the given data. The availability of these deep 
learning resources has sparked a new method of creating an 
object detector known as transfer learning [5] which enables 
the development of these detectors without the need for 
immense amounts of data allowing the use of these 
techniques to a wide variety of applications. The main 
motivation in building this system with TIFR, Colaba is the 
fact that it is located on the shores and is at risk of intrusion 
by sea in water vessels. So, there is a need to put a system in 
place that has high reliability and is robust enough to solve 
this problem. Currently, Closed Circuit Television (CCTV) is 
used which are quite efficient but require constant human 
monitoring. There are limitations in the ability of humans to 
constantly monitor surveillance of live footage [6]. Another 
reason for automating this is the fact that sometimes the 
cameras may face resolution issues which may alter the 
appearance of the objects making them harder to detect. 
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Training humans to do this is not only expensive but may not 
be completely robust [7]. Comparatively, training an 
algorithm or a system to evolve with changing needs is 
easier and more cost-effective. A custom object detection 
system consists of 4 major steps which are image annotation, 
dataset splitting, training and testing/detection on videos, 
images or live feed. Traditionally, a user would have to 
perform all these tasks by employing a diverse range of 
methodologies and an array of different softwares. 
Additionally, they would need to manually edit the related 
files and without any simple GUI (graphical user interface). 
Our main contribution would be to present an end-to- end 
system that does all these 4 tasks in one place with just a few 
dependencies and a well-rounded GUI to automate as many 
tasks as possible. 

2. LITERATURE SURVEY 
 
2.1 Existing Systems 
 

1) Closed-circuit television (CCTV): Closed-circuit 
television (CCTV) cameras are used to produce 
images or recordings for surveillance purposes. A 
Basic CCTV System Consists of a camera connected 
directly to a monitor by a co-axial cable with the 
power for the camera being provided from the 
monitor which is used to check for intrusion of ships. 
Although it is a very easy and simple solution, 24/7 
monitoring of the video recordings is difficult due to 
the high risk of human error [7]. CCTV systems that 
require manual human attention clearly lack 
complete security but if coupled with automated 
systems and additional modules that improve the 
reliability, could be a good solution for surveillance 
systems. In fact, CCTV systems have been employed 
to good use for traffic monitoring. [8] demonstrates 
a pedestrian monitoring system. Further the use of 
face recognition systems through CCTVs [9] 
encourage the need to build intrusion detection 
systems for other use cases as well (ships in our 
case). 

2) Radar: RADAR (Radio Detection and Ranging) 
method is used to detect the intrusion of ships [10]. 
The background of seashore landscape Synthetic 
Aperture Radar (SAR) image is dark and targets are 
bright making it is easy to detect the ship [11]. But 
when the wind is fierce, large waves will be stirred 
and engender strong backscattering echo. This 
causes many difficulties in the detection of ships. 
Thus the overall accuracy turns out to be poor and 
makes it difficult to detect the ship during bad 
weather condition. Furthermore, installation of 
these systems require a fairly large investment and 
these systems are more restrictive too in terms of 
viewing angles. Also, the complexity of these 
systems provide little scope of applying the latest 
computer vision based algorithms which are gaining 
popularity for surveillance tasks.  

3) Wireless Sensor Networks: Using signal processing 
techniques and cooperative signal processing, 
detection of any passing ships can be done by 
distinguishing the ship-generated waves from the 
ocean waves. A three-tier intrusion detection 
system which can exploit spatial and temporal 
correlations of an intrusion can be used to increase 
detection reliability. The main limitations of these 
systems are that they require relatively dense 
networks, especially to achieve higher detection 
accuracy with small boats because of the high noise 
of the sea [12]. 

4) Phase Saliency Map and extended wavelet 
transform: This method for ship detection is based 
on phase saliency map and extended wavelet 
transform (PSMEWT) to solve two issues: Accurate 
detection of ships in complex background and how 
to detect accurate ship targets in the event that ship 
targets are comparable to false alarms. In this 
method, multi-spectral information is first adopted 
in the sea–land segmentation to reduce the 
detection time consumption. Then, a visual phase 
saliency map based on the extended wavelet 
transform is constructed to highlight the difference 
between ships and the background to locate ship 
candidates. In the process of removing false alarms, 
aside from morphological and geometric features, 
other advanced methods are used to more 
effectively eliminate false alarms, and the SVM 
classifier is adopted to conduct offline training at 
the same time. However, there will be relatively 
more false targets when this method is applied to 
small ships. The small size (only 10–20 pixels) of 
the ships in the images make it difficult to 
determine whether it is a ship through optical 
remote sensing images [13]. 

