
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 01 | Jan 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1201

 Survey on Vulnerability Prediction from Source Code by using

Machine Learning Algorithm

B. DEEPTHI1, DR.K. KUMAR2

1ME Student, Department of Computer Science & Engineering, Government College of Technology,
Coimbatore.

2Associate Professor, Department of Computer Science & Engineering, Government College of Technology,
Coimbatore.

---***--

ABSTRACT - Now Web applications have been gaining

increased popularity around the globe, in such a way that

a growing number of users are attracted to make use of

the functionality and information provided by these

applications. While providing solutions to complicated

problems in a fast and reliable way, it focusing on building

a prediction model for detecting vulnerabilities of web

applications. Based on the static analysis Machine

Learning methods used to predict the vulnerabilities.

Making use of data on any open-source web application to

test the vulnerability filles. By applying machine learning

techniques of Support vector machines (SVM) and Naïve

Bayes (NB) techniques are used to prevent the

vulnerability. Moreover, according to results of various

classifiers, and methods offer possible causes of

vulnerabilities and reasonable suggestions for avoiding

vulnerabilities in the future. To conclude the main

contributions are valuable feature engineers find the

vulnerability localization, and machine learning model to

predicting vulnerabilities effectively.

Keywords: Machine Learning, Software Metrics,

Software Security, Vulnerabilities.

1.INTRODUCTION

Web applications play a crucial role in many of our daily

activities like social networking, email, banking,

shopping, registrations, and so on. As web software is

additionally highly accessible, web application

vulnerabilities arguably have greater impact. It’s is

highly critical to detect and eliminate potential

vulnerabilities as early as possible. A vulnerability is

defined as a weakness in a data system, internal controls,

system security procedures, or implementation which

may be exploited by a threat source [3], whereas a flaw

or bug may be a defect during a system which will (or

may not) cause a vulnerability [4]. Thus, vulnerabilities

are literally the subclass of software bugs which will be

exploited for malicious purposes [5], [6] Vulnerabilities

require quite different identification process than

defects because they're often not realized by users or

developers during the traditional operation of the

system while defects are more easily and naturally

noticed [6]. These make the fighting against

vulnerabilities far more challenging than typical defects.

The two traditional approaches used for vulnerability

detection: (1) static analysis (2) dynamic analysis. In

static analysis, the code is examined for weaknesses

without executing it. Therefore, the potential impact of

the executable environment, such as the operating

system and hardware, is not taken into consideration

during analysis [7]. On the other hand, in dynamic

analysis, the code is executed to check how the software

will perform in a run-time environment, but this can only

reason about the observed execution paths and not all

possible program paths [7]. Hence, both static and

dynamic code analyses have some problems on their

own. Software defect prediction techniques have been

proposed to detect defects and reduce software

development costs. Defect prediction techniques is used

to build a model from source codes, and use the models

to predict whether new instances of code regions, e.g.,

files changes, possible attack files and methods contain

defects.

Vulnerability analysis is a process that defines, detects

and classifies security vulnerabilities in a system,

network or communication infrastructure. It also

suggests the countermeasures and the effectiveness of

the implementation techniques. The vulnerability exists

within a web application if it does not provide a proper

validation process for the data entered by the user as

input. The Machine Learning (ML) for software security

analysis not only reduces the feature extraction, but also

helps to simplify and automate processes for the current

security analysis techniques. Abstract Syntax Tree (AST)

for performing automated intelligent analysis directly on

ASCII text file requires to unravel some challenges like

representing ASCII text file during a proper form to

enable further analysis in ML algorithms and localizing

detected vulnerabilities on ASCII text file. Vulnerability

prediction task as a binary classification problem for

each targeted vulnerability class such our ML model

takes a ASCII document fragment as input and decides

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 01 | Jan 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1202

whether it's vulnerable (i.e. containing the targeted

vulnerability) or non-vulnerable.

2.LITERATURE SURVEY

The Literature Survey will have a review of papers about

detecting software failure or vulnerabilities and how

machine learning techniques can be used in the security

area. I will first introduce some papers Quite a number of

researchers have already made efforts on studying how

to detect injection attack risk hole in web applications

from

TABLE 1: LITERATURE SURVEY

s/no Title Input application Technique/
algorithm

Performance Limitation

1 Automated removal of cross
site scripting vulnerabilities
in web applications (2011)

PHP web application Taint-based Static
Analysis (Java)

Detection of stored and
reflected XSS
Vulnerability

Results by using taint-based
static analysis, might miss
some vulnerabilities since the
method do not track
information flow across web
pages.

