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Abstract - Physical properties of a sneeze or cough ejecta 
reported in the open literature are reviewed to characterize 
the two-phase flow (exhaled air and mucosalivary droplets). 
Sneeze or cough ejecta are studied as a two-phase buoyant 
puff at droplet sizes of 0.15-100 μm. Then droplet dispersion 
by a sneeze or cough ejecta to quasi-static environments is 
studied, from a physics view, to exploring the possibility of 
airborne transmission of viruses as SARS-CoV-2. Nozzle stokes 
numbers are analyzed at three Reynolds numbers, which 
correspond to the representative velocities of exhaled air (10, 
15, and 20 m/s). Calculations show particles smaller than 5 
μm are the critical case for airborne transmission, whereas 
particles less than 19 μm are affected by turbulent motions 
and remain airborne for long periods. 

Key Words: sneeze or cough ejecta, two-phase puff, 
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1. INTRODUCTION 

In the open literature, there is much information on the 
physical characteristics of human respiratory droplets, 
which are focused on talking, coughing, and sneezing. The 
experimental data coincide with many droplets generated in 
the sneeze ejecta, and there are similar droplets 
distributions on talking, coughing, and sneezing. Some 
authors, as Zayas et al. [1], found that there is no significant 
correlation between droplet size and cough frequency, age, 
and gender. However, there are controversies in the droplet 
sizes, exhaled air velocity, and droplet velocity by the 
measurement methods. The physical characteristics of air 
and droplets exhaled by sneeze, cough, or talking are 
relevant in the droplet dispersion. Droplet dispersion on 
controlled conditions allows understanding airborne 
transmission of viruses as SARS-CoV-2, which has caused 1.8 
million deaths around the world [2] until January 2021. 
Therefore, the main objective of the review is to study 
physical characteristics of sneeze or cough ejecta and droplet 
dispersion in indoor environments. The review is focused on 
the physical mechanisms of droplet dispersion of two-phase 
buoyant puff. The sneeze or cough ejecta and the nozzle 
Stokes number in droplets of 0.15-50 μm are studied to 
understand the physical mechanisms of a potential airborne 
transmission of viruses as SARS-CoV-2 from a physics view. 

 

 

2. PHYSICAL CHARACTERISTICS 

There are many methods on droplet size and velocities of 
droplet or exhaled air by zneeze, cough or breathing. 
According to Zhang et al. [3], the Impaction Methods (IM) 
may cause particles to spread, splash, or finger and distort 
the correct particle size if identified by microscopy. Then 
other methods used are the Aerodynamic Particle Sizer 
(APS), Cough Aerosol Sampling System (CASS), High-Speed 
(HS) camera/video, Hot-Wire Anemometry (HWA) 
Interferometric Mie Imaging (IMI), Laser (Particle Size 
Analyser (PSA), Light Scattering (LS), and Diffraction System 
(DS)), Optical Particle Counter (OPC), Optical Particle 
Spectrometer (OPS), Particle Image Velocimetry (PIV), 
Scanning Mobility Particle Sizer (SMPS), Schlieren PIV (S-
PIV), Shadowgraph Imaging (S-Imag), and Spirometer. The 
measurement methods, droplet size (Dp), and air/droplet 
velocity (u) on talking, coughing, and sneezing, are 
summarized in Table 1. Most experimental data show droplet 
sizes between 0.15-100 μm, average velocities of exhaled air 
of 4.5-21.25 m/s, and average velocities of droplets between 
5-22 m/s. 

Other characteristics of the sneeze or cough ejecta are the 
mouth opening area, which is based on human cough 
captured on photographs, and geometric plane shapes are 
approached as a semi-circular section (Gupta et al. [4]; Busco 
et al. [5]) or a rectangular sheet-like (Dbouk & Drikakis [6]). 
The semi-circular section approximation is considered as a 
characteristic length (equivalent diameter of an exit nozzle). 
This equivalent diameter is calculated from Gupta et al. [4] 
data (mouth opening area of 3.37-4 cm²), which agrees to 3.4 
cm² reported by Bourouiba et al. [7]. Calculation of the 
equivalent diameter is 0.021-0.023 m, which agrees with the 
mouth diameter (Dem) of 0.02 m used in many numerical 
simulations.  