 

2.2 Our Approach 
 

1)  Object Detection and Computer Vision: Object 
detection is a computer technology related to 
computer vision and image processing that deals 
with detecting instances of semantic objects of a 
certain class (such as humans, buildings, or cars) in 
digital images and videos. [14] Object detection 
algorithms typically use extracted features and 
learning algorithms to recognize instances of an 
object category. It is commonly used in applications 
such as image retrieval, security, surveillance, and 
advanced driver assistance systems (ADAS). 
Programming a computer and designing algorithms 
for understanding what is in these images is the 
field of computer vision. Computer vision is an 
interdisciplinary scientific field that deals with how 
computers can gain high-level understanding from 
digital images or videos. From the perspective of 
engineering, it seeks to understand and automate 
tasks that the human visual system can do [15]–
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[17]. From a computer vision point of view, the 
image is a scene consisting of objects of interest and 
a background represented by everything else in the 
image. Object detection and localization are two 
important computer vision tasks. Object detection 
determines the presence of an object and 
localization determines the location of that object in 
the image. 

2) Deep Learning: Deep learning is a form of machine 
learning that enables computers to learn from 
experience and understand the world in terms of a 
hierarchy of concepts. Because the computer 
gathers knowledge from experience, there is no 
need for a human computer operator formally to 
specify all of the knowledge needed by the 
computer. The hierarchy of concepts allows the 
computer to learn complicated concepts by building 
them out of simpler ones; a graph of these 
hierarchies would be many layers deep hence the 
name “deep” learning [18]. Over the last years deep 
learning methods have been shown to outperform 
previous state-of-the-art machine learning 
techniques in several fields, with computer vision 
being one of the most prominent cases. The 
ambition to create a system that simulates the 
human brain fueled the initial development of 
neural networks. In 1943, McCulloch and Pitts [19] 
tried to understand how the brain could produce 
highly complex patterns by using interconnected 
basic cells, called neurons. The McCulloch and Pitts 
model of a neuron, called a MCP model, has made an 
important contribution to the development of 
artificial neural networks. These include LeNet [20] 
and Long Short-Term Memory [21], leading up to 
today’s “era of deep learning.” One of the most 
substantial breakthroughs in deep learning came in 
2006, when Hinton et al. [22] introduced the Deep 
Belief Network, with multiple layers of Restricted 
Boltzmann Machines, greedily training one layer at 
a time in an unsupervised way. Guiding the training 
of intermediate levels of representation using 
unsupervised learning, performed locally at each 
level, was the main principle behind a series of 
developments that brought about the last decade’s 
surge in deep architectures and deep learning 
algorithms [23]. 

3) Convolutional Neural Networks: Convolutional 
Neural Networks (CNNs) were inspired by the 
human visual system’s structure, and by the models 
of it proposed in [24]. The first computational 
models based on these local connectivity between 
neurons and on hierarchically organized 
transformations of the image are found in 
Neocognitron [25], which describes that translation 
invariance is achieved when neurons with the same 
parameters are applied on patches of the previous 
layer at different locations, Yann LeCun and his 
collaborators later designed Convolutional Neural 

Networks employing the error gradient and 
attaining very good results in a variety of pattern 
recognition tasks [23], [26]–[28]. A CNN comprises 
of three main layers: convolutional layers, pooling 
layers and fully connected layers as demonstrated 
in Figure 1.  

 

 
Fig -1: Example of Convolutional Layers 

 
4) YOLO algorithm: YOLO (You Only Look Once) real-

time object detection algorithm, which is one of the 
most effective object detection algorithms. YOLO 
uses a totally different approach than other 
algorithms. YOLO is a clever convolutional neural 
network (CNN) for doing object detection in real-
time. The algorithm applies a single neural network 
to the full image, and then divides the image into 
regions and predicts bounding boxes and 
probabilities for each region. These bounding boxes 
are weighted by the predicted probabilities. The one 
we used, YOLOv3 [29] is really powerful with a 
good tradeoff between accuracy and speed. There is 
also another version of YOLO known as ’tiny-YOLO’ 
which is a scaled down version of YOLO which gives 
faster results on low-end systems with slightly 
worse results. The benefits of YOLO have been 
applied to various applications due to the 
availability of pre-trained weights trained on the 
COCO dataset and reasonable training times. For 
instance, [30] have demonstrated the use of YOLO 
in counting traffic. [31] have used the YOLO 
algorithm to monitor the growth of apples in 
orchards. This demonstrates the viability of YOLO 
as being a reliable object detection algorithm in 
diverse applications. The architecture of the 
network used in YOLO is shown in Figure 2. 