2 Evaluating complexity, code
churn, and developer
activity metrics as indicators
of
Software vulnerabilities.
(2011)

Mozilla Firefox
Web Browser,
Red Hat Enterprise
Linux kernel

Logistic regression,
J48, Random forest,
NB, Bayesian
network

Code complexity,
code churn, and
developer
activity metrics
C++ / General
vulnerabilities

 -

3 Using complexity,
Coupling and cohesion
metrics as early indicators
of vulnerabilities (2011).

Mozilla Firefox
Web Browser

Logistic regression,
C4.5, Random
forest,
NB

code complexity,
coupling and
cohesion metrics C++ /
General vulnerabilities

Confidently lessen the effects
of algorithmic bias, not
attempting to identify the
most effective, technique.
Limit oneself.

4 Software vulnerability
prediction using text
analysis techniques.
(2012).

K9 mail client
application

SVM Unique word Java/any
vulnerabilities

The learning may fail to
create any meaningful
features. In the following
section, we present the
proposed approach

5 Mining sql injection and
cross site scripting using
hybrid program analysis
(2013).

PHP Web Applications Hybrid Analysis
(PHP) + cluster

Detection of SQL
injection and XSS
Vulnerability

Not accurate as full static or
dynamic analysis.

6 Predicting vulnerable
software components via
text mining (2014).

Java Application
&Drupal CMS

Decision Trees,
k-Nearest
Neighbour, NB,
Random Forest and
SVM

Unique-words &
Uni_tokens
Java & PHP /
General & XSS
vulnerabilities

 -

7 Web application
vulnerability prediction
using hybrid program
analysis and machine
learning (2015).

Any open-source
application.

Hybrid Analysis
(PHP) + semi-
supervised

Detection of SQL
injection and XSS
vulnerability

static and dynamic analysis
results are achieved by using
Pixy.

8 Experimenting Machine
Learning Techniques
to Predict Vulnerabilities
(2016).

Glibc, Xen HV, httpd,
Mozilla

Random Under
sampling (RU),
Decision Tree
algorithm. Logistic
Regression

Detection vulnerability Not all the configuration of
the approaches are available,
it is not guaranteed that the
experiments were
reproduced in ideal
conditions.

9 Automatic feature learning
for vulnerability
Prediction (2017).

Quicksearchbox, Email,
Mustard, Crosswords,

Deep Belief
Network, Long
Short-Term
Memory (LSTM)

Detection vulnerability The original dataset did not
unfortunately contain the
source files. Data set may not
be representative of all kinds
of Android applications.

10 Vulnerability Prediction
From Source Code Using
Machine Learning (2020).

GitHub, NIST’s Samate
project

Abstract Syntax
Tree (AST),
leverage machine
learning (ML)

Detection vulnerability imbalance problem,
Can’t find localization and
interpretation aspects of the
vulnerability prediction.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 01 | Jan 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1203

different aspects. In this Literature survey many

methods are discussed. These methods are used to

detect the software attacks. The table 1 shows the papers

performance some limitation. To overcome these

limitations by using SVM and neural networking.

3. MACHINE LEARNING

 Machine learning technique is widely used for data

analysis to build prediction models. Machine learning

techniques, which are widely used these days, can be

divided into three categories: supervised learning [10],

unsupervised learning and reinforcement learning. To

conclude, a supervised learning method can only learn

from labelled training data, and on the contrary,

unsupervised learning does not require the access to the

label of data. Especially, reinforcement learning does not

have a restriction on using labelled and unlabelled data.

This method is designed to learn from feedback that is

retrieved from its interaction with the environment.

After considering the advantages and disadvantages of

different types of machine learning methods, decided to

use supervised learning for this research. Supervised

learning algorithms can be used to train a model of class

labels distribution, and this model is able to predict class

labels for testing instances. An example of supervised

learning algorithms process flowchart is shown in Figure

1, this whole process is also called classification. This is

the foundation of designed prediction model as well. It is

essential to select which classification method to use for

a certain problem.

