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ABSTRACT - Now Web applications have been gaining 

increased popularity around the globe, in such a way that 

a growing number of users are attracted to make use of 

the functionality and information provided by these 

applications. While providing solutions to complicated 

problems in a fast and reliable way, it focusing on building 

a prediction model for detecting vulnerabilities of web 

applications. Based on the static analysis Machine 

Learning methods used to predict the vulnerabilities. 

Making use of data on any open-source web application to 

test the vulnerability filles. By applying machine learning 

techniques of Support vector machines (SVM) and Naïve 

Bayes (NB) techniques are used to prevent the 

vulnerability. Moreover, according to results of various 

classifiers, and methods offer possible causes of 

vulnerabilities and reasonable suggestions for avoiding 

vulnerabilities in the future. To conclude the main 

contributions are valuable feature engineers find the 

vulnerability localization, and machine learning model to 

predicting vulnerabilities effectively. 

Keywords: Machine Learning, Software Metrics, 

Software Security, Vulnerabilities. 

1.INTRODUCTION 

Web applications play a crucial role in many of our daily 

activities like social networking, email, banking, 

shopping, registrations, and so on. As web software is 

additionally highly accessible, web application 

vulnerabilities arguably have greater impact. It’s is 

highly critical to detect and eliminate potential 

vulnerabilities as early as possible. A vulnerability is 

defined as a weakness in a data system, internal controls, 

system security procedures, or implementation which 

may be exploited by a threat source [3], whereas a flaw 

or bug may be a defect during a system which will (or 

may not) cause a vulnerability [4]. Thus, vulnerabilities 

are literally the subclass of software bugs which will be 

exploited for malicious purposes [5], [6] Vulnerabilities 

require quite different identification process than 

defects because they're often not realized by users or 

developers during the traditional operation of the 

system while defects are more easily and naturally 

noticed [6]. These make the fighting against 

vulnerabilities far more challenging than typical defects. 

The two traditional approaches used for vulnerability 

detection: (1) static analysis (2) dynamic analysis. In 

static analysis, the code is examined for weaknesses 

without executing it. Therefore, the potential impact of 

the executable environment, such as the operating 

system and hardware, is not taken into consideration 

during analysis [7]. On the other hand, in dynamic 

analysis, the code is executed to check how the software 

will perform in a run-time environment, but this can only 

reason about the observed execution paths and not all 

possible program paths [7]. Hence, both static and 

dynamic code analyses have some problems on their 

own. Software defect prediction techniques have been 

proposed to detect defects and reduce software 

development costs. Defect prediction techniques is used 

to build a model from source codes, and use the models 

to predict whether new instances of code regions, e.g., 

files changes, possible attack files and methods contain 

defects. 

Vulnerability analysis is a process that defines, detects 

and classifies security vulnerabilities in a system, 

network or communication infrastructure. It also 

suggests the countermeasures and the effectiveness of 

the implementation techniques. The vulnerability exists 

within a web application if it does not provide a proper 

validation process for the data entered by the user as 

input. The Machine Learning (ML) for software security 

analysis not only reduces the feature extraction, but also 

helps to simplify and automate processes for the current 

security analysis techniques. Abstract Syntax Tree (AST) 

for performing automated intelligent analysis directly on 

ASCII text file requires to unravel some challenges like 

representing ASCII text file during a proper form to 

enable further analysis in ML algorithms and localizing 

detected vulnerabilities on ASCII text file. Vulnerability 

prediction task as a binary classification problem for 

each targeted vulnerability class such our ML model 

takes a ASCII document fragment as input and decides 
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whether it's vulnerable (i.e. containing the targeted 

vulnerability) or non-vulnerable. 

2.LITERATURE SURVEY 

The Literature Survey will have a review of papers about 

detecting software failure or vulnerabilities and how  

machine learning techniques can be used in the security 

area. I will first introduce some papers Quite a number of 

researchers have already made efforts on studying how 

to detect injection attack risk hole in web applications 

from  

TABLE 1: LITERATURE SURVEY 

 

 

 

 

s/no Title Input application Technique/ 
algorithm 

Performance Limitation 

1 Automated removal of cross 
site scripting vulnerabilities 
in web applications (2011) 

PHP web application Taint-based Static 
Analysis (Java) 

Detection of stored and 
reflected XSS 
Vulnerability 

Results by using taint-based 
static analysis, might miss 
some vulnerabilities since the 
method do not track 
information flow across web 
pages. 