Table -1: Droplet size and velocity of airflow/droplet. 

Author Method Dp (µm) u (m/s) 

[8] APS 0.62-15.9 and 
0.58-5.42dn  

na 

[9] APS 0.5-20 na 

[10] CASS < 3 (70%) na 

[11] HS camera 7-100 na 
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[12] HS video na > 6droplet 

[13] HS camera 160-1000 14droplet, maxv 

[14] HS camera na 12-15droplet, maxv, 
5droplet, ps 

[15] IM (solid) 1-200av na 

[16] IM (liquid) 50-860 na 

[17] IM (solid) < 1 na 

[18] IM (solid) 55av na 

[19] IM (solid) < 1 na 

[20] IM (solid) 50-100av and 
5minv 

na 

[21] Laser PSA 360av, ud and 
74.4av, bd 

na 

[22] Laser LS 20-500 na 

[23] OPC 0.15-0.5 and 
0.15-0.199ps 

na 

[24] OPC 0.3-5 na 

[25] OPC 0.3-.499 
(82%) 

na 

[26] PIV na 6-22droplet, 
11.2droplet, av 

[27] PIV na 10.6air, female, 
15.3air, male 

[28] PIV-IMI 13.5av 11.7air 

[29] PIV na 1.15-28.8air, 
10.2av 

[30] PIV-HWA na 3.05air, jet centre 
(1.17 av, peak) 

[31] SMPS-OPS < 5 (99%) 15.03-19.55air, ** 

[32] S-PIV na 8air, maximum av 

[33] S-Imag na 4.5air, maxv 

[4] Spiromete
r 

na 4.75-21.25air, * 

* value calculated considering the information provided in 
the paper. 

** value calculated considering a mouth opening area of 
3.37-4 cm² 

av average value 

bd bimodal distribution 

dn droplet nuclei 

minv minimum value 

maxv maximum value 

ps predominant size 

ud unimodal distribution 

The time of sneeze or cough expulsion phase lasted 
approximately 200-300 ms (Bahl et al. [14]; Bourouiba et al. 
[7]; Scharfman et al. [13]), although Busco et al. [5] and Zayas 
et al. [1] have reported average times of 500 ms and 700 ms, 
respectively. The average cone spreading angles are 24 ± 3° 
(Dudalski [30]), 25° (Gupta et al. [4], calculated by 
subtracting the directional angles), and 23.9° ± 3.48° (Tang et 
al. [32]). These angles agree to the universal spreading angle 
of 23.8° of the jet dispersion theory (Cushman-Roisin [34]). 
The potential core (Fig. 1) has not been presented in 
experiments, although a slight representation is shown in the 
velocity contour of a cough onset by Tang et al. [32]. Exhaled 
air temperatures on a sneeze or cough ejecta of 30-33°C are 
reported by Tang et al. [33]. These values agree to exhaled 
breath temperatures (33.8°C, 33.2°C±1.3°C, and 31.4-35.4°C) 
by Roberge et al. [35], Bijnens et al. [36], and Mansour et al. 
[37], respectively. Experimental measurements of exhaled 
breath RH showed variations of 65.0-88.6% and 41.9-91.0%, 
according to Mansour et al. [37]. However, Niesters et al. [38] 
and the ScienceBits website [39] reported values close to 
saturation and 95%, respectively. 

3. PHYSICS OF DROPLETS DISPERSION 

Fluids expelled on a sneeze or cough ejecta are mainly 
composed of exhaled air and mucosalivary droplets of 
various sizes. Sneezing or coughing is considered as a two-
phase buoyant puff, which could study in two-time stages: 
stage 1) during the expulsion of fluids (air and droplets) and 
stage 2) post-expulsion of fluids. In stage-1 (fluids expelled), 
the fluid momentum is the dominant mechanism on the jet 
dispersion, and the physical phenomenon is approached as a 
one-phase turbulent jet dispersion. Froude number 
(Fr=uj/[(|ρj-ρa|/ρa)gDem]) and Richardson number (Ri=|ρj-
ρa|gDem/ρjuj