 

 
Fig -2: YOLO Architecture 
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3. SYSTEM DETAILS 
 
The system will work in a dynamic environment, i.e. even in 
the presence of background disturbances such as winds, 
waves, birds flying, etc. The system requires that the object 
to be detected is at least 5% of the input dimensions. The 
object will be detected at multiple scales of the object. The 
detection is indicated by a bounding rectangle that encloses 
the detected target and an alarm is raised to alert the 
concerned authority of the intrusion. The main goal of the 
system is to provide a workflow to the user with a GUI for 
performing the task necessary in building a custom object 
detector using the YOLO algorithm and using it for detection 
on images, videos and live footage. The system should allow 
the user to annotate images for training, then split it into 
training and validation sets, then train it and finally obtain 
weights that will help in detection. For our specific use case 
we have chosen to work on detection of ship and person. A 
high-level block diagram of the system is illustrated in Figure 
3. In terms of implementation, we have used the Qt 
framework for C++ to develop our software. We have also 
used the OpenCV [32] library for image manipulation related 
tasks. The main OS used by us was Ubuntu but the 
application can be made to work in any Unix-like 
environment. For distribution, we used Appimages to 
package our software. In particular, linuxdeployqt. The main 
modules that the system is divided into will be elaborated 
upon in the following sections. 
 

 
 

Fig -3: Block Diagram 
 

3.1 LOGIN, MAIN MENU AND PROFILE MODULE 
 

Registration allows users to register themselves on the 
system using a valid email and password. Users can log in to 
the system once they are registered. Only registered users 
can log in to the system. If unregistered users try to log in, an 
“Invalid User” notification pops up and the unregistered users 
are prompted to register before logging in. On the login page, 
the user can click the help button for a description of the 
application. Once logged in, the user is presented with the 
Main Menu, from here, he can view instructions on how to 
proceed. The user can go to the required module, for training 
or testing, a dropdown menu will further provide more 
options to perform the required tasks. A user can view their 
profile which contains the file/folder paths that the user may 
have previously selected for the application, these paths can 
be copied to clipboard as well. On using a module and 

returning, the session is refreshed and the current state of 
that module is reverted to initial state. 

3.2 LABELING/IMAGE ANNOTATION MODULE 

 

Fig -4: The associated .txt file will have the following 
contents (if car is class 0): 0 0.0833 0.0833 0.0556 0.0417 

 

Although there are many tools available for annotating 
images like [33]. These need to be installed separately and 
there are some features that they lack. To overcome this and 
integrate the workflow for custom object detection, we came 
up with our own implementation of an image annotation tool. 
This module basically loads training images and allows users 
to annotate it by drawing bounding boxes which enclose the 
ROI (region of interest) which can be an object (bus, car, 
book, etc.) that we want to predict later. This module loads a 
training directory and allows the user to go through all the 
images in that directory and draw bounding boxes around 
the ROI. The user can also add and specify classes to which 
the ROIs belong. This module stores the image details in 
YOLO format which is saved as a .txt file. The file contains 
object number and object coordinates on this image, for each 
object in new line: 

  <object-class><x><y><width><height> 

where, 

 Object class - integer number of object from 0 to (classes-
1)  

  <x><y><width><height> - float values relative to width 
and height of image, it can range from 0.0 to 1.0 

 Attention: x and y are center of rectangle (are not top-left 
corner) 

An example of how the annotations are stored is illustrated in 
Figure 4. There is no cap on the number of classes that the 
user can add, the user can add their class and even edit the 
class name. While drawing bounding box, the user can even 
search from the list of existing classes to minimize effort in    
scrolling and then selecting the class. The class names are 
saved in the’classes.txt’ file which contains each class name 
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on each line. The classes are 0-indexed. Once the directory is 
selected, the first image will load and the user can then go 
through the images using ’next image’ and ’previous image’ 
button. The app will save previous annotations and they will 
load if a session is resumed. The app also provides an option 
to view the corresponding .txt file generated for the current 
image. The user can also view the progress of the labeling of 
the dataset. This displays the percentages and names of the 
images that have been labeled and not yet labelled. It also 
displays the percentage and names of images that have been 
copied to the training and validation directories in case the 
user has already split the dataset before. Drawing bounding 
boxes is intuitive with the use of mouse. The app will ask for 
confirmation every time a bounding box is drawn. To skip 
this, the user can check the” Auto-save” option to remove 
these confirmation messages. To delete a bounding box, the 
user can right click and delete and to edit the class of a 
bounding box in case of a mistake, the user has to select the 
correct class after pressing edit on right click. Apart from 
these, the user can zoom-in and zoom-out in case the item to 
be annotated is too small or too large. The user can also reset 
zoom and view the zoom level.  

