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Abstract: A cryptographic algorithm is presented to solve Kronecker product two-point boundary value problems. Cryptographic 
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1. Introduction  

 Cryptography plays an interesting role in achieving the primary aims of security, authentication, integrity, confidentiality, and 
non-repudiation. Cryptographic algorithms are presented to achieve the above goals. Cryptography is a fundamental tool for 
cyber security and privacy which must be protected for long periods of time. The use of cryptography to solve boundary value 
problems is due to Viswanadh V. Kanuri, et. al. [8,14,16 ] and the use of Kronecker product boundary value problems and 
(   ) bounded solutions are also due to Kasi Viswanadh, K. N. Murty and P. S. Anand, Sailaja P and Vellanki N. Lakshmi [2-
5,7,9-14,15,17]. We present in this paper encryption and decryption algorithms to solve linear system of first order equations 
and exhibit the best least square solutions of the boundary value problems. In fact cryptography is an ever growing, unending 
subject and it must remain so for its healthy growth. There are many ways and many techniques in cryptography and among 
them the most used technique is AES. This technique in fact preserves confidentiality, authenticity, and integrity, and is 
popularly applied in defense and satellite communication technology. We use cryptographic algorithm to find the best least 
square solution of the Kronecker product boundary value problems in the non-invertible case. This paper is organized as 
follows: section 2 presents properties of Kronecker product of matrices and develop variation of parameters formula for the 
Kronecker product non-homogeneous equation. Section 3 presents solution of the Kronecker product boundary value problem 
in terms of Green’s matrix, and section 4 presents least square solution to the Kronecker product boundary value problem. 
This section presents an important algorithm on cryptographic encryption and decryption and present least square vector 
which is the best least square solution of the Kronecker product boundary value problem in the rank deficiency case and also 
in non-invertible case. 

2. PRELIMINARIES 

 Kronecker product of matrices is an interesting area of current research and the use of Kronecker product matrices in 
boundary value problems is due to K. N. Murty, Balaram and Kasi Viswanadh V. Kanuri [6]. The idea of Kronecker product of 
matrices is used as a tool to obtain existence and uniqueness criteria for two-point boundary value problems associated with 
first order system of difference equations by Kasi Viswanadh, et. al. [2]. In cryptography the closest and shortest vector 
problem associated with lattices are the two ever growing computational problems. The closest vector problem (CVP) in 
inhomogeneous variant of the shortest vector problem (SVP) in which given a lattice and some target one has to find the 
closest lattice point. The hardness part of the lattice problem mainly comes from the fact that there are many possible bases 
for the same lattice. We present cryptographic algorithm in section 4. We now consider two different non-homogeneous first 
order systems of the form 
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                    (2.1) 

                    (2.2) 

where x is an m-vector, A is an (m m) continuous matrix,    is also an m-vector, y is an n-vector, B is an (n n) continuous 
matrix, and     is an n-vector. (2.1) and (2.2) can concurrently be embedded in a single Kronecker product system as 

                                                            (2.3)  

where I is a unit matrix. We shall now present the definition of Kronecker product of matrices and some of their properties: 

Definition 2.1 If        and       , then the Kronecker product or tensor product of A and B, denoted by    , is 
defined as  

      [
           
         
           

] 

i.e.              for all                

The Kronecker product of matrices defined above has the following properties: 

(i)                (T stands for transpose) 

(ii)                     

(iii)                   

(iv)                    (  stands for derivative) 

where the matrices involved are of appropriate dimensions to be conformable and invertible. 

The homogeneous Kronecker product system associated with (2.3) is given by 

                                          . (2.4) 

 Let X be a fundamental matrix of          and  be a fundamental matrix of         . Then, we have the following result: 

Theorem 2.1            is a fundamental matrix of (2.4) if and only if     is a fundamental matrix of          and     is 
a fundamental matrix of         .  

Proof: First suppose that X and Y be fundamental matrices of          and         , respectively. Then it is claimed that 
           is a fundamental matrix of (2.4) For 

                                    

                              

                        . (2.5) 

Hence the claim. Conversely, suppose            is a fundamental matrix of the homogeneous system (2.4). Then from 
(2.5), we have 

                             . 
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Multiply both sides of the equation by        , we get 

                                   . 

The above relation is true if each side is either a null matrix or an identity matrix, i.e.  