2) are calculated for the two-phase jet, as shown 
in Table 2. The subscripts j and a are the jet (exhaled air) and 
the atmospheric air, respectively. Computations consider 
properties of exhaled air at 90% RH, which are calculated 
with data provided by Tsilingiris [40]. Results show Fr >> 1 
and Ri << 0.1, which match criteria to determine if a jet 
dispersion is dominated by the initial momentum (Bricard & 
Friedel [41]). Later a turbulent cloud is formed (stage 2), and 
the jet trajectory of the centerline is curved by density 
difference as reported by Bourouiba et al. [7] and Wei & Li 
[42], and it’s shown in nature video [43]. The buoyant 
dominates the physical phenomenon by velocity decay and 
warmer temperature. Then turbulent cloud moves along the 
cone in a meandering motion (see Fig. 1), which is 
approximated as a puff in a stratified environment. The 
turbulent cloud loses buoyancy and will move until the bulk 
cloud velocity is zero. A wide range of eddy sizes into de 
cloud disperse droplets and contribute to the cloud 
expansion, as seen in the nature video [43]. The average 
turbulence intensity reported by Dudalski [30] of a sneeze or 
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cough is 8.9±3.9% at 45 times the equivalent diameter (Dem = 
0.0217 m). 

The physiochemical phenomena of the ejection of 
mucosalivary fluid are complex by the multiphase nature of 
the flow and the inhomogeneous liquid phase formed by 
droplets of different sizes, ligaments, bags of mucosaliva, and 
pearls (Scharfman et al. [13]). The human saliva presents a 
marked non-Newtonian flow effect (Haward et al. [44]), and 
there are salt/electrolytes (Johnson & Morawska [9]; Liu et 
al. [45]). In the sneeze or cough ejecta, droplets larger than 
100 μm follow a projectile motion. Particles fall out by 
gravity as a rainout phenomenon with no appreciable 
vaporization (Wells [46]; Wei & Li [42]; Li et al. [47]; Yan et 
al. [48]), while droplet sizes less than 100 μm remain 
airborne (Duguid [15]; Li et al. [47]). Discussion of the 
phenomenon is conducted to droplets smaller than 100 μm 
because they are affected by flow dynamics of buoyant puff, 
and the evaporation rate is relevant. On small droplets (Dp < 
100 μm), the evaporation is complex by the salt/electrolytes 
content in the saliva, the relative humidity of the exhaled air, 
and the droplet size. The salt/electrolytes content affects the 
droplet evaporation (Johnson & Morawska [9]; Zhang [49]), 
and the drying time increases around 20% (Liu et al. [45]), 
despite the physical properties of saliva are close to the 
water with 99.5% water, 0.3% proteins, and 0.2% 
inorganic/trace substances (Schipper et al. [50]). The 
relative humidity of the exhaled air has a strong effect on the 
drying time and increases almost 7-fold as humidity increase 
up to 90% (Li et al. [47]; Bhardwaj & Agrawal [51]). Then 
energy and mass transport are poor because liquid-phase 
and gas-phase could be considered in quasi-equilibrium. 
According to Wei & Li [42], RH is a key parameter to the 
droplet evaporation and spread of the virus. Finally, droplet 
evaporation increases as droplet size decrease by the 
enlarged specific surface area for heat and mass transfer. 
However, the evaporation rate of the microdroplet (Dp ≤ 2 
μm) is slowed down because the droplet size is comparable 
to the mean free path of air molecules, according to Hołyst et 
al. [52]. 