3.3 DATASET SPLIT MODULE 
 
Training Dataset is the sample of data used to fit the model. 
This is the actual dataset that we use to train the model 
(weights and biases in the case of Neural Network). The 
model sees and learns from this data. Validation Dataset is 
the sample of data used to provide an unbiased evaluation of 
a model fit on the training dataset while tuning model 
hyperparameters. The evaluation becomes more biased as 
skill on the validation dataset is incorporated into the model 
configuration. The validation set is used to evaluate a given 
model, but this is for frequent evaluation. We use the 
validation set results and update higher level 
hyperparameters. So the validation set in a way affects a 
model, but indirectly. Splitting the dataset into two folders 
(training and validation) manually requires copy pasting the 
images through the OS or the command line which is again a 
bit tedious. Since, the separation should be random for 
optimum results, the process is again complicated to select 
certain images. For solving this, we have added this module 
which randomly splits the dataset and the user has to just 
give the ratio of training to validation images. This module 
takes as input the training and the validation split and then 
randomly samples the data. This sampled data is now stored 
in a folder called as the Validation and the remaining are then 
stored in training directory. The amount of Validation 
depends on the ratio provided by the user. The Default is 
80:20, but the user is free to change it using the slider 
according to their requirement. This module does not move 
the images, it copies the images into training and validation 
subdirectories inside the main dataset directory. 

3.4 TRAINING MODULE 
 

YOLO allows us to train the model on our own dataset to 
detect our own classes. The actual training of the network 
happens in this module. Without this part, the user would 
have to manually modify necessary files and configure the 

environment and give command line instructions to start 
training a model. All this is automated with this module. To 
train the network, there are certain inputs required and our 
application then generates the required files when the user 
clicks the configure environment button. The user can select 
the tiny-yolo checkbox to train using tiny-yolo instead of 
normal YOLO. Custom Training involves providing a set of 
directories and files. These include:  

 Darknet Directory: This is the directory where Darknet 
has been installed. The user is expected to run the make 
in this directory prior to use. Installation instructions 
are available online.  

 Validation and training directory: Validation Directory is 
the directory created by the Data set split Module. The 
user need to provide the path to this directory. Training 
Directory is the directory where all our training data will 
be located. This is the directory too is created by the 
data-split application.  

 Weight File: This is the starting point for our training. Our 
model will transfer learn taking the weight of a pre-
trained model as the starting point for our training. If 
starting training on a new dataset, the use of the 
darknet.conv.74 weight file is recommended. If the user 
has already trained before, they can resume training 
with those weights as well. By default, darknet saves the 
weight file every 100 iterations and then every 1000 
iterations after 1000th iteration.  

 CFG file: The Configuration (cfg) file contains the variables 
that specify the configuration of the network. The user 
has to provide the standard cfg file that is available on 
the official darknet site. It is named yolov3.cfg or the 
tiny-yolo variant.  

To train the network for our dataset, we need to make the 
following changes in the .cfg file: 

 Line 3: set batch=24, this means we will be using 24 
images for every training step  

 Line 4: set subdivisions=8, the batch will be divided by 8 
to decrease GPU VRAM requirements. 

 Line 603/127(for tiny): set filters= (classes + 5)*3 

 Line 610/135(for tiny): set classes= the number of 
categories we want to detect 

 Line 689/171(for tiny): set filters=(classes + 5)*3 � Line 
696/177(for tiny): set classes=  the number of 
categories we want to detect  

 Line 776: set filters= (classes + 5)*3  

 Line 783: set classes= the number of categories we want 
to detect 

Once the inputs are given, the user has to configure 
environment for training, without this all the other options 
are disabled. After generation of required files, the user can 
view the generated files on the output window in the page. 
The files that are generated are:  
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 app-training.data: This file contains the supplementary 
information like the number of classes, the location of 
the other generated files and the path of the backup 
directory where the weight file generated from training 
is stored.  

 app-training.cfg: This file is the modified cfg file that is 
customized to our dataset. 

 app-training.names : This file contains each class name on 
a separate line.  

 app-training-test.txt: This contains the path to all the 
images in the validation set.  

 app-training-train.txt: This contains the path to all the 
images in the training set.  