2 Evaluating complexity, code 
churn, and developer 
activity metrics as indicators 
of 
Software vulnerabilities. 
(2011) 

Mozilla Firefox 
Web Browser, 
Red Hat Enterprise 
Linux kernel 

Logistic regression, 
J48, Random forest, 
NB, Bayesian 
network 

Code complexity, 
code churn, and 
developer 
activity metrics 
C++ / General 
vulnerabilities 

                    
 
 
                     -                                                                         

3 Using complexity, 
Coupling and cohesion 
metrics as early indicators 
of vulnerabilities (2011). 

Mozilla Firefox 
Web Browser 

Logistic regression, 
C4.5, Random 
forest, 
NB 

code complexity, 
coupling and 
cohesion metrics C++ / 
General vulnerabilities 

Confidently lessen the effects 
of algorithmic bias, not 
attempting to identify the 
most effective, technique. 
Limit oneself. 

4 Software vulnerability 
prediction using text 
analysis techniques. 
(2012). 

K9 mail client 
application 

SVM Unique word Java/any 
vulnerabilities 

The learning may fail to 
create any meaningful 
features. In the following 
section, we present the 
proposed approach 

5 Mining sql injection and 
cross site scripting using 
hybrid program analysis 
(2013). 

PHP Web Applications Hybrid Analysis 
(PHP) + cluster 

Detection of SQL 
injection and XSS 
Vulnerability 

Not accurate as full static or 
dynamic analysis. 

6 Predicting vulnerable 
software components via 
text mining (2014). 

Java Application 
&Drupal CMS 

Decision Trees, 
k-Nearest 
Neighbour, NB, 
Random Forest and 
SVM 

Unique-words & 
Uni_tokens 
Java & PHP / 
General & XSS 
vulnerabilities 

 
 
                      - 

7 Web application 
vulnerability prediction 
using hybrid program 
analysis and machine 
learning (2015). 

Any open-source 
application. 

Hybrid Analysis 
(PHP) + semi-
supervised 

Detection of SQL 
injection and XSS 
vulnerability 

static and dynamic analysis 
results are achieved by using 
Pixy. 

8 Experimenting Machine 
Learning Techniques 
to Predict Vulnerabilities 
(2016). 

Glibc, Xen HV, httpd, 
Mozilla 

Random Under 
sampling (RU), 
Decision Tree 
algorithm. Logistic 
Regression 

Detection vulnerability Not all the configuration of 
the approaches are available, 
it is not guaranteed that the 
experiments were 
reproduced in ideal 
conditions. 

9 Automatic feature learning 
for vulnerability 
Prediction (2017). 

Quicksearchbox,  Email, 
Mustard, Crosswords,   

Deep Belief 
Network, Long 
Short-Term 
Memory (LSTM) 

Detection vulnerability The original dataset did not 
unfortunately contain the 
source files.  Data set may not 
be representative of all kinds 
of Android applications. 

10 Vulnerability Prediction 
From Source Code Using 
Machine Learning (2020). 

GitHub, NIST’s Samate 
project 

Abstract Syntax 
Tree (AST), 
leverage machine 
learning (ML) 

Detection vulnerability imbalance problem, 
Can’t find localization and 
interpretation aspects of the 
vulnerability prediction. 
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different aspects. In this Literature survey many 

methods are discussed. These methods are used to 

detect the software attacks. The table 1 shows the papers 

performance some limitation. To overcome these 

limitations by using SVM and neural networking. 

3. MACHINE LEARNING  

 Machine learning technique is widely used for data 

analysis to build prediction models. Machine learning 

techniques, which are widely used these days, can be 

divided into three categories: supervised learning [10], 

unsupervised learning and reinforcement learning. To 

conclude, a supervised learning method can only learn 

from labelled training data, and on the contrary, 

unsupervised learning does not require the access to the 

label of data. Especially, reinforcement learning does not 

have a restriction on using labelled and unlabelled data. 

This method is designed to learn from feedback that is 

retrieved from its interaction with the environment. 