 Figure 1. supervised learning algorithms

 process flowchart

There is a review on several widely used supervised

learning algorithms in [2]. To decide which classifiers

are more suitable for this research, first look into their

pros and cons. In paper [2], the author pointed out that

comprehensibility of Decision Tree makes this classifier

helpful for understanding why an instance is assigned to

a certain class, and Decision Tree is a suitable choice

when dealing with discrete features. Linear Discriminant

Analysis (LDA) and Naive Bayes are both statistical

learning algorithms, which can provide a probability

about labelling an instance. Moreover, in order to meet

the requirement of this research, accuracy, tolerance to

noise, the risk of being overfitting [20] and explanation

ability are some vital aspects to consider when selecting

classifiers. These models are considered in this research.

 4.SYSTEM MODEL

In this paper, the study of vulnerability identification

from web applications. By using different machine

learning algorithms to prevent the attacks. The system

model process flow shown on figure 2 and the following

sections are descripting the model processes.

Problem

Identification

of required

data

Data pre-

processing

Definition of

training set

Algorithm

selection

Training

Evaluation with

test set
Parameter

tuning

Classifier OK

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 01 | Jan 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1204

Figure 2. System Model

DATA COLLECTION

The web application is facing with various types of

vulnerabilities, but in general, they can be categorized

into two main kinds based on the causes of them,

including design flaw and implementation bug.

Obviously, most design flaws are hard to detect by only

analysing individual source code files.

INPUT APPLICATION: Any Open-Source Web

Applications like, www.github.com and http://google-

gruyere.appspot.com/

IMBALANCED DATA LEARNING

DATASET: The Datasets downloaded from NIST SATE

IV [21]. The Datasets distribution: Training (80%),

Validation (10%), Testing (10%). This dataset consists of

1.27 million of source code functions mined from open-

source software, labelled by static analysis for potential

vulnerabilities.

Because of the class distribution skew problem, it is a

crucial issue to deal with imbalanced data learning in

this research [14] [15] [16].

Sampling Techniques

Overall, there are two methods suitable for sampling

imbalanced data, including random under-sampling and

random oversampling. The idea of these two sampling

methods is randomly adding(removing) a randomly

selected dataset from minority(majority) class to make

the whole set becoming balanced. However, these

random sampling methods have some shortages. The

under-sampling method would cause information loss to

majority class, and the oversampling could bring about

the over-fitting issue on minority class. Due to a limited

number of attack files, this research only uses random

oversampling on the dataset.

min-max method

It transforms all values to values in the interval [0, 1].

Given a feature f, denote the maximum and minimum

value for f as max(f) and min(f) respectively. For each

value of the feature f, the normalized value zi is given in

equation (1).

 ()
 ()

 () ()

(1)

F1-score

The F1-score is a commonly-used measure to evaluate

classification performance. The F1 score formula given in

equation (4). F1 combines Precision (2) and Recall (3)

and can be derived from a confusion matrix. It lists all

four possible prediction results. If an instance is

correctly classified as “buggy”,

i) Real Positive (TP)-if an instance is

misclassified as “buggy”

ii) False Positive (FP) - “Similarly”

iii) False Negatives (FN)

iv) True Negatives (TN)

Based on these four numbers, Precision, Recall and F1-

score are calculated. Precision is that the ratio of

correctly predicted “buggy” instances to all or any

instances predicted as “buggy”.

(2)

(3)

(4)

Recall is that the ratio of the amount of correctly

predicted “buggy” instances to the particular number of

“buggy” instances. Finally, F1-score may be a mean of

Precision and Recall.

IMBALANCED DATA LEARNING

PRE-PROCESSING

 DATA REDUCTION

VULNERABILITY PREDICTION
TECHNIQUE

 PREDICTION RESULT

DATA

COLLECTION

Normalization

SVM Neural

Networks

http://www.github.com/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 01 | Jan 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1205

F1-score is usually used as a summary measure to

evaluate if a rise in precision outweighs a discount in

recall (and vice versa).

DATA PRE-PROCESSING AND DATA REDUCTION

More specifically, as depicted in Figure 3, initially split

source code into smaller parts to allow more granular

analysis. Then, we generate and extract AST for each

departed code component, which also includes a

tokenization process via a laxer. Later on, convert the

extracted AST into the complete binary tree that has a

deterministic shape where it is specified how many

nodes are located at each level of the tree.

 Figure 3. data pre-processing and data reduction

Afterward, each token is encoded in the complete binary

AST to pre-defined numerical tuples and finally

represent a one-dimensional numerical array of the

corresponding function-level source code. This source

code concatenating the assigned numerical tuples from

the root node to leaves in order. It justifies each step-in

detail in the following parts, along with examples.