A physics view of a sneeze or cough ejecta on the 
environment could help to understand the possibility of 
airborne transmission of viruses. Then a parameter that 
provides information on particle dispersion by its inertial 
response time is the Stokes number (Stk). According to Lau 
& Nathan [53], this parameter has a strong impact on the 
particle concentration and the subsequent evolution of the 
two-phase jet. There are four types of Stokes numbers 
(nozzle Stk, turbulent Stk, Kolmogorov Stk, and acceleration 
Stk), as described by Kennedy & Moody [54]. The nozzle 
Stokes number (Stkn) has an overall representation of the 
phenomenon because it is based on the Stokes law and the 
convective time scale of the mean flow. So, the nozzle Stokes 
number (Stkn = CcρpDp2uj/18μDem) is calculated with the 
equivalent diameter of the mouth opening (Dem) as a nozzle 
diameter. The subscript p is the particle (droplet), and Cc is 
the Cunningham coefficient caused by slippage. Droplet 
diameters are normalized (Dp/Do) to a droplet size (Do) of 5 

μm, which remain suspended in the air, according to WHO 
[55]. Computations are conducted at droplet diameters up to 
50 μm, where particles remain airborne. Three Reynolds 
numbers of exhaled air (Reea) are considered, according to 
experimental velocities (10, 15, and 20 m/s) presented in §2, 
at an average temperature of 33°C (see §2). The 
thermodynamic conditions considered for mucosalivary 
ejecta are presented in the notes of Table 2, and results are 
shown in Fig. 2. 

 

Fig -1: Physical representation of a sneeze or cough ejecta 
on quasi-static environments. 

Table -2: Dimensionless parameters of the two-phase jet 
at two exhaled air temperatures. 

Reea Tea (°C) Fr Ri*1E5 

13877 30 35 130.2 104.3 6.1 9.6 

20815 30 35 195.3 156.5 2.7 4.3 

27754 30 35 260.4 208.6 1.5 2.4 

environmental air at 25°C and 101 kPa 

Dem = 0.022 m 

g = 9.8 m/s2 

exhaled air properties at 90% of RH and 101 kPa 

 

Fig -2: Nozzle Stokes number of a sneeze or cough ejecta. 
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Fig. 2 shows droplets smaller than 5 μm (Dp/Do = 1) are in a 
mechanical quasi-equilibrium with the flow and are 
transported by the airflow as a gas-phase (Stkn << 1). This 
result agrees with experiments conducted by van Doremalen 
et al. [56], who find SARS-CoV-2 remains viable in particles 
smaller than 5 μm for approximately 3 hrs with a half-life of 
1.1-1.2 h. In the case of Stkn < 1, the mechanical quasi-
equilibrium is valid because particle dispersion is high, and 
slip velocity between particles and gas phase is low (Sun et 
al. [57]). Then droplets smaller than 19 μm (Dp/Do < 3.8) are 
transported by airflow, and they remain airborne for long 
periods. Particles smaller than 50 μm (Dp/Do = 10) respond 
to turbulent motions and are carried by the stream (Stkn 
between 1-9). The influence of airflow on droplets between 
50-100 μm is weak (10 < Stkn < 100), although particles are 
still carried by airflow. Droplets larger than 100 μm (Dp/Do ≥ 
20) are not affected by airflow because the nozzle Stokes 
number is higher than 100 (Stkn >> 1). These results show 
particles smaller than 19 μm remain airborne in the 
environment for long periods, and the limit value is 50 μm. 
The particle dispersion is focused on a quasi-static 
environment under controlled conditions as confined spaces. 
Therefore, the airborne transmission of viruses in a quasi-
static environment is possible from a physics view. The risk 
of infections in non-ventilated rooms is high, even if the 
distance is too large for direct transmission of the virus 
(Riediker & Tsai [58]). 

4. CONCLUSION 

Fluids expelled on a sneeze or cough could be studied in two-
time stages, as a two-phase buoyant puff. In stage-1 (during 
the expulsion of fluids), the fluid momentum is the dominant 
mechanism on the jet dispersion. In stage-2 (post-expulsion 
of fluids), the buoyancy effect dominates the physical 
phenomenon. Nozzle Stokes numbers show particle sizes 
less than 5 μm remain airborne as a gas-phase (Stkn << 1), 
which is the critical case to airborne transmission of viruses. 
Particles smaller than 19 μm (Stkn < 1) are transported by 
airflow and remain airborne in the environment for long 
periods. Droplets between 50-100 μm are still carried by 
airflow, but airflow influence is weak (10 < Stkn < 100), 
whereas droplets larger than 100 μm (Dp/Do ≥ 20) are not 
affected by airflow. 
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