After considering the advantages and disadvantages of 

different types of machine learning methods, decided to 

use supervised learning for this research. Supervised 

learning algorithms can be used to train a model of class 

labels distribution, and this model is able to predict class 

labels for testing instances. An example of supervised 

learning algorithms process flowchart is shown in Figure 

1, this whole process is also called classification. This is 

the foundation of designed prediction model as well. It is 

essential to select which classification method to use for 

a certain problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                           

 

 

     

                         

 

 

 

 

 

 

 

 

 

 

 

 

 

        Figure 1. supervised learning algorithms  

                           process flowchart 

There is a review on several widely used supervised 

learning algorithms in [2]. To decide which classifiers 

are more suitable for this research, first look into their 

pros and cons. In paper [2], the author pointed out that 

comprehensibility of Decision Tree makes this classifier 

helpful for understanding why an instance is assigned to 

a certain class, and Decision Tree is a suitable choice 

when dealing with discrete features. Linear Discriminant 

Analysis (LDA) and Naive Bayes are both statistical 

learning algorithms, which can provide a probability 

about labelling an instance. Moreover, in order to meet 

the requirement of this research, accuracy, tolerance to 

noise, the risk of being overfitting [20] and explanation 

ability are some vital aspects to consider when selecting 

classifiers. These models are considered in this research. 

 4.SYSTEM MODEL 

In this paper, the study of vulnerability identification 

from web applications. By using different machine 

learning algorithms to prevent the attacks. The system 

model process flow shown on figure 2 and the following 

sections are descripting the model processes.   

Problem 

Identification 

of required 

data 

Data pre-

processing 

Definition of 

training set 

Algorithm 

selection 

Training 

Evaluation with 

test set 
Parameter 

tuning 

Classifier OK 
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Figure 2. System Model 

DATA COLLECTION 

The web application is facing with various types of 

vulnerabilities, but in general, they can be categorized 

into two main kinds based on the causes of them, 

including design flaw and implementation bug. 

Obviously, most design flaws are hard to detect by only 

analysing individual source code files. 

INPUT APPLICATION: Any Open-Source Web 

Applications like, www.github.com and http://google-

gruyere.appspot.com/ 

IMBALANCED DATA LEARNING  

DATASET: The Datasets downloaded from NIST SATE  

IV [21]. The Datasets distribution: Training (80%), 

Validation (10%), Testing (10%). This dataset consists of 

1.27 million of source code functions mined from open-

source software, labelled by static analysis for potential 

vulnerabilities. 

Because of the class distribution skew problem, it is a 

crucial issue to deal with imbalanced data learning in 

this research [14] [15] [16]. 

Sampling Techniques 

Overall, there are two methods suitable for sampling 

imbalanced data, including random under-sampling and 

random oversampling. The idea of these two sampling 

methods is randomly adding(removing) a randomly 

selected dataset from minority(majority) class to make 

the whole set becoming balanced. However, these 

random sampling methods have some shortages. The 

under-sampling method would cause information loss to 

majority class, and the oversampling could bring about 

the over-fitting issue on minority class. Due to a limited 

number of attack files, this research only uses random 

oversampling on the dataset. 

min-max method 

It transforms all values to values in the interval [0, 1]. 

Given a feature f, denote the maximum and minimum 

value for f as max(f) and min(f) respectively. For each 

value of the feature f, the normalized value zi is given in 

equation (1). 

                     (  )  
       ( )

   ( )     ( )
                                               

(1) 

F1-score 

The F1-score is a commonly-used measure to evaluate 

classification performance. The F1 score formula given in 

equation (4). F1 combines Precision (2) and Recall (3) 

and can be derived from a confusion matrix. It lists all 

four possible prediction results. If an instance is 

correctly classified as “buggy”, 

i) Real Positive (TP)-if an instance is 

misclassified as “buggy” 

ii) False Positive (FP) - “Similarly” 

iii) False Negatives (FN)   

iv) True Negatives (TN) 

Based on these four numbers, Precision, Recall and F1-

score are calculated. Precision is that the ratio of 

correctly predicted “buggy” instances to all or any 

instances predicted as “buggy”. 

                            
  

     
                                                                   

(2) 

                         
  

     
                                                           

(3) 

                             
                   

                 
                             

(4) 

Recall is that the ratio of the amount of correctly 

predicted “buggy” instances to the particular number of 

“buggy” instances. Finally, F1-score may be a mean of 

Precision and Recall. 

IMBALANCED DATA LEARNING 

PRE-PROCESSING 
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F1-score is usually used as a summary measure to 

evaluate if a rise in precision outweighs a discount in 

recall (and vice versa). 