TOKENIZATION

The source code is cleaned by removing its unnecessary

elements such as comments, whitespaces, tabs, newlines,

etc. Then, the remaining part is converted into a series of

tokens, where a token is a sequence of characters that

can be treated as a unit in the grammar of the

corresponding programming language. This can be

achieved by using a laxer developed explicitly for the

language of the source code.

Example of SQL Injection:

Query 1: Original Query SELECT * FROM usertable

WHERE username= ‘greg’;

Query 2 Original Query SELECT * FROM usertable

WHERE username= ‘greg’ OR ‘1’= ‘1’;

The query 2 is converted into series of tokens,

[Token 1: Select*from

 Token 2: usertable

 Token 3: where

 Token 4: username=’greg’

 Token 5: password=‘secret’ or ‘1’=’1’]

AST (Abstract Syntax Tree)

AST contains syntax and semantic information about the

source code, and therefore it is highly useful for further

analysis. Figure 4 shows AST of the main function given

in Step 2. The structural relations (e.g., parent-child) are

important in the AST and could be useful for

vulnerability identification [15].

Figure 4. AST construction of SQL Injection tokens

Therefore, the relational pieces of code information

should not be lost or fail during the transformations in

source code representation stages. The small challenging

given that a regular AST is a kind of m-array tree where

there is no restriction on the values that m can take,

which means each node may have an arbitrary number

of child nodes that makes the structural shape of the AST

unpredictable. To overcome this issue, we apply the next

step to the binary AST.

Binary AST

AST is a tree type data structure and need to convert it

into an array format to feed an ML algorithm [18]. After

converting an AST into a binary array by placing nodes

starting from root level to deeper levels, from leftmost

node to rightmost node at each level. Several problems

Source

Code
Function -

Level

Partition

Tokenization

Numerical

Array
Encoding Binary AST

AST

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 01 | Jan 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1206

would occur in such a conversion. First of all, structural

relations among AST nodes such as parent-child

relations would be lost in the resulting array because a

parent node may have arbitrary number of children.

Second, the resulting arrays would be in different

lengths. However, it is highly important to preserve

structural relations among AST nodes while mapping

them into a one-dimensional array because both it

contains some semantic information about the code and

neural network-based models use such spatial

information to extract hidden patterns. As a solution,

convert a regular AST to the corresponding complete

binary AST, where all leaves have the same depth [3].

These values are used to process the vulnerability

prediction machine learning algorithms.

VULNERABILITY PREDICTION

1. Support vector machines (SVM)

2. Neural networks

1.Support vector machines (SVM)

SVM (support vector machine) is a typical algorithm in

machine learning. Its core idea is to seek out the

foremost suitable separation hypersurface within the

sample space, which may distinguish the samples

significantly. The SVM include linear separable, linear

support, and nonlinear support vector machines. Among

them, the linear regression of SVM is expressed as

follows.

Set the sample set as (y1,x1),….(yl, xl), x £ Rn, y £ R and use

a linear equation to represent the regression function.

 f(x)=wT ϕ(x) + b (5)

The essence of formula (5) are often considered a

constrained optimization problem, and its expression is

as follows In formula (6),

 Φ(w, £, b) =

 |w|2 + C(∑

 + ∑

*) (6)

C refers to the penalty factor and £ and £* represent the

upper and lower limits of the relief variable, respectively.

The Formssula (6) is used to solved the Lagrangian

constraint equation, which is shown as follows.

ᾱ, ᾱ*= arg min {

 ∑ ∑ (

αi – αi*) (αj – αj*)

(ϕ() ()) ∑ (

αi – αi*) + ∑ (

 αi – αi*)£} (7)

sin formula (7), ϕ(x) is a kernel function. If ϕ(xi) ϕ(xj)= xi

xj, then it represents a linear support vector machine;

otherwise, it is a nonlinear support vector machine. The

solution expressions of the sum of the coefficients to be

determined, the regression coefficients, and the constant

terms are as follows. The Ŵ separate the vulnerable and

non-vulnerable codes given in equation (8).

Ŵ = ∑ (

αi – αi*) ƀ = -

 Ŵ [+]

(8)

These formulas are used to separate the vulnerable and

non-vulnerable codes.

2. Neural networks

Figure 5. Code static analysis and neural network

training Principle

The parameters of the Neural Network model are set

as follows.

1) Initialize the weight of DNN model with normal
distribution function with standard deviation of 0.1.

2) The offset values of the input layer and hidden layer
are set to 0.1.