Once these files are generated then we can start training, the 
output comes in batches from the terminal, so there is a little 
latency. The user can stop the training as well which kills the 
process. Furthermore, the output window can be cleared by 
the clear window button’s clicking. The output of training 
provides some float numbers like IoU and the average loss, 
we have to see the average loss and decide if we are satisfied 
with the training. If enough iterations are run, then the app 
displays the location of the weight file which can be then 
used to perform detection or further train the model. 

3.5 TESTING/DETECTION MODULE 
 

After we have trained the model, we now need to test it. 
Testing or detection can be done on images, videos, and 
webcam (if available) In order to test our custom trained 
object, we again need to provide a set of files. These are: 

 Weight File: This is the weight file which contains our 
network along with the weights for all the neuron. This 
is the output file from the training module.  

 Image/Video: We provide the image/video on which we 
want to test our model.  

 .names file : This is the data file which contains the name 
of each class that we want the model to recognize.  

 Cfg File: This file contains the modified cfg file from the 
training. This file contains information about the 
number of layers, filters, input layer etc.  

In the video detection module, the user can see the detection 
along with the related information like inference time which 
is the time taken to load a frame, the user can also see the 
objects detected and the frames skipped in case of fast-
forwarding. As mentioned above, the user can fast-forward, 
pause and play on the video detection. The user can go to the 
default speed as well. It is recommended that the detection is 
done on GPUs for minimum inference time. 

4. RESULTS AND DISCUSSION 

Using our application, we created a ship and person intrusion 
detector. All the processes were done using our application 
except training which was done on Google Colab due to lack 
of dedicated GPU. It took us about 2 to 3 days to create the 
detector without a dedicated good enough GPU but we 

estimate that this process can be finished in even lesser time 
given a dedicated GPU with good compute capability. Before 
using a GPU, CUDA should be installed and darknet should be 
installed with the GPU and CUDNN options set to 1. Online 
tutorials are available on how to do this. Regardless, our 
process involved the steps discussed in the following 
sections. 

4.1 COLLECTION OF DATA 

 Dataset collection is the first step, we need a dataset that has 
enough images to get a good detector. Furthermore, the 
dataset should have good variety for the classes that we want 
to build the detector for. Variety means images in which the 
classes are having different sizes, orientations, colors, etc. The 
more variety and size of the dataset, the more robust our 
detector is. There should also be some negative images which 
do not contain the classes. For our process, we took the 
dataset from the COCO dataset [34] along with some images 
scraped from the web. The details about our dataset are given 
in Table 1. 

4.2 LABELING/IMAGE ANNOTATION 
 
This is the next step in our procedure. This involves labeling 
our dataset and drawing bounding boxes around the classes 
in our image, our application provides a labeling module that 
does this efficiently and provides the users with many extra 
features to make the process as smooth as possible. Using our 
application, the .txt files are generated that contain the image 
annotations in the YOLO format. The user can also view their 
progress through the application. For a large dataset, 
annotation process may be time consuming and using our 
application, we estimate that at least 500-600 images can be 
annotated in 2 hours. We, however, used the annotations 
already given in the COCO dataset to generate the .txt files in 
the YOLO format which saved us some time. 

Table -1: Dataset Information for Detector 

 
Total no. of images used 13221 

Training Images 12697 

Validation Images 524 

Testing Images 143 

No. of Classes 2 

 

4.3 TRAINING 
 

The main part of building a detector is training. Training the 
neural network requires a lot of computations which are 
usually done using good NVIDIA GPUs. These are expensive 
and require additional packages or softwares installed for 
their use which require a proper environment. In- stead of 
doing all this manually, we decided to use the GPUs that 
Google provides on their cloud named colab platform. The 
GPUs provided are powerful and all the necessary 
installations are easy to carry out. The downside is that the 
runtime is refreshed every 12 hours meaning that a lot of 
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redundant work needs to be done. On top of that sometimes, 
colab causes the browser to crash and gets disconnected if 
the browser is inactive for more than 20-30 minutes. 
Anyhow, for lack of a better option, we used colab to train. 
We used the initial darknet53.conv.74 to start training using 
YOLO and other weight file for tiny yolo as well. The training 
statistics are provided in Table 2. The AP (Average precision) 
is a popular metric in measuring the accuracy of object 
detectors like Faster R-CNN, SSD, etc. Average precision 
computes the average precision value for recall value over 0 
to 1. mAP (mean average precision) is the average of AP. In 
some contexts, we compute the AP for each class and average 
them. But in others, they mean the same thing. For example, 
in the context of COCO dataset, there is no difference between 
AP and mAP. 