DATA PRE-PROCESSING AND DATA REDUCTION 

More specifically, as depicted in Figure 3, initially split 

source code into smaller parts to allow more granular 

analysis. Then, we generate and extract AST for each 

departed code component, which also includes a 

tokenization process via a laxer. Later on, convert the 

extracted AST into the complete binary tree that has a 

deterministic shape where it is specified how many 

nodes are located at each level of the tree.  

 

 

 

 

 

 

 

          

 

        Figure 3. data pre-processing and data reduction 

Afterward, each token is encoded in the complete binary 

AST to pre-defined numerical tuples and finally 

represent a one-dimensional numerical array of the 

corresponding function-level source code. This source 

code concatenating the assigned numerical tuples from 

the root node to leaves in order. It justifies each step-in 

detail in the following parts, along with examples. 

TOKENIZATION 

The source code is cleaned by removing its unnecessary 

elements such as comments, whitespaces, tabs, newlines, 

etc. Then, the remaining part is converted into a series of 

tokens, where a token is a sequence of characters that 

can be treated as a unit in the grammar of the 

corresponding programming language. This can be 

achieved by using a laxer developed explicitly for the 

language of the source code. 

 

Example of SQL Injection: 

Query 1: Original Query SELECT * FROM usertable 

WHERE username= ‘greg’;  

Query 2 Original Query SELECT * FROM usertable 

WHERE username= ‘greg’ OR ‘1’= ‘1’; 

The query 2 is converted into series of tokens, 

[ Token 1: Select*from 

  Token 2: usertable 

  Token 3: where 

  Token 4: username=’greg’ 

  Token 5: password=‘secret’ or ‘1’=’1’ ] 

AST (Abstract Syntax Tree) 

AST contains syntax and semantic information about the 

source code, and therefore it is highly useful for further 

analysis. Figure 4 shows AST of the main function given 

in Step 2. The structural relations (e.g., parent-child) are 

important in the AST and could be useful for 

vulnerability identification [15]. 

 

Figure 4. AST construction of SQL Injection tokens 

Therefore, the relational pieces of code information 

should not be lost or fail during the transformations in 

source code representation stages. The small challenging 

given that a regular AST is a kind of m-array tree where 

there is no restriction on the values that m can take, 

which means each node may have an arbitrary number 

of child nodes that makes the structural shape of the AST 

unpredictable. To overcome this issue, we apply the next 

step to the binary AST. 

Binary AST 

AST is a tree type data structure and need to convert it 

into an array format to feed an ML algorithm [18]. After 

converting an AST into a binary array by placing nodes 

starting from root level to deeper levels, from leftmost 

node to rightmost node at each level. Several problems 

Source 

Code  
Function - 

Level 

Partition 

Tokenization 

Numerical 

Array 
Encoding Binary AST 

AST 
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would occur in such a conversion. First of all, structural 

relations among AST nodes such as parent-child 

relations would be lost in the resulting array because a 

parent node may have arbitrary number of children. 

Second, the resulting arrays would be in different 

lengths. However, it is highly important to preserve 

structural relations among AST nodes while mapping 

them into a one-dimensional array because both it 

contains some semantic information about the code and 

neural network-based models use such spatial 

information to extract hidden patterns. As a solution, 

convert a regular AST to the corresponding complete 

binary AST, where all leaves have the same depth [3]. 

These values are used to process the vulnerability 

prediction machine learning algorithms. 

VULNERABILITY PREDICTION 

1. Support vector machines (SVM) 

2. Neural networks 

 

1.Support vector machines (SVM) 

 

SVM (support vector machine) is a typical algorithm in 

machine learning. Its core idea is to seek out the 

foremost suitable separation hypersurface within the 

sample space, which may distinguish the samples 

significantly. The SVM include linear separable, linear 

support, and nonlinear support vector machines. Among 

them, the linear regression of SVM is expressed as 

follows. 

Set the sample set as (y1,x1),….(yl, xl), x £ Rn, y £ R and use 

a linear equation to represent the regression  function.

                      

                   f(x)=wT ϕ(x) + b                                                     (5) 

 

The essence of formula (5) are often considered a 

constrained optimization problem, and its expression is 

as follows In formula (6),  

          Φ(w, £, b) = 
 

 
 |w|2 + C(∑   

 
    + ∑   

 
   

*)                 (6) 

C refers to the penalty factor and £ and £* represent the 

upper and lower limits of the relief variable, respectively. 

The Formssula (6) is used to solved the Lagrangian 

constraint equation, which is shown as follows. 