3) The forward propagation of the input layer and
hidden layer uses tanh as the activation function, while
the output layer uses SoftMax as the activation function.

4) Use the dropout function in TensorFlow to prevent
overfitting.

5) The cross-entropy function is used as the loss function
to measure the loss between the calculated output of the
training sample and the actual output of the training
sample.

6) Optimize the DNN model using a batch gradient
descent algorithm with a batch size set to 100 and a
learning rate set to 0.2.

https://www.hindawi.com/journals/js/2020/7358692/#EEq1
https://www.hindawi.com/journals/js/2020/7358692/#EEq2
https://www.hindawi.com/journals/js/2020/7358692/#EEq2
https://www.hindawi.com/journals/js/2020/7358692/#EEq3

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 01 | Jan 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1207

Next, the training sample of the NVD data set is used to
train the TFI-DNN vulnerability automatic classification
model, and then the vulnerability test set is used to
evaluate the model performance.

The whole process includes the subsequent steps:

sample code construction, feature extraction, word

vector generation, and neural network model training

and classification. Among them, vulnerability feature

extraction mainly involves the way to select appropriate

granularity to represent software programs and

vulnerability detection shown on figure 5. Since deep

learning or neural networks take vectors as input; it like

to represent programs as vectors that are semantically

meaningful for vulnerability detection. Use “bridge” act

as intermediate representation between a program and

vector representation, which is that the actual input to

deep learning. Vulnerability feature extraction is to

rework programs into some intermediate representation

which will preserve (some of) the semantic relationships

between the programs’ elements (e.g., data dependency

and control dependency). Word vector generation is

predicated on feature extraction, applying the foremost

mainstream word vector generation technology in order

that intermediate representation is often transformed

into a vector representation, that is, the actual input to

neural networks. Neural network training classification

involves two stages of coaching and detection. The

training phase takes the source code extracted from the

historical code base as input, whose output is neural

network of fine-tuned model parameters. In the

detection phase, the code vector representation

extracted from the new software program is taken as

input, and therefore the output is that the classification

result.

CONCLUSION -In this context, first proposed a source

code representation method that is capable of

characterizing source code into a proper format for

further processes in ML algorithms. The presented

method extracts and then converts AST of a given source

code fragment into a numerical array representation

while preserving structural and semantic information

contained in the source code. Thus, it enables us to

perform ML-based analysis on source code through

resulting numeric array representation. To examine the

presented source code representation technique for

different objectives rather than vulnerability prediction,

such as similarity analysis and code completion. and

improve localization and interpretation aspects of the

vulnerability prediction by using Support Vector

Machine Learning (SVM) and Neural Networks.

FUTURE ENHANCEMENTS-

Future investigation involves building a fully end-to-end

prediction system from raw input data (code tokens) to

vulnerability outcomes. It would be interesting to

examine the presented source code representation

technique for different objectives rather than

vulnerability prediction, such as similarity analysis and

code completion. To improve localization and

interpretation aspects of the vulnerability prediction.

The presented method to apply a model trained on a

certain language to other languages.

REFERENCES

1. ZEKI BILGIN “Vulnerability Prediction From
Source Code Using Machine Learning”, Received
July 28, 2020, accepted August 9, 2020, date of
publication August 14, 2020, date of current
version August 26, 2020.

2. S. B. Kotsiantis, I. Zaharakis, and P. Pintelas,
“Supervised machine learning: A review of
classification techniques,” Emerging artificial
intelligence applications in computer
engineering, vol. 160, pp. 3–24, 2007.

3. R. S. Ross, ‘‘Information security,’’ Joint Task
Force Transformation Initiative, Guide
Conducting Risk Assessments, NIST Special
Publication, Gaithersburg, MD, USA, Tech. Rep.
800-30 Revision 1, 2012.

4. A. M. Delaitre, B. C. Stivalet, P. E. Black, V. Okun,
T. S. Cohen, and A. Ribeiro, ‘‘Sate V report: Ten
years of static analysis tool expositions,’’ NIST,
Gaithersburg, MD, USA, Tech. Rep. SP-500-326,
2018.

5. M. Dowd, J. McDonald, and J. Schuh, The Art of
Software Security Assessment: Identifying and
Preventing Software Vulnerabilities. Reading,
MA, USA: Addison-Wesley, 2006.