               , or           as such X is a fundamental matrix of         .  

If 

                , then,            or             , which is a contradiction to the hypothesis. Similar 
contradiction arises with the other side. Hence the proof. 

We now turn our attention to establish variation of parameter formula for the Kronecker product first order non-
homogeneous system (2.3). Let            be any solution of (2.3) and   ̂     ̂    be a particular solution of (2.3). Then, 
              ̂     ̂    is a solution of the homogeneous system (2.4). Hence, 

            ̂     ̂                        

where    and   are constant m-vector and n-vector, respectively. Since 

                   cannot be a solution of (2.3) unless                  . Hence, we seek a particular solution of 
(2.3) in the form  

 ̂     ̂                         . 

Substituting this form of solution in (2.3) to get 

                                              

                                                       . 

The first term on the left side equals the first term on the right side in the above equation, hence they cancel each other. We 
are left with 

                  
                      

Hence,  

                                            . 

or 

           ∫                                   
 

 
. 

Hence, a particular solution of (2.3) is given by 

 ̂     ̂               ∫                                   
 

 
. (2.6) 

Now, any solution of (2.3) is given by 

            ̂     ̂                       . (2.7) 

We now give our attention to the two two-point boundary value problems 

             ,                 , (2.8) 
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and 

             ,                  (2.9) 

where   and   are (m 1) and (n 1) given vectors, respectively. Equations (2.8) and (2.9) can be embedded in a Kronecker 
product boundary value problem as  

                                                            

                                                         . (2.10) 

3. EXISTENCE AND UNIQUENESS  

 In this section, we establish the existence and uniqueness of the solution of the boundary value problem (2.10) in terms of the 
integral involving Green’s matrix. Substituting the general form of           given in (2.7) in the boundary condition matrix 
given in (2.10), we get 

                                                    

                                                                   

           ∫                                   
 

 
   . 

Let                                                    , 

then, our initial assumption that the homogeneous Kronecker product boundary value problem has only the trivial solution 
ensures that D is non-singular. Hence 

                                  ∫                                   
 

 
. 

Therefore, any solution of the Kronecker product boundary value problem is given by 

                      ∫                                   
 

 

  

                            ∫                                   
 

 
}. 

Splitting the second integral into       and      , we write 

                      ∫                                   
 

 
   

                            ∫                                   
 

 
  

                            ∫                                   
 

 
  

  ∫                          
 

 
, 

where       is the Green’s matrix for the homogeneous boundary value problem. 

 In the previous discussion, we assumed that the characteristic matrix D is non-singular. If D is either singular or D is an 
(mp nq) matrix with rank say r, then the solution of the Kronecker product boundary value problem is not unique and hence 
we need to develop a method known as best least square solution to the boundary value problem. Let us consider the 
Kronecker product system: 
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                  , (3.1) 

where A is an m p and B is an n q matrix so that      is an mn pq matrix and    is a column vector of order pq 1 and 
     is also a column vector of order pq 1. let       and      . Then (3.1) can be written as 

     , where        . (3.2) 

Since D an mn pq matrix with       and   is a pq 1 vector and equality holds in (3.2) if the solution for z is unique. It is 
only possible if D is square and non-singular. In general, equality is not possible as the equation (3.2) is an over determined 
system. Since      , our aim is to find the best least square solution of (3.2) such that the residual vector           is 
small, i.e. 

   ‖    ‖     ‖     ‖  

is least. Thus, in this section, we consider numerically stable and computationally efficient algorithms. 

Definition 3.1 Let      . The orthogonal complement of S denoted by   is defined as the set of all vectors      that are 
orthogonal to S. 

One important property of orthogonal complement is that  

         

where  is the direct sum which means any vector       can uniquely be written as  

      

where    and     . 

 Theorem 3.1 Let D be an mn pq matrix and      . Then  ̂ is a least square solution to the system (4.2) if and only if it is a 
solution of the augmented linear system 

     ̂     . 

Proof: Let      . Then,    is an arbitrary vector in the column space of D, which we write as     . Let           is 
minimum if    is the orthogonal projection of   onto     . Since               ,  ̂ is a least square solution if and only if  

              ̂   , 

which is equal to the system of normal equations in the form 

     ̂     . (3.3) 

For this solution to be unique, the matrix D must have full column rank. 