Table -2: Training Statistics 
 

 YOLO Tiny-YOLO 
No. of iterations 34000 104000 

Time taken (hours) 17.5 20.5 
Average Loss 1.19 1.92 

mAP (mean average precision) 45.2% 31% 

 

4.4 TESTING/DETECTION 

The detection module of the application can detect the 
trained classes with the help of the weights, .names and the 
.cfg (configuration) files. If any class is detected, a bounding 
box is drawn around the detected class and the confidence 
with which that object is detected is also displayed. In case of 
image detection, the detected image is displayed with the 
initial input image provided. However, with webcam and 
video detection, a new page is displayed with more features 
like pause/play and fast-forward. In the video detection page, 
the inference time, the classes detected and the frames 
skipped (in case of fast-forwarding) is also shown. To gain a 
better idea of how our model works we used some metrics. 
To understand these metrics, we use these measures:  

1) True Positives (TP): Images with objects present and 
detected correctly by the model.  

2) False Positives (FP): Images not containing objects 
but objects detected by the model. 

3) False Negatives (FN):  Images with objects which are 
not detected by the model.  

4) True Negatives (TN):  Images not containing objects 
and not detected by the model.  

5) Accuracy: It is the fraction of predictions that the 
model got right. Formally,  

                  

 

  Or,      

   

6) Precision: It tells us what proportion of positive 
identifications was actually correct. 

 

7) Recall: It tells us what proportion of actual positives 
was identified correctly. 

  

8) F1 score: F1 score conveys the balance between the 
precision and the recall. 

 

Table 3 shows the values obtained for each of the metrics. 
These values have been obtained by testing on new images 
which the model has previously not seen. We used a script 
that detected detections with a threshold confidence value of 
0.5. The values have been given for three models. The first 
one shows the values for the pre-trained YOLO model, those 
weights are available online and have been trained for about 
500000 iterations. The next is our custom-trained model on 
YOLO which has been trained for 34000 iterations. And last 
one is the custom trained model on tiny YOLO which has been 
trained for 104000 iterations. Note that the tiny yolo model is 
much faster and lightweight but gives a lower accuracy. The 
YOLO model can be improved if run for more iterations. 

Table -3: Training Results 
 

Metric YOLO (Pre-
Trained) 

YOLO 
(Custom-
Trained) 

Tiny-YOLO 
(Custom-
Trained) 

Accuracy 94.37% 82.52% 68.06% 
Precision 98.77% 98.39% 97.67% 

Recall 91.95% 71.76% 48.28% 
F1-Score 95.24% 82.99% 64.62% 

 

5. CONCLUSIONS 
 
The integration of various components required in the 
process of building a custom object detector including image 
annotation, dataset splitting, training the model and making 
detections will make the process much easier for anyone 
looking to do it using YOLO for their needs. Furthermore, a 
user does not need to have in-depth knowledge of how to set 
things up. Almost all the instructions are given in the 
application which should be sufficient for using all the other 
features as well. The applications of object detection are 
ubiquitous and having a tool that enables a user to build a 
custom object detector with minimum effort is critical in 
such cases. There are going to be lots of new frameworks, 
tool, algorithms that are going to come up as a result of 
research in the fields of computer vision and artificial 
intelligence and coupled with increasing availability of 
powerful computational hardware like GPUs, it’s very 
important to have systems in place that can allow users to 
extract benefits of this. With that in mind, we have proposed 
this system that is an end-to-end solution for using state-of-
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the-art algorithms to build a custom object detector for ship 
intrusion detection. The screenshots of the main UI pages of 
the system along with detection results on some images can 
be found on this link. Our application is rudimentary in the 
sense that emphasis is put on a system that uses only one 
algorithm and has a fixed workflow which is nonetheless 
effective but there is scope for expanding this. There can 
always be more flexibility in that different neural network 
architectures and methodologies can be added to the system. 
Further, the Custom Object Detection System can be 
provided as a service with all the steps like training, labeling, 
testing being done on the cloud and the user doesn’t need to 
put a lot of resources. Leveraging existing cloud resources 
offered, the system can be turned into a web application or 
mobile application with constructing the detector for a 
specific object (class) in a short amount of time. 
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