6. M. Jimenez, ‘‘Evaluating vulnerability prediction
models,’’ Ph.D. dissertation, Dept. Sci., Technol.
Commun., Univ. Luxembourg, Rue Mercier,
Luxembourg, Oct. 2018.

7. T. Abraham and O. de Vel, ‘‘A review of machine
learning in software vulnerability research,’’
Cyber Electron. Warfare Division, Dept. Defense,
Austral. Government, Edinburgh, SA, Australia,
Tech. Rep. DST-GroupGD-0979, 2017.

8. B. McCorkendale, X. F. Tian, S. Gong, X. Zhu, J.
Mao, Q. Meng, G. H. Huang, and W. G. E. Hu,
‘‘Systems and methods for combining static and
dynamic code analysis,’’ U.S. Patent 8,726,392,
May 13, 2014.

9. E. Ustundag Soykan, Z. Bilgin, M. A. Ersoy, and E.
Tomur, ‘‘Differentially private deep learning for
load forecasting on smart grid,’’ in Proc. IEEE

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 01 | Jan 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1208

Globecom Workshops (GC Wkshps), Dec. 2019,
pp. 1–6

10. R.Scandariato, J. Walden, A. Hovsepyan, and W.
Joosen, “Android study dataset,
”https://sites.google.com/site/textminingandro
id, Accessed on 15 Jan 2017, 2014.

11. Weiwei Li a, b, Zhiqiu Huang a, and Qing Li,
“Software Vulnerability Prediction using Feature
Subset Selection and Support Vector Machine,
2016.

12. Hoa Khanh Dam, Truyen Tran, Trang Pham,
Shien Wee Ng , John Grundy and Aditya Ghose
University of Wollongong, Australia, “Automatic
feature learning for vulnerability prediction
“arXiv:1708.02ss368v1 [cs.SE] 8 Aug 2017.

13. M. Jimenez, ‘‘Literature survey on security
vulnerabilities,’’ Ph.D. dissertation, Dept. Sci.,
Technol. Commun., Univ. Luxembourg, Rue
Mercier, Luxembourg, Oct. 2018.

14. H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn:
Adaptive synthetic sampling approach for
imbalanced learning,” in Neural Networks, 2008.
IJCNN 2008. (IEEE World Congress on
Computational Intelligence). IEEE International
Joint Conference on, pp. 1322–1328, IEEE, 2008.

15. S. Wang and X. Yao, “Using class imbalance
learning for software defect prediction,” IEEE
Transactions on Reliability, vol. 62, no. 2, pp.
434–443, 2013.

16. H. He and E. A. Garcia, “Learning from
imbalanced data,” IEEE Transactions on
Knowledge & Data Engineering, no. 9, pp. 1263–
1284, 2008.

17. Zhidong Shen and Si Chen “A Survey of
Automatic Software Vulnerability Detection,
Program Repair, and Defect Prediction
Techniques” 2020.
https://doi.org/10.1155/2020/8858010 P.
Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C.
Kruegel, and G. Vigna, “Cross site scripting
prevention with dynamic data tainting and static
analysis.,” in NDSS, vol. 2007, p. 12, 2007.

18. Dima Bekerman, Sarit Yerushalmi “The State of
Vulnerabilities in 2019” https://
www.imperva.com/blog/the-state-of-
vulnerabilities-2019/.

19. R. Scandariato, J. Walden, A. Hovsepyan, and W.
Joosen, “Predicting vulnerable software
components via text mining,” IEEE Transactions
on Software Engineering, vol. 40, no. 10, pp.
993–1006, 2014.

20. S. B. Kotsiantis, I. Zaharakis, and P. Pintelas,
“Supervised machine learning: A review of
classification techniques,” Emerging artificial
intelligence applications in computer
engineering, vol. 160, pp. 3–24, 2007.

21. R. Russell, L. Kim, L. Hamilton, T. Lazovich, J.
Harer, O. Ozdemir, P. Ellingwood, and M.

McConley, ‘‘Automated vulnerability detection in
source code using deep representation
learning,’’ in Proc. 17th IEEE Int. Conf. Mach.
Learn. Appl. (ICMLA), Dec. 2018, pp. 757–762.

https://doi.org/10.1155/2020/8858010
https://d.docs.live.net/2060380aa788b392/Desktop/project/ME%20project%20Report/The%20State%20of%20Vulnerabilities%20in%202019
https://d.docs.live.net/2060380aa788b392/Desktop/project/ME%20project%20Report/The%20State%20of%20Vulnerabilities%20in%202019