Sensitivity and conditioning perturbation:  

The condition number of D denoted by      is defined as      ‖ ‖‖  ‖, where   is the generalized inverse of D and has 
the following properties: 

(i)       , (ii)         ,  

(iii)           , and (iv)           ,  

where * indicates conjugate transpose. If D is an mp nq matrix, then   is nq mp and such a   satisfying the above four 
properties is unique. If       , then the system is said to be well conditioned and if       , then the system is ill-
conditioned. 
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Example: Consider the linear system 

(
  
    

) (
  

  
)  (

 
 
), 

where      , has the solution       . We claim that the above system is ill-conditioned because small perturbations on 
 lead to significant changes in the behavior of the solution of the system. If we choose           , it has the solution 
      , and it is significantly different from       . We now examine the relationship between the error and relative error. 

 Consider the system      with the expected solution z and computed solution  ̂. Then, we write      ̂,       ̂  
   ̂. Since z may not be obtained immediately, the accuracy of the solution is evaluated by writing       ̂       ̂  
  . We take norm on e to get a bound on the absolute error. 

‖ ‖  ‖   ̂‖  ‖      ̂ ‖  ‖  ‖‖   ̂‖  ‖  ‖‖ ‖ 

so that ‖ ‖  ‖  ‖‖ ‖. Using this we can derive a bound for the relative error as ‖ ‖ ‖ ‖ and ‖ ‖ ‖ ‖. From  

‖  ‖  ‖  ‖‖ ‖
‖  ‖

‖ ‖
 ‖  ‖‖ ‖‖ ‖

‖ ‖

‖ ‖
 

thus  

 
‖  ‖

‖ ‖
     

‖ ‖

‖ ‖
 . (3.4) 

If        then the system is well conditioned, otherwise ill-conditioned. For well-conditioned problem       . We also 
derive a residue bound as 

 

    

‖ ‖

‖ ‖
 

‖   ̂‖

‖ ‖
     

‖ ‖

‖ ‖
 . 

These bounds are true for any matrix D. Consider the system  

     

 with  

  *
      
      

+,    *
   
   

+ , 

where      . Then consider perturbation matrix  

 ̂       *
  
  

+. 

Clearly,  ̂ is singular, solving system      yields no solution.  

Normal equations method: Now, we know that solving the system of equations 

     , 

with columns of D linearly independent reduces to the system of normal equations of the form 

        . 

The normal equations method computes the solution to the least square solution problem by transforming the rectangular 
matrix into a triangular form. 
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Cholesky factorization: If D is an mp nq matrix with full column rank, then the following hold for    : 

(1)    is symmetric, i.e.                   . 

(2)     is positive definite, i.e.                  ‖  ‖    if    .  

Since    is symmetric, positive definite, we conclude        , where L is an nq nq lower triangular matrix. 

FLOP: complexity of numerical algorithm. Triangular matrices are extensively used in numerical algorithms such as Cholesky 
factorization or QR-factorization since triangular systems are one of the simplest systems to solve. A FLOP is a floating point 
operation (+,  ,  , /). In an nq nq lower triangular system     , each    is obtained by writing       ∑      

   
   , which 

requires     multiplications and     additions, Thus, y requires          FLOPS to compute. Since nq is usually 
sufficiently large to lower order terms, we say that nq nq forward substitution costs      FLOPS. 

Algorithm for Cholesky factorization: 

For a matrix D define           to be the                   submatrix of D with upper left corner of     and lower right 

corner of      . 

Algorithm: Let     

 for    to mp 

                                

               √    . 

The last line dominates the operation count for this algorithm. The FLOP count is 

∑ ∑           
     

  
   ∑ ∑   

   
  
    ∑     

          . 

Thus, we have the following algorithm for the normal equations:  

1) Calculate       (E symmetric,        FLOPs). 

2) Cholesky factorization       (       FLOPs). 

3) Calculate       (      FLOPs). 

4) Solve     by forward substitution (     FLOPs). 

5) Solve       by backward substitution (     FLOPs). 

This gives the cost, for large m, n, p, q, at       +       FLOPs. 