ᾱ, ᾱ*= arg min {
 

 
 ∑ ∑ (

 

   
 

 

   
αi – αi*) (αj – αj*) 

(ϕ(  )  (  ))   ∑ (
 

 
αi – αi*)    + ∑ (

 

 
 αi – αi*)£}            (7) 

sin formula (7), ϕ(x) is a kernel function. If ϕ(xi) ϕ(xj)= xi 

xj, then it represents a linear support vector machine; 

otherwise, it is a nonlinear support vector machine. The 

solution expressions of the sum of the coefficients to be 

determined, the regression coefficients, and the constant 

terms are as follows. The Ŵ separate the vulnerable and 

non-vulnerable codes given in equation (8).  

Ŵ = ∑ (
 

   
αi – αi*)    ƀ = -

 

 
 Ŵ [   +   ]                               

(8) 

 

These formulas are used to separate the vulnerable and 

non-vulnerable codes. 

                                                                                     

2.  Neural networks 

 

Figure 5. Code static analysis and neural network       

training Principle 

The parameters of the Neural Network model are set 

as follows.  

1) Initialize the weight of DNN model with normal 
distribution function with standard deviation of 0.1.  

2) The offset values of the input layer and hidden layer 
are set to 0.1. 

3) The forward propagation of the input layer and 
hidden layer uses tanh as the activation function, while 
the output layer uses SoftMax as the activation function.  

4) Use the dropout function in TensorFlow to prevent 
overfitting.  

5) The cross-entropy function is used as the loss function 
to measure the loss between the calculated output of the 
training sample and the actual output of the training 
sample. 

6) Optimize the DNN model using a batch gradient 
descent algorithm with a batch size set to 100 and a 
learning rate set to 0.2.  

https://www.hindawi.com/journals/js/2020/7358692/#EEq1
https://www.hindawi.com/journals/js/2020/7358692/#EEq2
https://www.hindawi.com/journals/js/2020/7358692/#EEq2
https://www.hindawi.com/journals/js/2020/7358692/#EEq3
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Next, the training sample of the NVD data set is used to 
train the TFI-DNN vulnerability automatic classification 
model, and then the vulnerability test set is used to 
evaluate the model performance. 

The whole process includes the subsequent steps: 

sample code construction, feature extraction, word 

vector generation, and neural network model training 

and classification. Among them, vulnerability feature 

extraction mainly involves the way to select appropriate 

granularity to represent software programs and 

vulnerability detection shown on figure 5. Since deep 

learning or neural networks take vectors as input; it like 

to represent programs as vectors that are semantically 

meaningful for vulnerability detection. Use “bridge” act 

as intermediate representation between a program and 

vector representation, which is that the actual input to 

deep learning. Vulnerability feature extraction is to 

rework programs into some intermediate representation 

which will preserve (some of) the semantic relationships 

between the programs’ elements (e.g., data dependency 

and control dependency). Word vector generation is 

predicated on feature extraction, applying the foremost 

mainstream word vector generation technology in order 

that intermediate representation is often transformed 

into a vector representation, that is, the actual input to 

neural networks. Neural network training classification 

involves two stages of coaching and detection. The 

training phase takes the source code extracted from the 

historical code base as input, whose output is neural 

network of fine-tuned model parameters. In the 

detection phase, the code vector representation 

extracted from the new software program is taken as 

input, and therefore the output is that the classification 

result. 

CONCLUSION -In this context, first proposed a source 

code representation method that is capable of 

characterizing source code into a proper format for 

further processes in ML algorithms. The presented 

method extracts and then converts AST of a given source 

code fragment into a numerical array representation 

while preserving structural and semantic information 

contained in the source code. Thus, it enables us to 

perform ML-based analysis on source code through 

resulting numeric array representation. To examine the 

presented source code representation technique for 

different objectives rather than vulnerability prediction, 

such as similarity analysis and code completion. and 

improve localization and interpretation aspects of the 

vulnerability prediction by using Support Vector 

Machine Learning (SVM) and Neural Networks.  

 

FUTURE ENHANCEMENTS- 

Future investigation involves building a fully end-to-end 

prediction system from raw input data (code tokens) to 

vulnerability outcomes. It would be interesting to 

examine the presented source code representation 

technique for different objectives rather than 

vulnerability prediction, such as similarity analysis and 

code completion. To improve localization and 

interpretation aspects of the vulnerability prediction. 

The presented method to apply a model trained on a 

certain language to other languages. 
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