4. Cryptographic algorithm to find the best least square solution 

 Cryptography prior to the modern age was effectively synonymous with encryption and decryption of information from a 
readable state to apparent nonsense. Modern cryptography is mostly based on mathematical theory and computer science 
practice; cryptographic algorithms are based on computational hardness assumptions, making sure algorithms are hard break 
in practice by any adversary. It is theoretically possible to break such a system, but it is impossible to do so by any 
unauthorized person. The growth of cryptographic technology has raised a number of legal issues in the present information 
age. The word of cryptography comes from Greek word “cryptos” that means hidden and “graphikos” which means writing. 
Encryption is the process of translating plain text into something that appears to be random and meaningless. Decryption is 
the process of converting cipher text back to plaintext. In the two-key system also known as public key system, one key 
encrypts the information and another key a private key that is never shared by anyone and only shared by the known person 
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to the sender. If a sending computer first encrypts the message with the intended receiver’s public key and only with sender’s 
secret public key, the sender and receiver are able to acknowledge one another and protect the secrecy of the message. We 
now present our main algorithm. 

Main algorithm: our aim is to find the nest least square solution of the Kronecker product system 

                  , (4.1) 

where A is an m n matrix , B is a p q matrix and       is a column vector of      and so it is with        . To make 
matters simple, we write 

       ,        , and          , 

where D is an mp nq matrix and if we put     ,     , then 

     . (4.2) 

We first present an algorithm that computes the closest vector without any representation choice, but the two different 
representations significantly reduce the speed. 

Definition 4.1 A matrix is D is said to be a generator matrix if it has real entries and the rows of D are linearly independent on 
 . 

 Firstly, we assume that a generator matrix D and an input vector z are given. Let D be a k l matrix and    . By means of a 
linear integer transformation, we first transform D into another matrix   which generates an identical lattice and then rotate 
and reflect   into a lower triangular matrix    such that 

                . 

It is essential to rotate and reflect the input vector z in the same way, so that the transformed input vector, say z, is in the same 
rotation to     as z in rotation to    . By reversing the operations of rotation and reflection enables us to produce  ̂, which 
is the lattice point closest to z in     . Following these steps, we present the algorithm in details: 

Algorithm, closest point (D, z). 

Input: A lattice point  ̂      , the closest to z. 

Step 1: Let      where W is a k k matrix with integer entries and | |    . 

Step 2: Compute a (k l) orthogonal matrix Q with ortho-normal columns such that        where   is a (k l) lower 
triangular matrix with diagonal entries positive. 

Step 3: Let      
  . 

Step 4: Let        .  

Step 5:  ̂   DECODE(     ). 

Step 6: Return  ̂   ̂   . 

Note that Step1 is a basic reflection. If no reflection is needed, take W as a unit matrix. The speed and numerical stability can 
be improved significantly if proper search is made in Step 2. As an alternative to QR decomposition,    can be obtained by 
Cholesky decomposition by writing     in our context     and the rotation matrix is given by     

    . However, QR 
method is the generally recommended method to find least square solutions. Note that the decomposition of      is unique, 
whichever technique we adopt and ??? in our modified QR-algorithm, Q is orthogonal implies | |    . If D is an ill-
conditioned matrix, the method we are going to present is the most effective one. 
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 In Steps 4-6 the input vectors are processed. They are transformed into the coordinate system of   , decoded, and 
transformed back again. 

Algorithm DECODE(H, z) 

Input: a (k k) lower triangular matrix H with positive diagonal elements and a k-dimensional vector      to decode in the 
lattice       . 

Output: a k-dimensional vector  ̂    such that  ̂   is a lattice point  ̂that is closest to z. 

   the size of H  

bestdist    

     (dimension of the matrix) 

           

        

         

                 

                

Loop 

                   

If newdist < bestdist then { 

If     then { 

               for            

        

distk  newdist 

        

                 

stepk      (y) 

} else { 

 ̂     

bestdist  newdist 
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stepk  stepk-    (stepk) 

} 

} else { 

if      then return to  ̂ (and exit) 

else { 

       

             

                 

go to step 25 

} 

{ 

go to <loop>} 

 In the above algorithm, mp, k are in the dimension of the sublayer structure that is currently being investigated. 

 As an example, consider  

        [
    
    
    

],   [

  

  

  

  

], and   [
  
 
    

]. 

Then, min least square solution is given by 

 ̂                                                 . 

Using the decode algorithm the shortest vector is found 

                                                 . 

Note the z given by above vector is the best least square solution of the Kronecker product two point boundary value problem. 
These results further supplements the results in [ 1] . 
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